数字电子技术基础 第一章练习题及参考答案
数字电子技术基础第三版第一章答案
第一章数字逻辑基础第一节重点与难点一、重点:1.数制2。
编码(1)二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码.常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法-并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3。
电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。
数字电子技术基础课后习题及参考答案
《数字电子技术基础》课后习题及参考答案(总90页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)21(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。
(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。
《数字电子技术基础》课后习题及参考答案
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。
(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。
000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。
数字电子技术基础. 第四版. 课后习题答案详解
(1)Y=A+B
(2)YABCABC
解:BCABCCABC(A+A=)
(5)Y=0
(2)(1101101)2=(6D)16=(109)10
(4)(11.001)2=(3.2)16=(3.125)10
(2)(127)10=(1111111)2=(7F)16
(4) (25.7)10(11001.1011 0011)2(19.B3)16
1.12
将下列各函数式化为最大项之积的形式
(1)Y(ABC)(ABC)(ABC)
(3)YM0⋅M3⋅M4⋅M6⋅M7
(5)YM0⋅M3⋅M5
(2)Y(ABC)(ABC)(ABC)
(4)YM0⋅M4⋅M6⋅M9⋅M12⋅M13
1.13
用卡诺图化简法将下列函数化为最简与或形式:
(3)Y(AB)(AC)ACBC
(2)Y
ACD
解:(AB)(AC)ACBC[(AB)(AC)AC]⋅BC
(ABACBCAC)(BC)BC
(5)YADACBCDC
解:Y(AD)(AC)(BCD)CAC(AD)(BCD)
ACD(BCD)ABCD
(4)YABC
(6)Y0
1.11
将函数化简为最小项之和的形式
(3)Y=1
(4)YAB CDABDAC D
解:YAD(B CBC)AD(BCC)AD
(7)Y=A+CD
(6)YAC(C DA B)BC(BADCE)
解:YBC(B⋅ADCE)BC(BAD)⋅CEABCD(CE)ABCDE
(8)YA(BC)(ABC)(ABC)
解:YA(B⋅C)(ABC)(ABC)A(AB CB C)(ABC)
《数字电子技术基础》课后习题答案
BC A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
则表达结果 Y 的表达式为:
逻辑电路如下:
技能题:
3.20:解:根据题意,A、B、C、D 变量的卡诺图如下:
CD AB
00
01
11
10
00
0
0
0
0
编辑版 word
01
0
0
0
0
11
0
1
1
1
10
0
0
0
0
电路图如下:
编辑版 word
第四章:
自测题:
一、 2、输入信号,优先级别最高的输入信号 7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C
第六章:
自测题:
一、 1、存储,组合逻辑,存储 3、时钟 CP,时钟 CP,时钟 CP,时钟 CP 9、4,4
二、 2、√ 9、×
三、 3、C 8、D
练习题:
6.2、
(1)输出方程
Y Q2n
(2)驱动方程
n
J0 Q2
J1 K1 Q0n
K0 1
J 2 Q1nQ0n
(3)状态方程
K2 1
Q0n1
练习题:
4.1;解:(a) (b)
,所以电路为同或门
,所以电路为与门。
4.5、解:当 M=0 时,
, 所以此时电路输出反码。
,同理可推:
当 M=1 时,
, 所以此时电路输出原码。
,同理可推:
4.7、Y ABC D ABCD ABC ABC D ABCD ABC D BD ABC BC D
数字电子技术基础第一章练习题及参考答案
第一章数字电路基础第一部分基础知识一、选择题1.以下代码中为无权码的为。
A. 8421BCD码B. 5421BCD码C.余三码D.格雷码2.以下代码中为恒权码的为。
A .8421BCD码B. 5421BCD码C.余三码D.格雷码3. 一位十六进制数可以用位二进制数来表示。
A. 1B.2C. 4D.164.十进制数25用8421BCD码表示为。
A .10 101B .0010 0101 C. 100101 D .101015.在一个8位的存储单元中,能够存储的最大无符号整数是。
A. (256) 10B. (127) 10C. (FF) 16D. (255) 106.与十进制数(53.5) 10等值的数或代码为。
A.(0101 0011. 0101)8421BCDB.(35. 8)16C.(110101. 1)2D.(65. 4)87.矩形脉冲信号的参数有。
A.周期B.占空比C.脉宽D.扫描期8.与八进制数(47. 3) 8等值的数为:A. (100111 . 011 )2B. (27. 6)16C. (27. 3 )16D. (1 00111 . 11 )29. 常用的BCD码有。
A.奇偶校验码B.格雷码C. 8421码D.余三码10 .与模拟电路相比,数字电路主要的优点有。
A.容易设计B.通用性强C.保密性好D.抗干扰能力强二、判断题(正确打,,错误的打X)1.方波的占空比为0. 5。
()2. 8421 码1001 比0001 大。
( )3.数字电路中用“ 1”和“ 0”分别表示两种状态,二者无大小之分。
()4.格雷码具有任何相邻码只有一位码元不同的特性。
()5.八进制数(18) 8比十进制数(18) 10小。
()6.当传送十进制数5时,在8421奇校验码的校验位上值应为1。
( )7.在时间和幅度上都断续变化的信号是数字信号,语音信号不是数字信号。
()8.占空比的公式为:q = t w / T,则周期T越大占空比q越小。
《数字电子技术基础》课后习题答案
2、2: (4)解:
(8)解:
2、3:
(2)证明:左边
《数字电子技术基础》课后习题答案
=右式 所以等式成立
(4)证明:左边=
右边= 左边=右边,所以等式成立 2、4
(1) 2、5 (3) 2、6:
(1) 2、7:
(1) 卡诺图如下:
BC A
00
01
11
10
0
1
1
1
1
1
1
所以, 2、8: (2)画卡诺图如下:
(c)
(f)
3、7、解: (a)
《数字电子技术基础》课后习题答案
3、8、解:输出高电平时,带负载的个数
N OH
I OH I IH
400 20
20
G 可带 20 个同类反相器 输出低电平时,带负载的个数
N OL
I OL I IL
8 0.45
17.78
G 反相器可带 17 个同类反相器 3、12
EN=1 时,
11
10
00
0
0
0
0
01
0
0
0
0
11
0
1
1
1
10
0
0
0
0
电路图如下:
第四章:
自测题:
一、 2、输入信号,优先级别最高的输入信号 7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C
练习题:
4、1;解:(a) (b)
(74)10 =(0111 0100)8421BCD=(1010 0111)余 3BCD (45、36)10 =(0100 0101、0011 0110)8421BCD=(0111 1000、0110 1001 )余 3BCD (136、45)10 =(0001 0011 0110、0100 0101)8421BCD=(0100 0110 1001、0111 1000 )余 3BCD (374、51)10 =(0011 0111 0100、0101 0001)8421BCD=(0110 1010 0111、1000 0100)余 3BCD 1、8、解
(完整版)《数字电子技术基础》第一章习题答案
第一章 逻辑代数及逻辑函数的化简1。
1、用布尔代数的基本公社和规则证明下列等式. 1、D B A DC D A BD B A +=+++证:左边=D B A DC D BD B A DC D A AD BD B A +=+++=++++=右边 2、C AB D A C AB D B A D AB +=++证:左边=C AB D A C AB B B D A +=++)(=右边 3、D B B DA C B D D BC +=++++))((证:左边=D B C B C DA B DA D BC B DA C B D BC +=++++=++++))((=右边 4、D B C B BC D A D C A ACD +=++++ 证:左边=B D B D A AD +=++=右边 5、))()((A C C B B A CA BC AB +++=++证:右边=AB BC AC A C B AC A C BC B AC AB ++=++=++++))(())((=左边 6、A C C B B A C B A ABC ++=+证:右边=C B A ABC A C BC C A B A A C C B B A A C C B B A +=+++=+++=))(())()(( 7、A C C B B A A C C B B A ++=++证:左边=A C C B B A C B B A A C A C C B B A ++=+++++=右边 8、)())()()((X W YZ Z Y Z Y X W Z Y +=++++证:左边=)())()((X W YZ Z Y X W Y Z YZ +=+++=右边 9、0))()()((=++++B A B A B A B A证:左边=0))((==++++A A B A B A A AB B A A =右边10、A D D C C B B A D C CD C B BC B A AB +++=+++))()(( 证:左边=D C B A ABCD D C CD C B A ABC +=++))((右边=))()()((A D D C C B B A A D D C C B B A ++++==D C B A ABCD AD C A D C BC C A B A +=++++))((=左边11、=⊕⊕C B A A ⊙B ⊙C证:左边=C B A ABC C B A C B A C B A AB C B A B A +++=+++)()( ==+++)()(C B C B A C B BC A A ⊙B ⊙C =右边 12、如果Y B X A BY AX B A +=+=⊕,证明0证:AB B A Y X X B Y A B A Y B X A BY AX +++++=++=+))((=X A Y B AB Y X X B Y A B A ++++++ =X A Y B X A Y B AB B A +=+++=右边1.2、求下列函数的反函数.1、B A AB F += 解:))((B A B A F ++=2、C B A C B A C AB ABC F +++=解:))()()((C B A C B A C B A C B A F ++++++++=3、)(D A C C B B A F +++= 解:))()((D A C C B B A F +++=4、))()((B A D C C D A B F +++= 解:B A D C C D A B F ++++=)(5、RST T S R T S R F ++= 解:))()((T S R T S R T S R F ++++++= 1.3、写出下列函数的对偶式.1、E DE C C A B A F ++++=))()(( 解:E E D C C A AB F )](['+++=2、B A D B C AB F = 解:B A D B C B A F ++++++='3、C B C A C B B A F +++++++= 解:BC C A BC B A F ='4、Z Y X Z XY F += 解:Z Y X Z Y X F ++++=' 1.4、证明函数F 为自对偶函数。
全版《数字电子技术基础》课后习题答案.docx
00
01
11
10
0
0
1
0
1
1
1
0
1
0
另有开关S,只有S=1时,Y才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC
A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
4.15、
(2)解:
1、写出逻辑函数的最小项表达式
2、将逻辑函数Y和CT74LS138的输出表达式进行比较
(45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001)余3BCD
(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000)余3BCD
(374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD
二、
3、√
4、√
三、
5、A
7、C
练习题:
4.1;解:(a) ,所以电路为与门。
(b) ,所以电路为同或门
4.5、解:当M=0时, ,同理可推:
,
所以此时电路输出反码。
当M=1时, ,同理可推:
,
所以此时电路输出原码。
4.7、
4.9、解:设三个开关分别对应变量A、B、C,输出Y’,列出卡诺图如下:
《数字电子技术基础》课后习题及参考答案#(精选.)
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
数字电子技术基础第三版第一章答案
第一章数字逻辑基础第一节重点与难点一、重点:1.数制2.编码(1) 二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码。
常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3.电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。
数字电子技术基础课后习题及答案
第1章习题与参考答案【题1-1】将以下十进制数转换为二进制数、八进制数、十六进制数。
〔1〕25;〔2〕43;〔3〕56;〔4〕78解:〔1〕25=〔11001〕2=〔31〕8=〔19〕16〔2〕43=〔101011〕2=〔53〕8=〔2B〕16〔3〕56=〔111000〕2=〔70〕8=〔38〕16〔4〕〔1001110〕2、〔116〕8、〔4E〕16【题1-2】将以下二进制数转换为十进制数。
〔1〕10110001;〔2〕10101010;〔3〕11110001;〔4〕10001000解:〔1〕10110001=177〔2〕10101010=170〔3〕11110001=241〔4〕10001000=136【题1-3】将以下十六进制数转换为十进制数。
〔1〕FF;〔2〕3FF;〔3〕AB;〔4〕13FF解:〔1〕〔FF〕16=255〔2〕〔3FF〕16=1023〔3〕〔AB〕16=171〔4〕〔13FF〕16=5119【题1-4】将以下十六进制数转换为二进制数。
〔1〕11;〔2〕9C;〔3〕B1;〔4〕AF解:〔1〕〔11〕16=〔00010001〕2〔2〕〔9C〕16=〔10011100〕2〔3〕〔B1〕16=〔1011 0001〕2〔4〕〔AF〕16=〔10101111〕2【题1-5】将以下二进制数转换为十进制数。
〔1〕1110.01;〔2〕1010.11;〔3〕1100.101;〔4〕1001.0101解:〔1〕〔1110.01〕2=14.25〔2〕〔1010.11〕2=10.75〔3〕〔1001.0101〕2=9.3125【题1-6】将以下十进制数转换为二进制数。
〔1〕20.7;〔2〕10.2;〔3〕5.8;〔4〕101.71解:〔1〕20.7=〔10100.1011〕2〔2〕10.2=〔1010.0011〕2〔3〕5.8=〔101.1100〕2〔4〕101.71=〔1100101.1011〕2【题1-7】写出以下二进制数的反码与补码〔最高位为符号位〕。
《数字电子技术基础》课后习题答案
《数字电子技术基础》课后习题答案《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1) 十六进制转二进制: 4 5 C0100 0101 1100二进制转八进制:010 001 011 1002 13 4十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2) 十六进制转二进制: 6 D E . C 80110 1101 1110 . 1100 1000二进制转八进制:011 011 011 110 . 110 010 0003 3 3 6 . 6 2十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1 758.78125)10所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3) 十六进制转二进制:8 F E . F D1000 1111 1110. 1111 1101二进制转八进制:100 011 111 110 . 111111 0104 3 7 6 . 7 7 2十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*1 6-2=(2302.98828125)10所以:(8FE.FD)16=(100011111110.11111101)2=(4376.772)8=(2302.98828125)10(4) 十六进制转二进制:7 9 E . F D0111 1001 1110 . 1111 1101二进制转八进制:011 110 011 110 . 111 111 0103 6 3 6 . 7 7 2十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16 -2=(1950. 98828125)10所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1 950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD (45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则二、2、×4、×三、1、B3、D5、C练习题:2.2:(4)解:Y=AB̅+BD+DCE+A̅D=AB̅+BD+AD+A̅D+DCE=AB̅+BD+D+DCE=AB̅+D (B +1+CE ) =AB̅+D (8)解:Y =(A ̅+B ̅+C ̅)(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(A ̅+B ̅+C ̅+DE ) =[(A ̅+B ̅+C ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅+(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅](A ̅+B ̅+C ̅+DE ) =(ABC +DE )(ABC ̅̅̅̅̅̅+DE ) =DE 2.3:(2)证明:左边=A +A ̅(B +C)̅̅̅̅̅̅̅̅̅̅̅̅ =A +A ̅+(B +C)̅̅̅̅̅̅̅̅̅̅=A +B̅C ̅ =右式所以等式成立(4)证明:左边= (A̅B +AB ̅)⨁C = (A̅B +AB ̅)C ̅+ (A ̅B +AB ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅C = (A ̅BC ̅+AB ̅C ̅)+A ̅B ̅̅̅̅⋅AB̅̅̅̅̅⋅C =A̅BC ̅+AB ̅C ̅+(A +B ̅)(A ̅+B )C =A̅BC ̅+AB ̅C ̅+(AB +A ̅B ̅)C =A̅BC ̅+AB ̅C ̅+ABC +A ̅B ̅C 右边= ABC +(A +B +C )AB ̅̅̅̅⋅BC ̅̅̅̅⋅CA̅̅̅̅ =ABC +(A +B +C )[(A̅+B ̅)(B ̅+C ̅)(C ̅+A ̅)] =ABC +(A +B +C )(A̅B ̅+A ̅C ̅+B ̅+B ̅C ̅)(C ̅+A ̅)=ABC +(A +B +C )(A̅B ̅C ̅+A ̅C ̅+B ̅C ̅+A ̅B ̅) =ABC +AB̅C ̅+A ̅BC ̅+A ̅B ̅C 左边=右边,所以等式成立 2.4(1)Y ′=(A +B ̅C ̅)(A ̅+BC) 2.5(3)Y ̅=A ̅B ̅(C ̅+D ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ C ̅D ̅(A ̅+B ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2.6:(1)Y =AB +AC +BC=AB (C +C̅)+AC (B +B ̅)+BC (A +A ̅) =ABC +ABC ̅+AB ̅C +A ̅BC 2.7:(1)Y =A ̅B ̅+B ̅C ̅+AC +B ̅C 卡诺图如下: B C A 00 0111100 1 1 1111所以,Y=B̅+AC2.8:(2)画卡诺图如下:B C A 0001 11 100 1 1 0 11 1 1 1 1Y(A,B,C)=A+B̅+C̅2.9:(1)画Y(A,B,C,D)=∑m(0,1,2,3,4,6,8)+∑d(10,11,12,13,14)如下:CDAB00 01 11 1000 1 1 1 101 1 111 ×××10 1 ××Y (A,B,C,D )=A̅B ̅+D ̅ 2.10:(3)解:化简最小项式: Y =AB +(A̅B +C ̅)(A ̅B ̅+C ) =AB +(A̅B A ̅B ̅+A ̅BC +A ̅B ̅C ̅+C ̅C ) =AB (C +C̅)+A ̅BC +A ̅B ̅C ̅ =ABC +ABC ̅+A ̅BC +A ̅B ̅C ̅ =∑m (0,3,6,7)最大项式:Y =∏M(1,2,4,5) 2.13:(3)Y =AB̅+BC ̅+AB ̅C ̅+ABC ̅D ̅ =AB̅(1+C ̅)+BC ̅(1+AD ̅) =AB̅+BC ̅ =AB̅+BC ̅̿̿̿̿̿̿̿̿̿̿̿̿ = AB̅̅̅̅̅∙BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅技能题:2.16 解:设三种不同火灾探测器分别为A 、B 、C ,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:B C A 00 01 11 10 0 0 0 1 0 1 0 1 1 1Y =AB +AC +BC=AB +AC +BC ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=AB ̅̅̅̅⋅AC ̅̅̅̅⋅BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=(A ̅+B ̅)(A ̅+C ̅)(B ̅+C ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅+B ̅̅̅̅̅̅̅̅̅+A ̅+C ̅̅̅̅̅̅̅̅̅+B ̅+C ̅̅̅̅̅̅̅̅̅第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空;二、1、√8、√;三、1、A4、D练习题:3.2、解:(a)因为接地电阻4.7k Ω,开门电阻3k Ω,R>R on ,相当于接入高电平1,所以Y =A ̅B ̅1̅̅̅̅̅̅=A +B +0=A +B(e) 因为接地电阻510Ω,关门电0.8k Ω,R<R off ,相当于接入高电平0,所以、Y =A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A̅⋅B ̅∙1̅̅̅̅̅̅̅̅̅̅=A +B +0=A +B3.4、解:(a) Y1=A+B+0̅̅̅̅̅̅̅̅̅̅̅̅̅=A+B̅̅̅̅̅̅̅̅(c) Y3=A+B+1̅̅̅̅̅̅̅̅̅̅̅̅̅=1̅=0(f) Y6=A⋅0+B⋅1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅3.7、解:(a) Y1=A⨁B⋅C=(A̅B+AB̅)C=A̅BC+AB̅C3.8、解:输出高电平时,带负载的个数2020400===IHOHOH I I NG 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===ILOLOL I I NG 反相器可带17个同类反相器3.12EN=1时,Y 1=A , Y 2=B ̅EN=0时,Y 1=A ̅, Y 2=B3.17根据题意,设A为具有否决权的股东,其余两位股东为B、C,画卡诺图如下,BCA00 01 11 100 0 0 0 01 0 1 1 1则表达结果Y的表达式为:Y=AB+AC=AB+AC̿̿̿̿̿̿̿̿̿̿̿̿=AB̅̅̅̅⋅AC̅̅̅̅̅̅̅̅̅̅̅̅̅̅逻辑电路如下:技能题:3.20:解:根据题意,A、B、C、D变量的卡诺图如下:CD AB00 01 11 1000 0 0 0 001 0 0 0 011 0 1 1 110 0 0 0 0Y =ABC +ABD =ABC +ABD ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=ABC ̅̅̅̅̅̅⋅ABD ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、3、√4、√三、5、A7、C练习题:4.1;解:(a) Y =A⨁B +B ̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅B +AB ̅+B ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅B +B ̅̅̅̅̅̅̅̅̅̅̅=A ̅+B̅̅̅̅̅̅̅̅̅=AB ,所以电路为与门。
数字电子技术基础课后习题解答(一到三章张克农
第1章习题解答1.1把下列二进制数转换成十进制数①10010110;②11010100;③0101001;④10110.111;⑤101101.101;⑥0.01101。
[解] 直接用多项式法转换成十进制数① (10010110)B = (1⨯2 7+1⨯24 + 1⨯22 +1⨯21)D = (150)D=150② (11010100)B = 212③ (0101001)B = 41④ (10110.111)B = 22.875⑤ (101101.101)B = 45.625⑥ (0.01101)B = 0.406251.2把下列十进制数转换为二进制数①19;② 64;③ 105;④ 1989;⑤ 89.125;⑥ 0.625。
[解] 直接用基数乘除法① 19= (10011)B② 64= (1000000)B③ 105 = (1101001)B④ 1989 = (11111000101)B⑤ 89.125 = (1011001.001)B⑥ 0.625= (0.101)B1.3把下列十进制数转换为十六进制数① 125;② 625;③ 145.6875;④0.5625。
[解]直接用基数乘除法① 125 = (7D)H② 625 = (271)H③ 145.6875= (91.B)H④ 0.56255=(0.9003)H1.4把下列十六进制数转换为二进制数① 4F;② AB;③ 8D0;④ 9CE。
[解]每位十六进制数直接用4位二进制数展开① (4F)H= (1001111)B② (AB)H= (10101011)B 2 19 余数2 9 …… 1 ……d02 4 …… 1 ……d12 2 ……0 ……d22 1 ……0 ……d32 0 …… 1 ……d4图题1.2 ①基数除法过程图12③ (8D0)H = (100011010000)B ④ (9CE)H = (100111001110)B 1.5 写出下列十进制数的8421BCD 码 ① 9;② 24;③ 89;④ 365。
(全)数字电子技术基础课后答案
【题
(
解:(1)A=0,B=0
(2)A=0,B=1或C=1
(3)A=1,B=0,C=1
(4)A=0,B=1或C=0
【题
(
解:(1)
A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
(2)
当A取1时,输出Y为1,其他情况Y=0。
【题
(
(
解:(1)左边 右边
【题
(1)
解:(1)25=(0010 0101)BCD
(
(
(
【题
解:4位数格雷码;
0000、0001、0011、0010、0110、0111、0101、0100、1100、1101、1111、1010、1011、1001、1000、
第
【题
图题2-1
解:
【题
图题2-2
解:
【题
图题2-3
解:
【题
图题2-4
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
《数字电子技术基础》习题答案
证明:(1)左边= =右边
(2)右边=
=
=
= =左边
1.8写出下列函数的对偶式 。
(1)
(2)
(3)
(4)
解:(1)
(2)
(3)
(4)
1.9写出题1.8中函数的反函数 。
解:(1)
(2)
(3)
(4)
1.10列出下列问题的真值表,并写出逻辑表达式。
(1)设三变量A、B、C当变量组合值中出现奇数个1时,输出(F1)为1,否则为0。
(1) 。
(2)
(3)
(4)
解(1)卡诺图如图解1.15(a)所示,得
图解1.15(a)
(2)卡诺图如图解1.15(b)所示,得
图解1.15(b)
(3)卡诺图如图解1.15(c)所示,得
图解1.15(c)
(4)卡诺图如图解1.15(d)和(e)所示。
按图(d)写出的化简结果为
按图(e)写出的化简结果为
(4)(1010101.101)B ==(85.625)D=(55.A)H
1.4将下列十六进制数转换为十进制数、二进制数。
(1)3E(2)7D8(3)3AF.E
解:(1)(3E)H=(62)D=(111110)B
(2)(7D8)H=(2008)D=(11111011000)B
(3)(3AF.E)H=(943.875)D=(1110101111.111)B
任一解都为最简与或式。
图解1.15(d)和(e)
1.17化简逻辑函数。
(1)
(2)
解(1)卡诺图如图解1.17(a)所示,
图解1.17(a)
(2)卡诺图如图解1.17(b)所示,
图解1.17(b)
万里学院-数字电子技术基础-第一章习题及参考答案
F13 A ABCD ABC BC BC A BCD ABC C AC
14.解: F14
( A B) ( A B) ( AB)( AB) ( A B ) ( A B) ( A B)( A B) ( A B ) ( A B) AB AB AB AB AB AB A B AB
3
题图 1-5 6.分析题图 1-6(a) 、 (b)所示逻辑电路,写出输出逻辑函数 L1~L3 的“与-或”表达式。
(a) 题图 1-6
(b)
4
第一章习题参考答案 一、填空题 1.262.54 B2.B; 2.11101.1 29.5 1D.8 (0010 1001.0101); 3.100111.11 47.6 27.C ;
A( BD B ) BC ( D AD) A( D B) BC ( D A)
AD AB BC AD AD AB BC
2.解: F2 AB AC BC C D D
AB AC BC C D AB C AB C D AB C C D 1
第一章习题 一、填空题 1.(10110010.1011)2=( 2.(35.4)8 =( 3.(39.75)10=( 4.(5E.C)16=( 5.(01111000)8421BCD =( 6.逻辑函数 F AB AB 的反函数 F = 7.添加项公式 AB+ A C+BC=AB+ A C 的对偶式为 8.逻辑函数 F= A B C D +A+B+C+D= 9.逻辑函数 F= AB AB AB AB = 。 。 。 )8=( )2 =( )2=( )2=( )16 )10=( )8=( )8=( )2=( )16=( )16 )10= ( )8=( )10=( )8421BCD )16 。 )8421BCD
数字电子技术第1章 习题参考答案
第1章习题参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16 (2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16 (4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177 (2)10101010=170(3)11110001=241 (4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255 (2)(3FF)16=1023(3)(AB)16=171 (4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25 (2)(1010.11)2=10.75(3)(1100. 101)2=12.625 (4)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、判断题(正确打√,错误的打×)
1.方波的占空比为0.5。()
2. 8421码1001比0001大。()
3.数字电路中用“1”和“0”分别表示两种状态,二者无大小之分。()
4.格雷码具有任何相邻码只有一位码元不同的特性。()
5.八进制数(18)8比十进制数(18)10小。()
6.当传送十进制数5时,在8421奇校验码的校验位上值应为1。( )
7.在时间和幅度上都断续变化的信号是数字信号,语音信号不是数字信号。()
8.占空比的公式为:q = tw/ T,则周期T越大占空比q越小。()
9.十进制数(9)10比十六进制数(9)16小。()
10.当8421奇校验码在传送十进制数(8)10时,在校验位上出现了1时,表明在传送过程中出现了错误。()
10.对逻辑函数Y=A + B+ C+B 利用代入规则,令A=BC代入,得Y= BC + B+ C+B = C+B 成立。()
三、填空题
1.逻辑代数又称为代数。最基本的逻辑关系有、、三种。常用的几种导出的逻辑运算为、、、、。
2.逻辑函数的常用表示方法有、、。
3.逻辑代数中与普通代数相似的定律有、、。摩根定律又称为。
第二部分逻辑代数
一、选择题
1. 以下表达式中符合逻辑运算法则的是。
A.C·C=C2B.1+1=10 C.0<1 D.A+1=1
2. 逻辑变量的取值1和0可以表示:。
A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无
3. 当逻辑函数有n个变量时,共有个变量取值组合?
A.nB.2nC.n2D.2n
C.变量不变
D.常数中“0”换成“1”,“1”换成“0”
E.常数不变
8.A+BC=。
A.A+BB.A+CC.(A+B)(A+C)D.B+C
9.在何种输入情况下,“与非”运算的结果是逻辑0。
A.全部输入是0 B.任一输入是0C.仅一输入是0D.全部输入是1
10.在何种输入情况下,“或非”运算的结果是逻辑0。
三、填空题
1.描述脉冲波形的主要参数有、、、、、、。
2.数字信号的特点是在上和上都是断续变化的,其高电平和低电平常用和来表示。
3.分析数字电路的主要工具是,数字电路又称作。
4.在数字电路中,常用的计数制除十进制外,还有、、。
5.常用的BCD码有、、、等。常用的可靠性代码有、等。
6.(10110010.1011)2=()8=()16
4.逻辑代数的三个重要规则是、、。
5.逻辑函数F= +B+ D的反函数 =。
6.逻辑函数F=A(B+C)·1的对偶函数是。
7.添加项公式AB+ C+BC=AB+ C的对偶式为。
8.逻辑函数F= +A+B+C+D=。
9.逻辑函数F= =。
10.已知函数的对偶式为 + ,则它的原函数为。
四、思考题
1.逻辑代数与普通代数有何异同?
A.10 101 B.0010 0101 C.100101 D.10101
5.在一个8位的存储单元中,能够存储的最大无符号整数是。
A.(256)10B.(127)10C.(FF)16D.(255)10
6.与十进制数(53.5)10等值的数或代码为。
A.(01010011.0101)8421BCDB.(35.8)16C.(110101.1)2D.(65.4)8
2.格雷码的特点是什么?为什么说它是可靠性代码?
3.奇偶校验码的特点是什么?为什么说它是可靠性代码?
答案:
一、选择题
1.CD
2.AB
3.C
4.B
5.CD
6.ABCD
7.ABC
8.AB
9.CD
10.BCD
二、判断题
1.√ 2.×3.√ 4.√ 5.×
6.√ 7.√ 8.×9.×10.√
三、填空题
1.幅度、周期、频率、脉宽、上升时间、下降时间、占空比
5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()
6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。()
7.逻辑函数两次求反则还原,逻辑函数的对偶式再作对偶变换也还原为它本身。()
8.逻辑函数Y=A + B+ C+B 已是最简与或表达式。()
9.因为逻辑表达式A + B +AB=A+B+AB成立,所以A + B= A+B成立。()
2.时间、幅值、1、0
3.逻辑代数、逻辑电路
4.二进制、八进制、十六进制
5.8421BCD码、2421BCD码、5421BCD码、余三码、格雷码、奇偶校验码
6.262.54 B2.B
7.11101.1 29.5 1D.8 (0010 1001.0101)
8.100111.11 47.6 27.C
9.1011110.11 136.6 94.75 (1001 0100.0111 0101)
A.全部输入是0B.全部输入是1C.任一输入为0,其他输入为1D.任一输入为1
二、判断题(正确打√,错误的打×)
1.逻辑变量的取值,1比0大。()。
2.异或函数与同或函数在逻辑上互为反函数。()。
3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。()。
4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。()
2.逻辑函数的三种表示方法如何相互转换?
3.为什么说逻辑等式都可以用真值表证明?
4.对偶规则有什么用处?
答案:
一、选择题
1.D
2.ABCD
3.D
4.AD
5.AC
6.A
7.ACD
8.C
9.D
10.BCD
二、判断题
1.×2.√3.√4.×5.√
6.×7.√8.×9.×10.×
三、填空题
1.布尔与或非与非或非与或非同或异或
4. 逻辑函数的表示方法中具有唯一性的是。
A.真值表 B.表达式C.逻辑图D.卡诺图
5.F=A +BD+CDE+ D=。
A. B. C. D.
6.逻辑函数F= =。
A.BB.AC. D.
7.求一个逻辑函数F的对偶式,可将F中的。
A.“·”换成“+”,“+”换成“·”
B.原变量换成反变量,反变量换成原变量
7.矩形脉冲信号的参数有。
A.周期B.占空比C.脉宽D.扫描期
8.与八进制数(47.3)8等值的数为:
A.(100111.011)2B.(27.6)16C.(27.3)16D.(100111.11)2
9.常用的BCD码有。
A.奇偶校验码B.格雷码C.8421码D.余三码
10.与模拟电路相比,数字电路主要的优点有。
2.通常从真值表容易写出标准最小项表达式,从逻辑图易于逐级推导得逻辑表达式,从与或表达式或最小项表达式易于列出真值表。
3.因为真值表具有唯一性。
4.可使公式的推导和记忆减少一半,有时可利于将或与表达式化简。
7.(35.4)8=()2=()10=()16=()8421BCD
8.(39.75)10=()2=()8=()16
9.(5E.C)16=()2=()8=()10= ()8421BCD
10.(0111 1000)8421BCD=()2=()8=()10=()16
四、思考题
1.在数系统中为什么要采用二进制?
第一章数字电路基础
第一部分基础知识
一、选择题
1.以下代码中为无权码的为。
A.8421BCD码B.5421BCD码C.余三码D.格雷码
2.以下代码中为恒权码的为。
A.8421BCD码B.5421BCD码C.余三码D.格雷码
3.一位十六进制数可以用位二进制数来表示。
A.1B.2C.4D.16
4.十进制数25用8421BCD码表示为。
2.逻辑表达式真值表逻辑图
3.交换律分配律结合律反演定律
4.代入规则对偶规则反演规则
5.A (C+ )
6.A+BC+0
7.(A+B)( +C)(B+C)=(A+B)( +C)
8.1
9.0
10.
四、思考题
1.都有输入、输出变量,都有运算符号,且有形式上相似的某些定理,但逻辑代数的取值只能有0和1两种,而普通代数不限,且运算符号所代表的意义不同。
10.1001110 116 78 4E
四、思考题
1.因为数字信号有在时间和幅值上离散的特点,它正好可以用二进制的1和0来表示两种不同的状态。
2.格雷码的任意两组相邻代码之间只有一位不同,其余各位都相同,它是一种循环码。这个特性使它在形成和传输过程中可能引起的错误较少,因此称之为可靠性代码。
3.奇偶校验码可校验二进制信息在传送过程中1的个数为奇数还是偶数,从而发现可能出现的错误。