模电电路设计报告(小信号放大器)
小信号放大电路图详解
小信号放大电路图详解小 信号放大一直是电子设计竞赛经久不衰的题目,也是工程师们设计电路时经常遇到的问题。
作者历经小信号放大的血泪史,介绍了小信号放大中的集成芯片放大电 路、滤波器电路和分立元件放大器,有详细的电路图讲解哦!其中LC无源滤波器的软件设计、仿真以及硬件制作流程也合适很多其他电路设计。
第一部分:集成芯片放大器电路图讲解不知有多少童鞋知道TI公司的LHM6624。
这个芯片对于作者来说那是福星一枚。
其主要技术指标如下:Single/Dual Ultra Low Noise Wideband Operational Amplifier(单/双电源低噪声宽带小信号放大器);其增益带宽积在单电源供电时可达1.5GHz,双电源供电时可达1.3GHz;供电电压双电源 (± 2.5V to ± 6V)单电源(+5V to +12V);摆率(Slew rate) 350V/μs增益为10dB(AV = 10)时摆率400V/μs;输入噪声0.92nV/;输入失调电压典型值700uV 。
应用电路图如下:其中双电源供电±5V,C12,C13作用是电源滤波,即稳压;输入阻抗为50W;输出信号峰峰值可至8V(最好不要超过3V,因为大信号会出现非线性放 大)。
这是一个典型的同相放大器,放大倍数计算公式为AV=R14/R12,图中参数放大倍数20倍,即26dB。
值得注意的一点是电阻R16的作用:调 节零漂~如果对低频放大没什么特别需要的话,此处电阻R13,R16以及C11都可省略,但是如果想要放大直流信号的话,此处调节电路就十分有必要了。
模拟放大电路的电源滤波处理是十分有必要的,目的是防止高频模拟信号影响污染整个电源系统。
图中C12,C13在pcb中的位置要尽量靠近IC的电源入 口。
另外也可选择把磁珠(要求严格时可用电感,要求不高时可用100W电阻)和两个电容组成p形滤波电路, 这样可以把电源中的噪音滤得干干净净~2:滤波器滤波器分为有源滤波器和无源滤波器两种,区别在于有没有外接电源。
高频小信号放大电路实验报告
高频小信号放大电路
一.实验目的
1.了解Multisim软件的各项功能,掌握其使用方法。
2.通过使用Multisim软件来仿真电路,掌握高频小信号调谐放大器的工作原理。
3.了解负载对谐振回路的影响。
4.掌握高频小信号放大器动态范围的测试方法。
二.实验内容
1.并联谐振回路的演示仿真分析。
2.测试小信号放大器的静态工作状态。
3.观察放大器输出波形与谐振回路的关系。
4.测试放大器的幅频特性。
5.观察放大器的动态范围。
三.绘图
四.数据处理
<4>.动态数据分析:
增益计算公式:(2.)
幅频特性曲线:。
小信号谐振放大电路实验报告
四、实验电路及方法步骤
图1实验原理图1图2实验原理图2
仿真结果:f=4.9MHz
(2)谐振增益
放大器的谐振电压增益为放大器处在谐振频率下时输出电压与输入电压之比。
仿真得Av=13.14dB
(3)通频带
通频带带宽:
仿真得BW=0.15MHz
(4)选择性
放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。选择性的基本指标是矩形系数。其中,定义矩形系数是电压放大倍数下降到谐振时放大倍数的10%时对应的频率偏移和电压放大倍数下降为0.707时所对应的频率偏移之比,பைடு நூலகம்:
(2)小信号谐振放大器技术指标有哪些?
谐振频率,电压增益AV0,通频带BW0.7,品质因数Q,,增益带宽积及回路的选择性(矩形系数K0.1)。
(3)谐振频率与哪些因素有关?如何判断电路已经发生谐振?
由谐振频率计算公式:
可知谐振频率和电容,电感的取值有关,
且 L和C的乘积越大,谐振频率越小;
L和C的乘积越小,谐振频率越大。
小信号谐振放大电路实验报告
预习报告
一、实验目的
1.掌握小信号调谐放大器的工作原理;
2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。
二、实验仪器
序号
仪器
数量
1
示波器
1台
2
万用表
高频实验:小信号调谐放大器实验报告综述
实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。
二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。
这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。
图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:K ( f ) / K 010.7070.10f 0B 0.7B 0.1f1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。
衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。
2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。
In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。
电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。
晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。
通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。
电路模电实验之运算放大器实验报告
目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。
•掌握比例运算等电路、训练设计运放电路的能力。
2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。
图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。
单调谐小信号放大器实验报告
单调谐小信号放大器实验报告1. 背景单调谐小信号放大器是一种常见的电子设备,用于放大输入信号,并同时对其进行频率调制。
该放大器在电子通信、音频处理和无线传输等领域具有广泛的应用。
本实验旨在通过搭建单调谐小信号放大器电路并对其进行测试,探究其性能和特点。
2. 分析2.1 原理单调谐小信号放大器通常由三部分组成:输入级、中间级和输出级。
输入级负责接收外部输入信号,并将其转换为低幅度、高阻抗的中频信号;中间级负责对中频信号进行放大,并将其转换为低阻抗的高幅度中频信号;输出级负责将中频信号转换为输出信号。
2.2 设计与搭建根据实验要求,我们选择了共射极放大电路作为单调谐小信号放大器的基本电路。
根据设计原理,我们需要选择合适的晶体管、电容和电阻来搭建电路。
具体搭建步骤如下:1.将晶体管连接到集电极、基极和发射极上,确保极性正确。
2.接入输入电容和输出电容,用于隔离输入和输出信号。
3.连接偏置电阻,用于稳定电路工作点。
4.连接反馈电阻和耦合电容,用于增加放大器的增益。
2.3 测试与测量在搭建完单调谐小信号放大器电路后,我们需要进行测试和测量来评估其性能。
1.首先,我们使用函数发生器提供一个输入信号,并通过示波器观察到输出信号。
根据输出信号的幅度和频率变化情况,我们可以评估放大器的增益和频率响应。
2.然后,我们可以通过改变输入信号的幅度和频率,并观察输出信号的变化来测试放大器的线性度和动态范围。
3.最后,我们可以通过测量功耗、噪声等参数来评估放大器的效率和性能。
3. 结果在实验中,我们成功搭建了单调谐小信号放大器电路,并进行了相关测试与测量。
以下是一些典型结果:1.增益:根据实验数据计算得到的放大器增益为20 dB,在设计要求范围内。
2.频率响应:通过频谱分析仪测量得到的频率响应曲线显示出放大器在1 kHz至10 kHz范围内具有较平坦的增益。
3.线性度和动态范围:通过改变输入信号幅度和频率,我们观察到输出信号的线性变化,并确定了放大器的动态范围为-30 dB至+20 dB。
模电共射放大电路实验报告
实验一 BJT单管共射电压放大电路实验报告自动化一班李振昌一、实验目的(1)掌握共射放大电路的基本调试方法。
(2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。
(3)进一步熟练电子仪器的使用。
二、实验内容和原理仿真电路图静态工作点变化而引起的饱和失真与截止失真静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =1.5mA)。
测量个点的静态电压值RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。
RL =∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。
输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。
放大电路上限频率fH 、下限频率fL 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707倍。
观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。
三、主要仪器设备示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤 准备工作: 修改实验电路将K1用连接线短路(短接R7);RW2用连接线短路;在V1处插入NPN型三极管(9013);将RL接入到A为RL=2k,不接入为RL=∞(开路) 。
开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。
确认输出电压为12V后,关闭直流稳压电源。
用导线将电路板的工作电源与12V直流稳压电源连接。
开启直流稳压电源。
此时,放大电路已处于工作状态。
实验步骤1.测量并调整放大电路的静态工作点调节电位器RW1,使电路满足ICQ=1.5mA。
为方便起见,测量ICQ时,一般采用测量电阻Rc两端的压降VRc,然后根据ICQ=VRc/Rc计算出ICQ 。
小信号放大实验报告范本
3.谐振放大器通频带Bw的测定
4.放大器矩形系数Kr0.1的测定
基本条件:Re=1K;R=10K
测出Bw0.1频带:
Bw0.1=fH-fL= ?
通带特性曲线
根据实验测得数据,计算出此条件下的Kr0.1=
Kr0.1= Bw0.1/ Bw0.7= ?
5.得出你所用的“高频小信号放大器”的主要性能指标的结论。
条件: Vcc=12V;R=2K;Re=500Ω
Fo=
Avo=
Bw0.7=
Kr0.1=
五、实验思考题
1.计算LC回路的谐振频率fo:已知:C=120pf L= 1uH.
2.试分析与说明单调谐放大回路的发射极电阻Re和谐振回路的阻尼电阻R对放大器的增益、带宽和中心频率各有何影响?
3.说明高频调谐放大器与阻容耦合放大器的区别?叙述单调谐回路的主要优缺点。
Vb
Ve
Vc
Vce
Ic(mA)
是
否
原因
500
1K
2K
Vb:基极对地电压。Ve :发射极对地电压。Vce:集电极与发射极之间电压。
(说明:放大器是否工作在放大区的原因。
答:简单来说,判别工作于何种工作状态可以根据Vce的大小来判别, Vce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Vce就接近于电源电压VCC。;
模电设计性实验报告——集成运算放大器的运用之模拟运算电路
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
模电放大电路课程设计报告
目录1 课程设计的目的与作用 (1)1.1 (1)2 设计任务、及所用multisim软件环境介绍 (1)2.1 (1)2.1.1 (1)3 电路模型的建立 (1)4 理论分析及计算 (1)5 仿真结果分析 (1)6 设计总结和体会 (1)7 参考文献 (12)1 课程设计的目的与作用1.11.22 设计任务、及所用multisim软件环境介绍2.12.1.13 电路模型的建立4 理论分析及计算5 仿真结果分析6 设计总结和体会7 参考文献1 课程设计的目的与作用1.1课程设计的目的《模拟电子技术》课程设计是计算机科学与技术专业非常重要的实践性环节之一,是学完《模拟电子技术》之后的一次全面的动手实践联系。
通过本次课程设计个充分地了解和掌握模拟电子技术的基本操作方法,进一步提高学生综合运用知识的能力。
1.2课程设计的作用对实际电路图进行分析计算,在仿真软件中进行仿真。
通过实践动手操作让同学们更加清楚的了解电路明白模拟电子技术的电路的构成以及发生过程。
2 设计任务、及所用multisim软件环境介绍2.1设计任务单管共射极放大电路积分电路三极管放大倍数筛选器2.2 multism软件环境介绍上面是菜单栏菜单栏包括:文件、编辑、视图、放置、仿真、转换、工具、报表、选项、窗口、帮助。
第二行是放置基本电器元件的图标包括:电源、电阻、电容、电感、等。
第三行是各种实验需要的仪器的仿真图形。
再往下是白色的操作面板,操作面板左侧是设计工具箱。
操作面板下面是属性栏。
3电路模型的建立3.1 单管共发射极放大电路3.2积分电路3.3三极管放大倍数筛选器4理论分析及计算4.1单管共发射极电路理论分析及计算放大电路中各元件的作用为,三极管作为放大元件,是放大电路的核心。
集电极电源VCC是一个直流电源,输出端负载上得到的较大能量由VCC提供。
集电极负载电阻R5的作用是:将集电极电流Ic得变化转换为集电极电压的变化,再传送到放大电路的输出端。
小信号多级放大模电课程设计报告
机械与电气工程学院《模拟电子技术》课程设计报告姓名:XXXX学号:XXXXX班级:XXXXXXX指导教师:XXXXXXXXXXX课题名称:小信号多级放大电路设计一、设计目的1.通过本课程设计,掌握晶体管放大电路工作原理。
2.熟悉简单模拟电路的设计方法和主要流程。
3.学习模拟电路的制作与调试方法。
二、设计要求1.输入电压:Vi p-p =30mV。
2.输入电阻:10k~40k。
3.频率特性:100HZ~100kHZ。
4.总谐波失真度(THD)≦3%。
5.供电电压:15V。
6.电压增益:100倍。
7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。
核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。
8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。
三、方案设计1.负反馈的类型在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。
因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。
2.负反馈对放大电路性能的影响(1)引入负反馈使增益下降闭环增益表达式为A f =A/(1+AF)其中D=1+AF为反馈深度。
深度负反馈D>>1条件下A f≈1/F(2)负反馈提高增益的稳定性易得:d A f/ A f=d A/(1+AF)*A=d A/D*A上式表明,反馈越深,闭环增益的稳定性越好。
(3)负反馈对输入电阻和输出电阻的影响串联负反馈使R i增加,并联负反馈使R i下降。
程度取决于反馈深度:R if=(1+AF)R i(串联负反馈)R if= R i/(1+AF)(并联负反馈)电压负反馈使R o下降,电流负反馈使R o增加。
程度上取决于反馈深度:R of=(1+AF)R o(电流负反馈)R of=R o/(1+AF) (电压负反馈)(4)负反馈展宽频带基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为:f Hf=(1+AF)f Hf Lf=f L/(1+AF)3.方案确定输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。
高频实验:小信号调谐放大器实验报告
高频实验:小信号调谐放大器实验报告实验目的:1. 掌握小信号调谐放大器的原理、特点和设计方法。
2. 熟悉集成运算放大器的使用方法。
实验器材:1. 功率供应器。
2. 调谐放大器电路板。
3. 频谱分析仪。
4. 示波器。
5. 信号发生器。
6. 电压表和电流表。
7. 切割器。
8. DMM数字万用表。
实验原理:调谐放大器是指在特定频率下具有较大的放大倍数的放大器,是一种具有选择性放大作用的放大器。
当输入信号频率和特定放大器谐振频率相等时,输出信号强度达到最大值,这种现象称为谐振。
实验步骤:1. 按照电路图连接电路,检查电路连接是否正确。
2. 将调谐电容器的电容值调至最小,即使谐振频率接近1kHz。
3. 将信号发生器设置为100Hz正弦波,300mVpp的幅值,连接到调谐放大器的输入端。
4. 连接万用表测量调谐放大器的输出电压。
5. 使用信号发生器逐步调整频率,记录最大输出幅值的频率。
6. 依次将信号发生器设置为200Hz、500Hz、1kHz、2kHz和5kHz的正弦波。
7. 针对每个频率,记录输出电压,并绘制输出电压随频率变化的曲线图。
实验结果:1. 频率为1kHz时的输出幅值最大,达到4.5V。
2. 随着频率的增加或减小,输出电压下降。
3. 输出电压随着频率变化的曲线呈现出谐振现象。
本实验采用调谐放大器电路进行测试,结果表明,在1kHz的频率下,该电路有最佳的选择性放大功能。
根据测试结果,该电路可以广泛应用于频率选择放大器等领域。
实验报告.高频小信号调谐放大器
rb’b——基极体电阻,一般为几十欧姆;
Cb’c——集电极电容,一般为几皮法;
Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β有关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,IE=2mA,UCE=8V条件下测得3DG6C的y参数为:
六、心得体会(可选)
通过这次的实验,在对谐振回路的调试,以及对放大器处于谐振时各项技术指标的测试如电压放大倍数、通频带、矩形系数,进一步掌握了高频小信号调谐放大器的工作原理。从而学会了小信号调谐放大器的设计方法。也将课堂所学的理论对于小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大、以及在高频调谐放大器中,由于晶体体管集电结电容的内部反馈,形成了放大器的输出电路与输入电路之间的相互影响。它使高频调谐放大器存在工作不稳定的问题等一系列的知识有了更加深刻的理解。
如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工程估算的方法。
图2中所示的等效电路中,p1为晶体管的集电极接入系数,即
(1-7)
式中,N2为电感L线圈的总匝数。
P2为输出变压器T的副边与原边的匝数比,即
(1-8)
式中,N3为副边(次级)的总匝数。
gL为调谐放大器输出负载的电导,gL=1/RL。通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则gL将是下一级晶体管的输入导纳gie2。
由式(1-14)可得
(1-16)
图3谐振曲线
通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。
数电模电实验报告
数电模电实验报告一、实验背景咱这数电模电实验啊,真的是又有趣又有点小折磨人呢。
就像进入了一个神秘的电子世界,到处都是小电路元件在等着我们去探索。
老师说做这个实验可以让我们更好地理解数电模电课上那些看起来有点抽象的理论知识,感觉就像是给我们一把钥匙,去打开电子世界的大门。
二、实验目标其实目标也挺明确的,就是要通过亲手操作那些电路元件,什么电阻啊、电容啊、二极管之类的,去构建电路,然后观察它们的运行结果。
比如说在数电实验里,我们想让那些逻辑门按照我们的想法工作,输出正确的逻辑值。
在模电实验中呢,就是要让放大器放大合适的倍数,让信号按照我们的预期变化。
这就像是训练一群小宠物,要让它们听我们的话,乖乖地做出正确的反应。
三、实验过程实验开始的时候,我心里还有点小紧张呢。
看着那些密密麻麻的线路图,感觉就像是在看一张神秘的藏宝图。
首先拿数电实验来说,在连接逻辑门电路的时候,那些引脚可不能接错了,不然就像搭错了积木,整个电路就乱套了。
我小心翼翼地把每一根线都连好,就像在给一个精致的小工艺品做最后的组装。
当我接通电源的那一刻,心里真的是既期待又害怕,就盼着那个小灯能按照逻辑亮起来。
还好,经过几次调整,它终于听话了。
再说说模电实验,调整放大器的参数可不容易。
那些电位器啊,稍微拧一点点,输出的信号就会有很大的变化。
我就像一个小心翼翼的厨师,在调料的时候要精准地把握用量。
有时候调了半天,输出的信号还是不理想,真的是有点沮丧。
但是咱不能放弃啊,又重新检查电路,看看是不是哪个电容或者电阻出了问题。
经过一番折腾,终于得到了比较满意的结果。
四、实验结果数电实验里,逻辑门的输出结果和我们预期的基本上是一致的。
看着那些按照逻辑亮起的小灯,心里别提多有成就感了。
就像自己完成了一个小魔术,把理论变成了现实。
模电实验中,放大器的放大倍数也在合理的范围内,输出的信号波形也比较漂亮。
这就像是自己精心培育的小花朵,终于盛开了一样。
五、实验中的问题和解决办法在实验过程中,当然也遇到了不少问题。
小信号多级放大电路设计-模电课程设计报告
机械与电气工程学院《模拟电子技术》课程设计报告姓名:学号:班级:指导教师:课题名称:小信号多级放大电路设计一、设计目的1.通过本课程设计,掌握晶体管放大电路工作原理。
2.熟悉简单模拟电路的设计方法和主要流程。
3.学习模拟电路的制作与调试方法。
二、设计要求1.输入电压:Vi p-p =30mV。
2.输入电阻:10k~40k。
3.频率特性:100HZ~100kHZ。
4.总谐波失真度(THD)≦3%。
5.供电电压:15V。
6.电压增益:100倍。
7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。
核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。
8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。
三、方案设计1.负反馈的类型在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。
因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。
2.负反馈对放大电路性能的影响(1)引入负反馈使增益下降闭环增益表达式为=A/(1+AF)Af其中D=1+AF为反馈深度。
深度负反馈D>>1条件下Af≈1/F(2)负反馈提高增益的稳定性易得:d Af / Af=d A/(1+AF)*A=d A/D*A上式表明,反馈越深,闭环增益的稳定性越好。
(3)负反馈对输入电阻和输出电阻的影响串联负反馈使Ri 增加,并联负反馈使Ri下降。
程度取决于反馈深度:R if =(1+AF)Ri(串联负反馈)R if = Ri/(1+AF)(并联负反馈)电压负反馈使Ro 下降,电流负反馈使Ro增加。
程度上取决于反馈深度:R of =(1+AF)Ro(电流负反馈)R of =Ro/(1+AF) (电压负反馈)(4)负反馈展宽频带基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为:f Hf =(1+AF)fHf Lf =fL/(1+AF)3.方案确定输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。
模电课程设计报告ocl功率放大器设计
一、课程设计任务及要求1、设计目的①学习音频功率放大器的设计方法②了解集成功率放大器内部电路工作原理根据设计要求,完成对音频功率放大器的设计,进一步加强对模拟电子技术的了解④采用集成运放与晶体管原件设计OCL功率放大器⑤培养实践技能,提高分析和解决实际问题的能力2、设计指标①频率响应:20Hz≤f≤20KHz②输出功率:P o > 4w③负载电阻:R L=8Ω④非线性失真尽量小⑤输入信号:U i <0.1v3、设计要求①画出电路原理图②元器件及参数选择③电路的仿真与调试分析设计要求,明确性能指标;查阅资料、设计方案分析对比。
4、制作要求论证并确定合理的总体设计方案,绘制结构框图。
5、OCL功率放大器各单元具体电路设计。
总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。
6、完成整体电路设计及论证。
7、编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
二、总体方案设计1、设计思路功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。
由于OCL电路采用直接耦合方式,为了保证工作稳定,必须采用有效措施抑制零点漂移,为了获得足够大的输出功率驱动负载工作,故需要有足够高的电压放大倍数。
因此,性能良好的OCL功率放大器应由输入级,推动级和输出机等部分组成。
2、OCL功放各级的作用和电路结构特征①输入级:主要作用是抑制零点漂移,保证电路工作稳定,同时对前级(音调控制级)送来的信号作用低失真,低噪声放大。
为此,采用带恒流源的,由复合管组成的差动放大电路,且设置的静态偏置电流较小。
②推动级作用是获得足够高的电压放大倍数,以及为输出级提供足够大的驱动电流,为此,可采带集电极有源负载的共射放大电路,其静态偏置电流比输入级要大。
③输出级的作用是给负载提供足够大的输出信号功率,可采用有复合管构成的甲乙类互补对称功放或准互补功放电路。
小信号放大器实验报告
小信号放大器实验报告小信号放大器实验报告引言:在电子工程领域,放大器是一种常见的电路元件,用于将小信号放大到足够大的幅度以便进行后续处理。
本实验旨在通过搭建一个小信号放大器电路,探究其工作原理和性能特点。
实验目的:1. 理解小信号放大器的基本原理;2. 掌握搭建小信号放大器电路的方法;3. 通过实验测量和分析,了解小信号放大器的性能特点。
实验器材和材料:1. 电源供应器2. 功能发生器3. 电阻、电容等基本电子元件4. 示波器5. 多用表实验步骤:1. 按照给定的电路图,搭建小信号放大器电路;2. 将电源供应器连接至电路,调节电源电压并确保电路正常工作;3. 使用功能发生器产生一个小信号输入,将其连接至电路输入端;4. 使用示波器观察电路输出信号,并记录相关数据;5. 调节输入信号的频率和幅度,观察输出信号的变化;6. 使用多用表测量电路的电压、电流等参数,并记录数据。
实验结果与分析:通过实验观察和测量,我们得到了一系列数据。
首先,我们观察到在输入信号较小的情况下,输出信号的幅度明显大于输入信号,这说明小信号放大器能够将微弱的输入信号放大到更大的幅度。
其次,我们发现输出信号的幅度随着输入信号的增大而逐渐饱和,即输出信号无法继续线性放大。
这是因为放大器的工作在一定范围内是线性的,超过该范围则会出现非线性失真。
进一步分析数据,我们可以得到小信号放大器的增益和频率响应特性。
增益是指输出信号幅度与输入信号幅度之间的比值,通常以分贝(dB)为单位表示。
我们可以通过测量输出信号和输入信号的幅度,计算出增益的数值。
频率响应特性则是指放大器对不同频率的输入信号的放大程度。
我们可以通过改变输入信号的频率,测量输出信号的幅度,并绘制频率响应曲线来分析放大器的频率特性。
讨论与总结:通过实验,我们深入了解了小信号放大器的工作原理和性能特点。
小信号放大器在电子工程中有着广泛的应用,如音频放大器、射频放大器等。
在实际应用中,我们需要根据具体需求选择合适的放大器类型和参数,以满足信号放大的要求。
小信号谐振放大器实验报告
小信号谐振放大器实验报告哎呀,今天咱们来聊聊小信号谐振放大器的实验。
这可是个有意思的话题,听起来复杂,但其实不难,咱们就轻松地聊聊。
小信号谐振放大器,它的名字听起来就很厉害,感觉像是科技界的“超人”。
它的工作原理其实很简单,主要是用来放大那些微小的电信号,像是从传感器那儿来的信号。
这玩意儿在咱们生活中可处处可见,比如手机、电视,甚至是你家里那些高大上的音响系统,都在用它。
实验开始前,老师给我们详细讲解了原理,像是在为我们打开了一扇新世界的大门。
这个过程就像是做饭,先把材料准备好,才能烹饪出美味的佳肴。
咱们要用到的器件有电阻、电容,还有三极管。
说到三极管,它就像是信号的守护者,帮我们把小信号变得大大大!大家听得津津有味,有的人甚至偷偷在笔记本上画起了小人儿,真是搞笑。
好啦,接下来是实验环节。
我们兴奋得像小鸟一样,迫不及待想要看看这个“魔法”到底怎么实现。
搭建电路的时候,大家都各显神通,动手能力爆棚。
小心翼翼地把电线接上去,就像是在拼乐高,生怕哪一根线接错了,真是让人心里小鹿乱撞。
哎,谁说电子工程没趣,明明是个大玩具呢!组装完毕,按下开关的那一刻,大家都屏住了呼吸,结果只听见“滋滋”的声音,没什么反应。
哎呀,原来没接好,调试的时候简直比找遥控器还麻烦。
经过一番折腾,总算成功了!当我们看到输出信号波形图,简直像发现了新大陆一样,大家都欢呼起来。
这波形就像一幅美丽的画,曲线优美,仿佛在告诉我们:看,信号被放大了!有个同学激动地说:“这是我的作品!” 我们都笑了,心里想着,真是一群科技狂热分子。
通过这次实验,我感受到小信号谐振放大器不仅仅是个电子元件,更像是连接我们和技术世界的桥梁。
它让我们能更好地理解电信号的传播和处理。
回想起之前学的理论,仿佛瞬间变得生动了许多,知识不再是冷冰冰的文字,而是活生生的东西,时不时还会发出“嗡嗡”的声音。
这次实验还让我意识到团队合作的重要性。
大家在一起讨论问题,互相帮助,像是合奏一曲动听的乐章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小信号放大器技术报告
班级113班姓名刘小鹏学号29 项目代号01 测试时间成绩
1.设计目标与技术要求:
1). 将输入的交流小信号放大10倍左右。
2). 输出波形完整且不失真。
3). 焊接牢固,美观,器件布局合理,器件选择合理等。
2.设计方法(电路、元器件选择与参数计算):
电路图:
1) 元器件:2个NPN三极管,各类阻值的电容,各类阻值的电阻,电位器,排针等。
2) 参数:
电压源5V以上
Re=Ve/Ie=6.9V/10mA=690Ω
3) 偏置电路设计:
电路偏置电压Vb设在7.5V(电压源与GND的中点)。
为此R1=R2,计算方便。
因发射极电流Ie = 10mA,设晶体管的电流放大系数Hfe为200,则基极电流为0.05mA.
通常,在基极偏置电路中,有必要预先让基极电流10倍左右的电流流动。
所以,
设 R1=R2=10kΩ(R1,R2上流动的电流为0.75mA).
4) 电容C1~C4的确定:
C1与C2是切断直流电压的电容,在这里设C1=C2=10uF。
因此
fc1= 1/(2π*C*R)= 1/(2πx10uFx5kΩ)= 3.2Hz
另一方面,当接有1kΩ负载时,与C2形成的高通滤波器的截止频率为:
fc2=1/(2π*C*R)= 1/(2πx10uFx1kΩ)= 16Hz
C3与C4是电源的去耦电容,设C3=0.1uF,C4=10uF.
射极跟随器的频率特性很好,由于输入输出信号相应同相以及输入端的基极输入阻抗高等原因,从发射极向基极加正反馈时常常会引起振荡。
为此,有必要充分地进行电源的去耦。
特别是小容量的电容的连接,要像从集电极到发射极电阻Re接地点间距离最短那样来连接。
3.设计结果(电路图):
正面器件布局
反面焊锡线路
4.测试方法(测试原理与步骤):
测试原理:
小信号放大器可以把输入的交流小信号按设计好的参数按一定的比例放大。
通过信号发生器产生小信号的交流电压,由输出线接到焊接好的电路板输入端,经过电路中的电容滤波,三极管的放大,信号将按一定的比例放大,再由电路板的输出端接上数字示波器的输入线最后在数字示波器的屏幕上得到后的电压的正弦波形,以及放大后的电压值、周期。
测试步骤:
1).将信号发生器与数字示波器电源接好,再把信号发生器的输出线的红色接口和黑色
接口与数字示波器的输入线的红黑接口相接,打开信号发生器和数字示波器的开关,
查看波形,若为正确的正弦波则两个仪器可用来测试电路。
若波形不对则进行调节,
得到正确波形。
2). 关掉两仪器,断开信号发生器与数字示波器的接线,接入电路板,利用单片机提供
5V的电压给单片机,再接入信号发生器的红色接口到电路板的输入端,把数字示波
器的红色接口接到电路板的输出端,两个黑色接口均接地。
3). 打开两仪器的开关,查看波形,和峰峰值是是输入电压的10倍左右,周期是和输入
频率关系为T=1/f。
5.测试数据及其分析:
完整不失真波形
输出值:
峰---峰值:1.05V 周期:3.126ms 频率:319.9Hz
信号源输出与示波器图形、数值对比。
输出值:
峰---峰值:1.05V 周期:3.126ms 频率:319.9Hz
输入值:
峰---峰值:0.11V 频率:31.97Hz
6.设计结论:
1). 此小信号放大器板焊接成功,测试结果正常,各项要求均满足。
2). 该电路是直接将射极跟随器的基极连接到共发射极放大电路的集电极输出上,它没有
射极跟随器的耦合电容和偏置电路。
3). 共发射极放大电路的集电极电位直接地被作为射极跟随器的基极偏置电压。
4). 这个电路是射极跟随器组合在共发射极放大电路上来降低输出阻抗的放大电路。