沪科版七年级上数学知识点总结
沪科版七年级上数学知识点总结

沪科版七年级上数学知识点总结研究必备欢迎下载沪科版七年级上数学知识点总结(一)2014年10月第一章:有理数一、有理数的意义1-1正数和负数1、为什么初中数学要引入负数?答:正数和负数是在实际需要中产生的,我们可以用正数和负数来表示相反意义的量。
2、在生产和生活中,相反意义的量主要有哪些?请列举:答:常见的有:(1)温度高于度记作“+”,低于度记作“-”。
(2)高度高于海平面记作“+”,低于海平面记作“-”。
(3)高于正常水位记作“+”,低于正常水位记作“-”。
(4)超过标准重量记作“+”,低于标准重量记作“-”。
(5)储蓄中存入为正,取研究必备欢迎下载出为负。
(6)收入为正,支出为负。
(7)盈余为正,亏损为负。
(8)上升为正,下降为负。
(9)进为正,出为负。
(10)增加为正,减少为负。
(11)向东为正,向西为负。
……3、你了解以下各种数的界说和规模吗?并举例。
正数:大于的数,叫做正数。
分为正整数和正分数。
(a >)负数:小于的数,叫做负数。
分为负整数和负分数。
(a <)既不是正数,也不是负数。
整数:正整数。
负整数统称整数。
分数:正分数、负分数统称分数。
有理数:整数和分数统称有理数。
有理数又分为正有理数。
负有理数。
非负数:通常又把和正数称为非负数。
(a≥)非正数:和负数称为非正数。
(a≤)4、有理数的两种分类方法是什么?研究必备欢迎下载1-2数轴、相反数和绝对值1-2-1数轴1、什么是数轴?你能画好一条数轴吗?答:规定了原点、正方向、和单位长度的直线。
所有的有理数都可以用数轴上的点表示。
但数轴上的点并不是都表示有理数)。
2、数轴的三要素是什么?数轴的三要素有什么规定?答:原点(任意、标)、正方向(向右、箭头)和单位长度(合适)3、观察数轴,回答下列题目。
1)有无最大的正数?(没有)。
有无最小的正数?(没有)。
有无最小的正整数?(有,是1)。
2)有无最小的负数?(没有)。
有无最大的负数?(没有)。
初中数学知识点总结(沪科版)

初中数学知识点总结(沪科版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学知识点总结(沪科版)初中数学是基础数学,实践活动在新教材内容中占有一定比例。
沪科版七年级数学上最全的知识点和方法总结

七年级数学(上)最全的知识点第1章有理数一、知识框架二、知识概念1、有理数:2、数轴:数轴是规定了原点、正方向、单位长度的一条直线(三者缺一不可);注意:①在数轴上到定点距离等于定长的点有两个。
(例如到原点距离等于2的点有两个:±2)②在数轴上,右边的表示的数大于左边的点表示的数;③原点左侧的为负数,原点右侧的为正数;④在数轴上的距离:右边的点表示的数-左边的点表示的数;或者两点表示的数差的绝对值.3、相反数:(1)只有符号不同的两个数互为相反数;0的相反数还是0;(2)相反数的和为0 ↔ a+b=0 ↔ a、b互为相反数.4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:在数轴上表示数a的点到原点的距离,叫做a的绝对值.(2) 绝对值可表示为:绝对值的问题经常分类讨论;5、有理数比大小:(1)数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大;(2)正数大于0,0大于负数,正数大于负数;(3)两个负数比较大小,绝对值大的反而小;(4)大数-小数>0,小数-大数<0;(5)正数大于一切负数.6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是;若ab=1 a、b互为倒数.7、有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8、有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因数为0,积为0;几个不为0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
沪科版七年级上册数学知识点汇总(最新最全)【2024版】

可编辑修改精选全文完整版七年级上册数学知识汇总第一章有理数1.1 正数和负数①负数的定义与作用:益者为正,反之为负,解决了生活中相反意义的量的问题;②基准(0)的取法:常规与特指(静态),前者(动态)。
③有理数:整数和分数的统称。
有两种分类:正整数正整数整数0 正数正分数有理数负整数有理数0(整分性)正分数(大小性)负数负整数分数负分数负分数1.2数轴、相反数、和绝对值①数轴:规定了原点、正方向、单位长度的直线。
(3+1)②相反数:M与-M互为相反数,要有整体思想,要变都变,0的相反数是本身(0)。
③绝对值︱a︱=︱a-0︱≥0:表示数a 到原点的距离.●︱3-1︱=2表示数3 到数1的距离.●︱3+1︱=4表示数3 到数-1的距离,或1到-3的距离.●正向(由已知推未知):求绝对值时易单解,逆向(由未知推已知):求绝对值易双解.●绝对值的化简(极为重要)M M>0 M M≥0(非负数) ︱M︱= 0 M=0 ︱M︱=-M M<0 -M M≤0(非正数)*绝对值易需分类讨论,再答题时尽量使用数学语言推理,培养逻辑能力.1.3 有理数的大小①利用数形结合表示数(字母)及相反数,再利用正数>0>负数,右数大于左数进行答题.②从数轴上发现:既没有最大的有理数,也没有最小的有理数,但:有最小的正整数1,有最大的负整数-1,有绝对值最小的数0.1.4~1.5有理数的常规计算加法减法加减混合乘法除法乘除混合四则混合及简算1.6 有理数的乘方:来自乘法而高于乘法a n①结果为幂指数底数●结果较小时需计算具体值,计算方法不同于乘法;●符号结果:正数的任何次方为正数,负数的偶次方为正,奇次方为负;②科学计数法:将一个绝对值较大的数写成M=a×10n(1≤︱a︱<10,n=“整数位”-1)第二章整式加减2.1 代数式①用字母表示数的好处:简洁、规律.偶数:2n 奇数: 2n±1②日历表的规律:左右差1,上下差7.找规律三部曲:自然排列序列化(提炼公式)反馈(体现:特殊一般特殊)③代数式(含运算符号的数与字母的结合体,双单也是.)书写格式:●数与数相乘,称号不可省;数与字母相乘时,称号省数在前,字母与字母相乘时称号省;●除号写成分数线;●单位问题:最后一步加减后带单位需加括号,最后一步乘除时,不加括号.④代值格式:先化简当什么时原式代值结果⑤单项式(仅含乘号,双单也是):系数:数字部分(注意:“-”,数的乘方,分数,兀)单项式次数:字母部分(所有字母的指数和,到底出现几个字母)●系数为±1,指数为1时,1一定要省.不是单项式.●单个数与字母是单项式,包括0与兀;字母的倒数如1a2.2整式(单项式与多项式的统称)加减:本质就是去括号与合并同类项.①同类项:所含字母相同且对应指数也相同,几个常数项也是单项式;②合并同类项:系数相加减,其它不变;③去(添)括号:遇正不变,遇负全变,倍数共有;④几个项能够加减,说明它们就是同类项,不含某个字母(或与其无关)说明化简后这个字母对应项的系数为0;第三章一次方程与方程组3.1 一元一次方程及其解法①一元一次方程的概念(3+1);②等式的四个基本性质(第2性质易错);③熟练掌握去分母解一元一次方程的步骤及易错点;3.2一元一次方程的应用①相关公式行程问题:S=VT利息问题:利息=本金×利率×年数本息和=本金+利息利润=售价-成本②用方程解应用题的技巧:审题! 审题!还是审题!具体:设法:简单题直接设,难题间接设,有比例可比例设;设元:多个未知量时应设一表多,注意设小不设大,设整不设分以方便解方程.3.3 二元一次方程组及其解法①二元一次方程的概念(3+1),解有无数组,往往求特征根.②二元一次方程组的概念(3+1),解往往是唯一组,(复杂的方程应先化简)解法如下:代入法有四种,一般选择系数为±1;加减法有两种;整体思想.③注意含参问题,选择正确的关系式建立方程组.④在求多项式的值时往往用整体思想.3.4二元一次方程组的应用①简单的设一元,复杂的设二元.②一般而言,数量和关系易建立方程,另一个方程与列代数式有很大关系,建立方程组时要考察整体与对应个体的关系.第四章直线与角4.1 几何图形①欧拉公式:点+面-线=24.2 线段、射线、直线①命名方式;②公里1 两点确定一条直线;公里2 两直线相交有唯一的交点;公里3 两点之间,线段最短.4.3 线段的长短比较①线段的合成与加减;②中点三段论③几何题没有图时易双解,正向推理时注意逻辑格式,逆向时可设方程(组).4.4~4.5角与计算①角的顶义(静态与动态)与命名(有四种);②角的计算:角的单位、角的进率、角的转化;③角的合成与加减;④角的三段论;4.6 用尺规作线段与角①尺规作图的思想:利用直尺的直与圆规的曲及截取功能作已知线段和角及其合成.。
沪科版初中数学知识点总结

沪科版初中数学知识点总结一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。
- 整数的四则运算规则及其应用。
- 分数的加减乘除运算,分数的化简和比较大小。
- 小数的意义、性质及与分数的互化。
2. 代数表达式- 字母表示数,单项式和多项式的概念。
- 单项式的系数和次数,多项式的阶数和项数。
- 代数式的基本运算,包括加减乘除、因式分解等。
3. 一元一次方程与不等式- 一元一次方程的建立、解法及其应用。
- 不等式的概念、性质及解集表示。
- 一元一次不等式及其解集的求解。
4. 二元一次方程组- 二元一次方程组的建立和解集的表示。
- 代入法和消元法解二元一次方程组。
- 线性方程组的应用问题。
5. 函数的初步认识- 函数的概念,函数的定义域和值域。
- 线性函数、二次函数的图像和性质。
- 函数的简单运算,包括加法、减法、乘法和除法。
二、几何1. 平面图形的认识- 点、线、面的基本性质。
- 角的概念,包括邻角、对角、同位角等。
- 三角形的分类及其性质,包括等边、等腰、直角三角形。
- 四边形的分类及其性质,包括正方形、长方形、菱形、梯形。
2. 图形的变换- 平移、旋转、轴对称等基本变换。
- 相似变换的概念及其应用。
- 通过坐标系进行图形的定位和变换。
3. 圆的基本性质- 圆的定义、圆心、半径和直径。
- 圆的对称性,切线和割线的概念。
- 圆周角和圆心角的关系,圆的面积和周长的计算。
4. 空间几何- 空间图形的基本性质和分类。
- 立体图形的表面积和体积计算。
- 棱柱、棱锥、圆柱、圆锥的结构特征。
5. 解析几何初步- 坐标系的建立和应用。
- 直线和曲线方程的基本概念。
- 点、线、面间的位置关系。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和直方图的绘制。
- 平均数、中位数、众数的计算和意义。
- 方差和标准差的概念及其计算。
2. 概率- 随机事件的概念及其分类。
- 概率的定义和基本性质。
2024年沪科版七年级数学上册4.3.2 线段的中线及线段的基本事实类(课件)

练习
【教材P152 练习 第1题】
1. 如图,P是线段MN的中点,那么MN
1
=__2__MP=__2__PN,MP=PN=___2___MN.
M
P
N
【教材P152 练习 第2题】
2. 如图,用刻度尺量出AB,AC,BC的长
度,并比较AB+AC与BC的长短.不通过测量,
你能比较AB+AC与BC的长短吗?依据是什么?
知识点2 线段的基本事实
思考:1. 如图,甲、乙两地间有曲线、折 线、线段等4条路线,其中哪一条路线最短?
线段的路线最短
甲
乙
思考:2. 如图,人们修建公路遇到大山阻 隔时,常会打一条隧道直穿过去,为什么?
因为修隧道可以缩短 两地之间的路程,实 现路途近的目的。
线段AB的长度 就是A,B两点 之间的距离. A
A
解:
AB+AC >BC.
能,依据是“两点之间的
B
C 所有连线中,线段最短”.
随堂练习
1.下列说法中正确的是( D ) A.连结两点的线段叫作两点间的距离 B.在所有连接两点的线中,直线最短 C.线段AB就是表示点A到点B的距离 D.点A到点B的距离就是线段AB的长度
2.已知A、B、C三点在同一直线上,如果
3
地,还有四等分点、五等分点等).
例 3 已知线段AB=4,延长AB至点C,使 AC=11.点D是AB的中点,点E是AC的中点, 求DE的长.
解因:为如AB图=4,,点DA为ABD的中点B ,E 所以AD=1
C AB=2.
2
又因为AC=11,点E为AC中点,所以AE= 1 AC =5.5.
2
所以DE=AE-AD =5.5-2 =3.5.
沪科版七年级上册数学知识点

沪科版七年级上册数学知识点1.1 正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2 数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N| ⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3 有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
-------------1.4 有理数的加减法①有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。
沪科版-数学-七年级上册--基础知识-有理数的加减

1.4有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4) (-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算.解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝ ⎛⎭⎪⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝ ⎛⎭⎪⎫-213-516=⎝ ⎛⎭⎪⎫-213+⎝ ⎛⎭⎪⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝ ⎛⎭⎪⎫-212+2+⎝ ⎛⎭⎪⎫-12+12; (2)⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫+12+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫+45+⎝ ⎛⎭⎪⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的.解:(1)原式=(2+12)+⎣⎢⎡⎦⎥⎤(-8)+⎝ ⎛⎭⎪⎫-212+⎝ ⎛⎭⎪⎫-12=14+(-11)=3; (2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-23+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+12+⎝ ⎛⎭⎪⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来;③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537;(2)⎝ ⎛⎭⎪⎫-12-⎝ ⎛⎭⎪⎫-16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45;(3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45,考虑到⎝ ⎛⎭⎪⎫-12,⎝ ⎛⎭⎪⎫-23,⎝ ⎛⎭⎪⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝ ⎛⎭⎪⎫-327+1167-537 =-6+⎝ ⎛⎭⎪⎫+317=-267. (2)⎝ ⎛⎭⎪⎫-12-⎝ ⎛⎭⎪⎫-16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫+16+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-45 =(-1)+⎝ ⎛⎭⎪⎫-45 =-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5 =10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.。
沪科版数学七年级上册 第1章 小结与复习

3.5>|
-2
|>0.5>0>
1 3
>
1
3 5
>-2>-3.5
针对训练
6. 某日零点,北京、上海、重庆、宁夏的气温分别是
﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中气温最
低的是 ( D )
A.北京 B.上海 C.重庆 D.宁夏
考点七 科学记数法 例7 将数 13 445 000 000 000 km 用科学记数法表示
考点九 有理数的运算
例9
计算
(1)
0.125
3
1 4
3
1 8
11
2 3
0.25;
(2)
7 12
3 4
5 6
5 18
(36);
3
2
1 12
1 12
;
(4)
(24
)
2
2 3
2
5
1 2
1 6
(0.5)2.
解:(1)
0.125
3
1 4
3
1 8
11
2 3
0.25
(1) 一个数在数轴上对应的点到原点的距离叫做这个 数的绝对值
(2) 一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0 的绝对值是 0.
6. 有理数大小的比较 (1) 数轴上表示的两个数,右边的总比左边的大. (2) 正数大于 0,0 大于负数,正数大于负数;
两个负数,绝对值大的反而小.
5 8
-3
2
绝对值 3.5 3.5 0
2
2
13 5
1 3 0.5
针对训练
4.
-1
的倒数是
-3
;-1 1
2024年沪科版七年级数学上册 第4章 小结与复习(课件)

针对训练 3. 若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,
则( A ) A.∠A>∠B>∠C
B.∠B>∠A>∠C
C.∠A>∠C>∠B D.∠C>∠A>∠B
4. 5 点整时,时钟上时针与分钟之间的夹角是 ( C )
A. 210°
B. 30° C. 150° D. 60°
例4 如图,∠AOB 是直角,ON 是∠AOC 的平分线,
考点二 线段长度的计算
例2 点 C 在线段 AB 所在的直线上,点 M,N 分别是
AC,BC 的中点.
A M C NB
(1) 如图,AC = 8 cm,CB = 6 cm,求线段 MN 的长;
解:因为点 M,N 分别是 AC,BC 的中点,
所以 CM=1 AC=4 (cm),CN=1 BC=3 (cm).
2
2
= 1 (AC-BC) = 1 b (cm).
2
2
2. 已知:点 A,B,C 在一直线上,AB = 12 cm,BC =
4 cm. 点 M,N 分别是线段 AB,BC 的中点. 求线
段 MN 的长度.
A
解:如图①,当 C 在线段 AB 上时,
MC N B 图①
因为 M,N 分别是 AB,BC 的中点,
a
l
(1)
l
a
(2)
l
a
A (3) O
l
aA
O
(4)
A(5) O
O
(6) A
针对训练 1. 往返于甲、乙两地的火车中途要停靠三个站,则有 __1_0___种不同的票价 (来回票价一样),需准备___2_0__ 种车票. 解析:此题相当于一条线段上有 3 个点,有多少种 不同的票价即有多少条线段:4 + 3 + 2 + 1 = 10;有 多少种车票是要考虑顺序的,则有 10×2 = 20.
沪科版七年级上册数学知识点

沪科版七年级上册数学知识点篇1:沪科版七年级上册数学知识点沪科版七年级上册数学知识点单项式与多项式1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
沪科版初中数学知识点总结

沪科版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的四则运算- 绝对值的概念与计算2. 整数- 整数的性质- 素数与合数- 整数的因数与倍数- 质因数分解3. 分数与小数- 分数的基本性质- 分数的四则运算- 小数的意义与性质- 小数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式(平方差、完全平方等)- 分式与分式的运算5. 一元一次方程- 方程的建立与解法- 实际问题的数学建模- 列方程解实际问题6. 二元一次方程组- 代入法与消元法- 方程组的解集与方程的解7. 不等式与不等式组- 不等式的性质与解法- 一元一次不等式- 一元一次不等式组8. 函数- 函数的概念与表示- 函数的性质(单调性、对称性等) - 线性函数与二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类(邻角、对顶角等) - 三角形的分类与性质- 四边形的分类与性质2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 切线的性质与判定- 圆与圆的位置关系3. 空间图形- 空间直线与平面的位置关系- 空间图形的展开与折叠- 多面体与旋转体的性质4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 几何变换- 平移、旋转、对称的概念与性质- 几何图形的组合与分割6. 解析几何- 坐标系的建立与应用- 点的坐标与线段的长度- 直线与圆的方程三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的计算与应用- 事件的可能性与条件概率以上是沪科版初中数学的主要知识点总结。
这些知识点构成了初中数学的基础框架,学生需要掌握这些概念、公式和解题方法,以便为高中数学学习打下坚实的基础。
沪科版数学七年级上册第一章 有理数 知识总结

第一章知识归纳一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
沪科版七年级上册数学知识点总结

七年级上册数学知识总结第一单元有理数一、有理数分类整数和分数统称为有理数正整数整数 0 正有理数负整数有理数有理数 0正分数分数负有理数负分数二、数轴:规定了原点、正方向、单位长度的直线;1、数轴的三要素:原点、正方向、单位长度;2、任意有理数都可以用数轴上的一个点来表示;三、相反数、绝对值1、相反数:只有符号不同的两个数,这两个数叫做互为相反数;规定:0的相反数是0;数a的相反数是-a;a的相反数是﹣a,0的相反数还是0;特点:互为相反数的两个数和为0,商为﹣1;2、绝对值:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值;特点:1绝对值恒大于等于0 即│a│≥0;2正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数;当a>0时,|a| =a;当a=0时,|a| =0;当a<0时,|a| =﹣a;(3)两个绝对值的和为0,当且仅当两个绝对值都为0时成立;因为|a|+|b|=0 所以|a|=0,|b|=0四、有理数大小1、正数>0>负数;2、两个负数相比,绝对值大的反而小;绝对值小的反而大;五、有理数的运算1.加法法则:1同号两数相加,取与加数相同的符号,并把绝对值相加;2异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3互为相反数的两个数相加得0; 4一个数同0相加,仍得这个数;2.减法法则:减去一个数,等于加上这个数的相反数;有理数减法法则也可以表示成:a – b = a + -b3、加法交换律:两个数相加,交换加数的位置,和不变;字母表达式是:a+b=b+a4、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;字母表达式是:a+b+c=a+b+c5、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;6、几个有理数相乘,积的符号是如何确定的1几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;2几个数相乘,有一个因数为0,积就为0;7、几个不等于0的数相乘,首先确定积的符号,然后把绝对值相乘;8、乘法交换律:两个数相乘,交换因数的位置,积不变;ab=ba;9.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;abc=abc;10.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加;ab+c=ab+ac11.什么是互为倒数如果两个有理数的乘积是1,那么称这两个有理数互为倒数;aa 1•=1a ≠0; 12、有理数除法的法则1:1两数相除,同号得正,异号得负,并把绝对值相除;20除以任何一个不等于0的数,都得0;0不能作除数13、有理数除法的法则2:除以一个不为0的数,等于乘上这个数的倒数;b a ÷=b a 1• b ≠0 14、除了0以外,所有的数都有倒数,并且正数的倒数是正数,负数的倒数是负数;15、有理数的乘方:1n 个相同的因数a 相乘,,记作n a ;求n 个相同因数的积的运算,叫做乘方;乘方的结果叫幂;相同的因数叫底数,相同因数的个数叫指数;n a 读作a 的n 次方;n a 看作a 的n 次方的结果时,也可以读作a 的n 次幂;一个数可以看作这个数本身的一次方,指数1通常省略不写;2、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数;3任何数的偶次幂都是一个非负数a n2≥04一般的,一个绝对值大于10的数都可以记成±a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法;1≤a <10一个数的科学记数法中,10的指数n 比原数的整数位数少1,如原数有8位,指数就是7; 10的几次方,结果就是1后面带几个0;5 乘方运算中a n 的底数是a,指数是n,乘方的结果叫做幂;6 a 2≥0 一个数的偶数次幂恒是非负数两个平方数的和为0,当且仅当两个平方数都为0时成立; 因为a2+b2=0 所以a2=0 ,b2=0一个绝对值与一个平方数的和为0,当且仅当两者都为0时成立;因为a2+|b|=0 所以a2=0,|b|=0 7任何非0数的0次幂都等于1 a0=1,a≠0;8科学记数法c= a×10n,1≤ a<1016、混合运算:运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的;17.近似数1一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位;2什么叫有效数字从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫这个数的有效数字;3、两个近似数1.6和1.60,它们相同吗为什么答:这两个数大小是相同的,但是它们表示的精确程度是不同的,1.6表示精确到十分位即0.1,它有两个有效数字,分别是1和6;而1.60表示精确到百分位即0.01,它有三个有效数字,分别是1、6和0;因此,从这个意义上说,1.6和1.60是不相同的,第二章整式加减一、代数式1、定义:由数和表示数的经有限次加、减、乘、除、和开方等所得的式子,或含有字母的数学表达式称为代数式;注意:1不包括等于号=、、≠、≤、≥、<、>、、≈;2可以有绝对值;例如:|x|,|-2.25| 等;2、字母a它表示一个数,可能是正数,可能是0,也可能是负数;二. 单项式:数与字母的乘积或单个字母和数字;系数:1单项式中的常数叫做单项式的;例如3x的系数是3;2如果一个单项式只含有字母因数,是的单项式系数为1,是的单项式系数为-1,例如系数为1;系数为-1;3如果只是一个数字,是本身;如5的系数还是5;次数:一个单项式中,所有字母的和叫做这个单项式的;则的次数为1+2=3,又如,次数为2+1=3,单独一个非零数的次数是0;例如 5的次数为0,系数为5三.多项式1由有限个单项式的和组成的代数式叫做多项式;2项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做;一个多项式合并同类项后有几项就叫做几项式;在多项式中它的项分别是、2x和18,其中18是常数项,它是三项式;3次数:多项式中,次数最高的项的次数,就是这个多项式的次数,如:中,这一项的次数最高,这个多项式的次数就是,这个多项式就是八次三项式;4排列:有时为了计算需要,可以将多项式各项的位置根据按照其中某个字母的指数大小顺序来排列;例如:把多项式按字母x指数从大到小的顺序排列,写成,这叫做把多项式按字母x的降幂排列,若按x指数从小到大排列,则就是把多项式按字母x的升幂排列,写成,也可以是多项式中的其他字母;单项式整式四、整式代数式多项式分式五、整式加减1.同类项:所含字母相同,并且相同字母的也相同的项,叫做同类项;2.合并同类项:把多项式中的合并成一项,叫做合并同类项;几个常数项也是同类项例如,和是同类项中与是同类项与是同类项-7和29也是同类项3.合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的不变;合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变;字母不变,相加减;4、合并同类项的理论依据就是,5、去括号法则:1括号前面是“+”号,去括号时把括号连同它前面的“+”号去掉,括号内的各项都不改变符号;2括号前面是“-”号,去括号时把括号连同它前面的“-”号去掉,括号内的各项都改变符号;a+b-c+d=a+b-c+d a-b-c+d=a-b+c-d6.添括号法则:(3)所添括号前面是“+”号,括到括号里的各项都不变符号;a+b-c+d =a+b-c+d4所添括号前面是“-”号,括到括号里的各项都改变符号;a-b+c-d =a-b-c+d六、找规律1、等差类型:相邻两项之差相等;例如1,2,3,4,······2、等比及相关类型:相邻两项之商相等ab n, ab n-c ;例如3,6,12,24,48······3×20,3×21,3×22,3×23······3、幂及相关类型: n2型、n2-a型;例如 1,4,9,16······12,22,32,42······4、和类型:例如1,3,6,10······1,1+2,1+2+3,1+2+3+4,······第三章一次方程与方程组一、一元一次方程指只含有一个未知数、未知数的次数都是1且等式两边都是整式的方程;一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题等;2、方程的解也叫做方程的根3、解一次方程和一次方程组关键步骤:去分母→去括号→移项→合并同类项→系数化为1二、等式的性质1、性质1 等式两边同时加减去一个数或整式,结果还是等式;如果a=b ,则 a±c=b±c;2、性质2 等式两边同时乘除去一个数或整式,结果还是等式除时不能除0;如果a=b ,则ac=bc ,a÷c=b÷c﹙c≠0﹚3.性质3 如果a=b,那么b=a 对称性4性质 4 如果a=b,b=c,那么a=c;传递性。
七年级上沪科版数学知识点

七年级上沪科版数学知识点七年级上学期的数学课程是初中数学的重要入门阶段。
本文将介绍沪科版七年级上学期数学的知识点,希望对学生学习初中数学有所帮助。
一、有理数有理数是指整数、正分数、负分数、0。
有理数之间可以进行加、减、乘、除运算,还可以比较大小。
有理数还有“绝对值”的概念,即设x是任意一个有理数,那么|x|表示x的绝对值,如果x大于0,那么它的绝对值|x|=x,如果x小于0,那么它的绝对值|x|=-x。
在学习有理数的同时,学生还需要掌握有关有理数的简便运算法则,例如数的约分、通分等。
二、代数式的计算代数式是指含有字母、数字以及运算符号的数学表达式。
在初中数学中,代数式的运算变得更加复杂,需要通过学习代数式的展开、合并、提公因数、分解等方法,来完成复杂的代数式计算。
同时,还要求学生熟练掌握二元一次方程的解法,并能够顺利解决一些涉及代数式的实际问题。
三、平面图形本学期还将学习平面图形,其中包括如何对几何图形进行分类、认识平行四边形和长方形的区别、计算多边形中内角和外角大小、集中掌握三角形和四边形中不同角的性质等知识。
这些几何知识的较为突出的应用场景在于平面图形的测量和面积的计算,因此学会计算面积的方法对学生的各种几何题目的解答有着很大的帮助。
四、数据的统计与分析数据的统计与分析是数学比较实用的应用领域之一。
本学期还将学习数据的统计方法,比如极差、平均数、中位数、众数等,以及在实际问题中应用这些统计方法的技巧,例如制作数据图表、调查分析等。
同时,也将学习如何用图表来表示数据和进行简单的数据处理、但这些同样需要学生具备良好的组织能力和表达能力。
五、三角形的运算图形和计算的组合在初中数学中是常见的,三角形是最典型的例子之一。
在三角形的学习过程中,学生需要学会如何通过角度的计算来判断三角形的性质,如解决三角形中的角和边问题,包括利用三角函数来计算角度、在三角形中使用相似三角形来判定侧边比例等。
同时加强训练,提高实战能力,可使同学们在理论学习的过程中更加容易掌握和应用到实际操作中。
七年级数学知识点归纳总结沪科版

七年级数学知识点归纳总结沪科版数学,作为一门重要的学科,是培养学生思维、逻辑和分析能力的重要工具。
在七年级学习数学过程中,我们掌握了许多基础知识和技巧,为进一步学习提供了坚实的基础。
本文将对七年级数学知识点进行归纳总结,帮助同学们复习巩固所学内容。
1. 整数整数是数学的基础概念之一,七年级数学主要掌握了整数的四则运算和绝对值的概念。
在整数的四则运算中,我们需要注意加减法的运算规则,以及乘除法中正负数的规律。
绝对值是一个非常重要的概念,它表示一个数与0的距离。
2. 分数分数是数学中另一个重要的概念,七年级学习了分数的基本概念和四则运算。
我们需要掌握如何化简分数、比较分数大小以及分数的加减乘除法。
另外,还需要熟练掌握分数的关系与整数的关系,在实际问题中能够应用相应的知识解决问题。
3. 数轴和实数数轴是用于表示数与数之间的相对关系的工具。
七年级学习了如何在数轴上表示整数、分数和实数,并掌握了实数的性质。
我们需要理解实数的无穷性和有理数、无理数的区别,能够灵活运用这些概念解决实际问题。
4. 代数式代数式是数学中重要的工具,它可以用字母和数字的组合表示数学关系。
七年级学习了代数式的基本概念和化简方法,能够进行基本的代数计算。
我们需要掌握代数式的加减乘除法规则,能够根据实际问题建立代数式,并求解代数式的值。
5. 图形与坐标图形是数学中直观的表达方式,通过图形可以帮助我们理解和解决问题。
七年级学习了平面图形的性质和表示方法,包括点、线、线段、角、面等基本概念。
我们需要掌握平面图形的命名方法和常见图形的性质,能够进行平面图形的变换和判断。
6. 相似与全等相似和全等是七年级几何学的重要内容。
相似是指两个图形的形状相同但大小不同,全等是指两个图形的形状和大小都相同。
我们需要掌握判断图形相似和全等的条件,能够应用相似和全等的概念解决问题。
7. 数据分析数据分析是数学中实际问题的处理方式之一,七年级学习了如何对数据进行整理、描述和分析。
沪科版七年级数学上册知识结构

沪科版七年级数学上册知识结构在学习数学的过程中,知识结构是非常重要的。
它能够帮助我们更好地理解和掌握各种数学知识,为我们更高层次的学习奠定良好的基础。
沪科版七年级数学上册的知识结构包括了很多重要的内容,让我们一起来深入探讨一下。
1. 数的认识数的认识是数学学科中最基础的内容之一。
在沪科版七年级数学上册中,数的认识包括了整数、分数、小数和有理数的认识。
这些内容为我们在以后学习更复杂的数学知识打下了坚实的基础。
在学习这一部分内容时,我们需要深入理解数的性质、大小比较和四则运算等知识点,这将有助于我们更好地理解数学。
2. 代数式代数式是沪科版七年级数学上册中的另一个重要内容。
通过代数式,我们可以更好地理解变量和常数的概念,学会如何进行算式的化简和展开,并且学会了解一元一次方程的基本解法。
这部分内容对我们理解数学的抽象思维和逻辑推理能力有很大的帮助。
3. 方程与不等式在学习沪科版七年级数学上册时,方程与不等式也是一个重要的知识点。
通过学习方程与不等式,我们可以了解到如何利用代数式解决实际问题,并且学会了解二元一次方程组的解法。
这些知识点不仅对我们在日常生活中解决问题有帮助,同时也对我们未来更高级别的数学学习有非常重要的作用。
4. 图形的认识图形是沪科版七年级数学上册中的另一个重要内容。
通过学习图形的认识,我们可以了解到各种几何图形的性质、特点和计算方法,同时也可以对有关的实际生活问题进行求解。
这部分内容对我们的空间想象能力和逻辑推理能力有着很大的帮助。
总结回顾通过对沪科版七年级数学上册知识结构的深入探讨,我们了解到这一部分内容的重要性和广度。
数的认识、代数式、方程与不等式以及图形的认识,这些知识点构成了丰富多彩的数学世界,为我们的学习和未来的发展奠定了坚实的基础。
在学习这些知识点的过程中,我们也需要保持对数学的好奇心和兴趣,不断探索、思考和实践,这样才能够更好地理解和掌握数学知识。
个人观点与理解个人认为,沪科版七年级数学上册知识结构非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级上数学知识点总结(一)xx年7月第一章:有理数一、有理数的意义1-1正数和负数1、为什么初中数学要引入负数?答:正数和负数是在实际需要中产生的,我们可以用正数和负数来表示相反意义的量。
2、在生产和生活中,相反意义的量主要有哪些?请列举:答:常见的有:(1)温度高于0度记作“+”,低于0度记作“-”。
(2)高度高于海平面记作“+”,低于海平面记作“-”。
(3)高于正常水位记作“+”,低于正常水位记作“-”。
(4)超过标准重量记作“+”,低于标准重量记作“-”。
(5)储蓄中存入为正,取出为负。
(6)收入为正,支出为负。
(7)盈余为正,亏损为负。
(8)上升为正,下降为负。
(9)进为正,出为负。
(10)增加为正,减少为负。
(11)向东为正,向西为负。
……3、你了解以下各种数的定义和范围吗?并举例。
正数:大于0的数,叫做正数。
分为正整数和正分数。
(a>0)负数:小于0的数,叫做负数。
分为负整数和负分数。
(a<0)0:既不是正数,也不是负数。
整数:正整数、0、负整数统称整数。
分数:正分数、负分数统称分数。
有理数:整数和分数统称有理数。
有理数又分为正有理数、0、负有理数。
非负数:通常又把0和正数称为非负数。
(a≥0)非正数:0和负数称为非正数。
(a≤0)4、有理数的两种分类方法是什么?1-2数轴、相反数和绝对值1-2-1 数轴1、什么是数轴?你能画好一条数轴吗?答:规定了原点、正方向、和单位长度的直线。
(所有的有理数都可以用数轴上的点表示。
但数轴上的点并不是都表示有理数)。
2、数轴的三要素是什么?数轴的三要素有什么规定?答:原点(任意、标0)、正方向(向右、箭头)和单位长度(合适)。
3、观察数轴,回答下列问题。
(1)有没有最大的正数?(没有)。
有没有最小的正数?(没有)。
有没有最小的正整数?(有,是1)。
(2)有没有最小的负数?(没有)。
有没有最大的负数?(没有)。
有没有最大的负整数?(有,是-1)。
1-2-2相反数1、什么是相反数?答:只有符号不同的两个数,我们说其中一个是另一个的相反数。
这两个数叫做互为相反数。
规定:0的相反数是0。
数a的相反数是a一定是负数吗?为什么?答:不一定,因为:当a是正数时,-a是负数;当a是负数时,-a是正数;当a是0时,-a也是0。
5、3-5的相反数是什么?答:是-(3-5)或5-3。
6、a-b的相反数是什么?答:是-(a-b)或b-a。
7、a+b的相反数是什么?答:是-(a+b)。
8、如果a、b是互为相反数,那么a+b= 。
1-2-3绝对值1、绝对值的定义是什么(即几何意义)?答:一个数a的绝对值,就是数轴上表示数a的点与原点的距离,记作| a |。
根据绝对值的概念,可知绝对值是非负数(| a |≥0)。
互为相反数的两个数的绝对值相等。
(因为它们到原点的距离相等)2、绝对值的代数意义是什么?答:(1)一个正数的绝对值是它本身。
(2)一个负数的绝对值是它的相反数。
(3)0的绝对值是0。
3、一个数a的绝对值如何表示?(1)如果a > 0,那么| a | = a;(2)如果a < 0,那么|a| =2的数有没有?(没有)。
绝对值不大于3的数有多少?(无数个)。
绝对值不大于3的整数有,正整数有,负整数有。
根据上面的例子,我们可以看出:任意一个正数的绝对值,都有两个它们是互为相反数;没有一个数的绝对值会等于负数。
7、如果|x|=3、4,那么x= 。
|y-5|=6,y= 。
如果|-x|=|-5|,那么x= 。
满足|x|≤3的负整数有。
8、如果|a-3|+|b-5|=0,那么a=,b=。
1-3 有理数的大小1、数轴上数的大小有什么位置关系?答:在数轴上表示的两个数,右边的数总比左边的数大。
根据这点,我们可以利用数轴比较数的大小。
正数都大于0,负数都小于0,正数大于一切负数。
2、两个负数比较大小,绝对值大的反而小。
1-4有理数的加减1-4-1 有理数的加法1、有理数加法法则的内容是什么?(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
2、加法交换律:两个数相加,交换加数的位置,和不变。
字母表达式是:a+b=b+a。
3、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
字母表达式是:(a+b)+c=a+(b+c)。
思考题:4、两个正数相加,和一定为(),两个负数相加,和一定为()。
而正数和负数相加,和可能是(正数、负数或0),为什么?5、如果a<0,b<0,那么a+b 0。
为什么?如果a>0,b<0, |a|<|b|,那么a+b 0。
如果a<0,b>0, |a|<|b|,那么a+b 0。
6、在有理数加法中,和一定比加数大吗?1-4-2 有理数的减法1、有理数减法的意义是什么?已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
2、有理数减法法则的内容是什么?减去一个数,等于加上这个数的相反数。
有理数减法法则也可以表示成:a – b = a + (-b)3、大的数减去小的数,差一定是正数;小的数减去大的数,差一定是负数;两个相等的数相减,差一定是0。
1-4-3 加、减混合运算1、由于减法可以转化为加法,因此有理数的加减混合运算便可统一成加法运算。
2、在“简化代数和”中,要特别注意符号“+”、“-”的理解和使用:例如,-5+2+3-12我们可以把它们看成是性质符号,将式子看成是省略了加号的代数和,也可将式中的符号看成是运算符号,把式子看成是数的加减混合运算。
不过对于一个符号来说,只能一号一用,一号一读。
3、在使用加法交换律交换加数的位置时,一定要连同前面的符号一起交换,千万不能只交换数字。
这是最容易出错的地方。
4、几个数相加,可以采用两种方法去做:(1)按照顺序进行计算;(2)可以把几个正数和负数分别结合在一起计算,然后再把正负数相加。
(3)利用加法的的运算律进行简便运算。
1-5 有理数的乘除1-5-1有理数的乘法1、有理数乘法法则的内容是什么?两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2、几个有理数相乘,积的符号是如何确定的?几个不等于0的数相乘,积的符号由负因数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为0,积就为0。
3、几个不等于0的数相乘,首先确定积的符号,然后把绝对值相乘。
4、乘法交换律:两个数相乘,交换因数的位置,积不变。
ab=ba。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
(ab)c=a(bc)。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac。
5、如果a<0,b<0,那么ab 0;a>0,b<0,那么ab 0。
1-5-2有理数的除法1、什么是互为倒数?如果两个有理数的乘积是1,那么称这两个有理数互为倒数。
=1(a≠0)。
2、有理数除法的法则1:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
0不能作除数 = (b≠0)3、有理数除法的法则2:除以一个不为0的数,等于乘上这个数的倒数。
4、除了0以外,所有的数都有倒数,并且正数的倒数是正数,负数的倒数是负数。
5、倒数是它本身的数是,倒数和它的绝对值相等的数是,倒数和它的相反数相等的数是。
-a的倒数是(a O)。
6、如果a<0,b<0,那么 0;如果a>0,b<0,那么 0;如果a=0,b<0,那么 0。
7、如果两个数a、b是互为倒数,你知道ab=?1-6有理数的乘方1、n个相同的因数a相乘,,记作。
求n个相同因数的积的运算,叫做乘方。
2、乘方的结果叫幂。
相同的因数叫底数,相同因数的个数叫指数。
读作a的n次方。
看作a的n次方的结果时,也可以读作a 的n次幂。
3、一个数可以看作这个数本身的一次方,指数1通常省略不写。
4、正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
任何数的偶次幂都是一个非负数(≥0)5、0的任何次幂都得,1的任何次幂都得,-1的偶次幂是,-1的奇次幂是。
(偶数和奇数是如何表示的?)6、把一个大于10的数记成a的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。
(1≤a<10)7、一个数的科学记数法中,10的指数(n)比原数的整数位数少1,如原数有8位,指数就是7。
8、10的几次方,结果就是1后面带几个0。
(你可以举例验证)9、一个数的平方等于0,这个数是;平方等于9的数是;等于16呢?有没有平方等于-4的数?(没有)。
平方等于它本身的数有那些?(只有2个,是1、0、)。
平方等于它的相反数的数有那些?10、一个数的立方等于0,这个数是;立方等于27的数是;等于64呢?有没有立方等于-8的数?(有,是-2)。
立方等于它本身的数有那些?(只有3个,是1、0、-1。
)。
立方等于它的相反数的数有那些?(只有1个,是0。
)。
11、有理数的混合运算运算顺序:先算乘方,再算乘除,最后算加减。
如果有括号,就先算括号里面的。
1-7近似数1、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
2、什么叫有效数字?(补充的内容)从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫这个数的有效数字。
3、两个近似数1、6和1、60,它们相同吗?为什么?(答:这两个数大小是相同的,但是它们表示的精确程度是不同的,1、6表示精确到分位(即0、1),它有两个有效数字,分别是1和6;而1、60表示精确到百分位(即0、01),它有三个有效数字,分别是1、6和0。
因此,从这个意义上说,1、6和1、60是不相同的,应特别注意。
)。