聚类比较
各种聚类算法的比较
各种聚类算法的比较聚类算法是一种将数据按照相似性分组的无监督学习方法。
在数据分析和机器学习中,聚类算法被广泛应用于数据挖掘、模式识别、图像处理等领域。
本文将介绍几种常见的聚类算法,并对它们进行比较。
1. K-means算法K-means算法是最常见的聚类算法之一,它将数据划分为K个集群,每个集群包含最接近其均值的数据点。
该算法迭代地更新集群的均值,直到满足收敛条件。
K-means算法简单、高效,适用于大型数据集。
然而,它对异常值和噪声敏感,并且对初始聚类中心的选择非常敏感。
2.层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似性构建一个聚类层次结构。
这种层次结构可以以树状图的形式表示,称为树状图聚类。
层次聚类算法的优点是不需要指定聚类个数,且能够处理任意形状的聚类。
然而,该算法的计算复杂度较高,并且对输入数据的规模和噪声敏感。
3.密度聚类算法密度聚类算法通过计算数据点周围的密度来确定聚类结构。
DBSCAN是最常见的密度聚类算法之一,它通过指定半径和邻域密度来定义聚类。
DBSCAN能够识别任意形状的聚类,并且对噪声和异常值具有较高的鲁棒性。
然而,密度聚类算法对参数的选择非常敏感,并且对高维数据和不同密度的聚类效果较差。
4.基于概率的聚类算法基于概率的聚类算法假设数据服从其中一种概率分布,并通过最大化似然函数来进行聚类。
GMM (Gaussian Mixture Model) 是一种常见的基于概率的聚类算法,它假设数据由多个高斯分布组成。
GMM算法能够分离具有不同协方差的聚类,适用于高维数据和非球状的聚类。
然而,该算法对初始参数的选择敏感,并且计算复杂度较高。
5.划分聚类算法划分聚类算法将数据划分为互斥的聚类,然后通过迭代地重新分配数据点来优化聚类质量。
PAM (Partitioning Around Medoids) 和CLARA (Clustering Large Applications)是常见的划分聚类算法。
主成分分析、聚类分析比较教学提纲
主成分分析、聚类分析比较主成分分析、聚类分析的比较与应用主成分分析、聚类分析的比较与应用摘要:主成分分析、聚类分析是两种比较有价值的多元统计方法,但同时也是在使用过程中容易误用或混淆的几种方法。
本文从基本思想、数据的标准化、应用上的优缺点等方面,详细地探讨了两者的异同,并且举例说明了两者在实际问题中的应用。
关键词:spss、主成分分析、聚类分析一、基本概念主成分分析就是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
综合指标即为主成分。
所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。
因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。
聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。
其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
二、基本思想的异同(一)共同点主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。
并且新的变量彼此间互不相关,消除了多重共线性。
这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。
在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。
在诸多主成分Zi中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。
因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。
算法学习中的分类和聚类算法比较
算法学习中的分类和聚类算法比较在算法学习的过程中,分类和聚类算法是两个重要的概念。
它们在数据分析和机器学习中扮演着不可或缺的角色。
分类算法和聚类算法虽然都是用来对数据进行分组,但它们的目标和方法却有所不同。
本文将对分类和聚类算法进行比较,探讨它们的应用场景和优缺点。
一、分类算法分类算法是一种监督学习方法,它通过已知的标记样本来训练模型,然后利用该模型对未知数据进行分类。
常见的分类算法包括决策树、朴素贝叶斯、支持向量机等。
1. 决策树决策树是一种基于树结构的分类算法,它通过对数据进行递归分割,构建一个树形模型来进行分类。
决策树算法简单易懂,可解释性强,适用于处理离散型和连续型数据。
然而,决策树容易过拟合,对噪声数据敏感。
2. 朴素贝叶斯朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立,通过计算后验概率来进行分类。
朴素贝叶斯算法计算简单,适用于处理大规模数据集。
但是,朴素贝叶斯算法对特征之间的相关性要求较高,且无法处理连续型数据。
3. 支持向量机支持向量机是一种基于统计学习理论的分类算法,它通过找到一个最优超平面来将数据分为不同的类别。
支持向量机算法具有较好的泛化能力和鲁棒性,适用于处理高维数据。
然而,支持向量机算法对大规模数据集的训练时间较长。
二、聚类算法聚类算法是一种无监督学习方法,它通过对数据进行自动聚类,将相似的数据归为一类。
常见的聚类算法包括K均值聚类、层次聚类、DBSCAN等。
1. K均值聚类K均值聚类是一种基于距离的聚类算法,它将数据分为K个簇,每个簇的中心点为该簇内数据的均值。
K均值聚类算法简单快速,适用于处理大规模数据集。
但是,K均值聚类算法对初始聚类中心的选择敏感,且对离群点较为敏感。
2. 层次聚类层次聚类是一种基于树结构的聚类算法,它通过计算数据点之间的相似度来构建一个层次化的聚类结果。
层次聚类算法不需要预先指定聚类个数,且对噪声和离群点具有较好的鲁棒性。
然而,层次聚类算法在处理大规模数据时计算复杂度较高。
聚类算法:谱聚类和层次聚类的比较
聚类算法:谱聚类和层次聚类的比较聚类是数据挖掘中一种重要的无监督学习方法,其目的是将相似的数据对象分组,形成簇(cluster),并且簇与簇之间差异较大。
聚类算法可以分为分层聚类方法和非分层聚类方法。
其中,谱聚类和层次聚类是两种常见的聚类算法方法,本文将对这两种方法进行比较分析。
1.谱聚类谱聚类是一种基于图论和矩阵分析的聚类方法。
该方法将数据集转化为一个图(Graph),然后通过计算该图对应的拉普拉斯矩阵的特征向量将数据分成不同的类别。
谱聚类算法具有以下三个主要步骤:(1)构建邻接矩阵。
通常情况下,可以使用高斯核函数来计算数据点之间的相似度,并将相似度高于某个阈值的数据点之间的权值赋值为1,否则赋值为0。
(2)计算拉普拉斯矩阵。
对于邻接矩阵A(即关联矩阵),可以构建度矩阵D及其逆矩阵D^(-1),则拉普拉斯矩阵L=D-A。
根据拉普拉斯矩阵的特征值和特征向量,可以得到数据集的降维表示。
(3)对特征向量进行聚类。
根据求得的特征向量,可以使用KMeans等聚类算法来将数据集进行划分。
谱聚类算法的优点是它可以处理非线性的数据结构,并且可以保留数据的全局结构。
另外,在谱聚类中,可以自定义相似性函数,这增加了算法的灵活性。
2.层次聚类层次聚类是一种树状的聚类方法,应用广泛。
层次聚类分为两种子类型:聚合(自下而上)和分裂(自上而下)。
在聚合过程中,每个数据点开始时被视为一个单独的组,然后逐步合并为一个大的组。
在分裂过程中,则是将整个数据集视为一个大组,然后将其逐步分裂为较小的组。
层次聚类算法的基本步骤如下:(1)计算两个最相似(或距离度量最小)群体之间的距离。
(2)合并这两个最相似的群体为一个新的群体。
(3)重复步骤1、2,直到所有样本都被分配到同一个簇中。
与谱聚类相比,层次聚类的优点在于其聚类结果易于直观理解并且不需要设置参数。
另外,它可以用于任何样本之间的相似性度量。
3.比较分析谱聚类和层次聚类算法在处理聚类问题时有不同的优缺点。
聚类算法:K-Means和DBSCAN的比较
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
主成分分析,聚类分析比较
主成分分析、聚类分析的比较与应用主成分分析、聚类分析的比较与应用摘要:主成分分析、聚类分析是两种比较有价值的多元统计方法,但同时也是在使用过程中容易误用或混淆的几种方法。
本文从基本思想、数据的标准化、应用上的优缺点等方面,详细地探讨了两者的异同,并且举例说明了两者在实际问题中的应用。
关键词:spss、主成分分析、聚类分析一、基本概念主成分分析就是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
综合指标即为主成分。
所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。
因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。
聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。
其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
二、基本思想的异同(一)共同点主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。
并且新的变量彼此间互不相关,消除了多重共线性。
这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。
在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。
在诸多主成分Zi中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。
因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。
各种聚类算法的比较
各种聚类算法的比较聚类算法是一种无监督学习方法,用于将样本划分为具有相似特征的不同组别。
在机器学习和数据挖掘中被广泛应用。
有许多不同的聚类算法可供选择,每个算法有其独特的优点和适用范围。
在本文中,我们将比较几种常用的聚类算法,以帮助选择最适合特定问题和数据集的算法。
1.K均值聚类算法:K均值算法是一种经典的聚类算法。
它将数据点分为K个不同的簇,使得同一簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。
该算法计算复杂度较低,适用于大数据集。
然而,该算法对初始聚类中心的选择非常敏感,并且只能处理数值型数据。
2.层次聚类算法:层次聚类算法通过计算数据点之间的相似性将它们逐步聚类成树状结构。
该算法不需要事先指定聚类个数,并且可以处理各种数据类型。
然而,该算法在处理大数据集时计算复杂度较高,并且结果的质量受到相似性度量的影响。
3.密度聚类算法:密度聚类算法使用数据点密度来识别簇。
该算法可以处理不规则形状的簇,并且对初始聚类中心的选择不敏感。
DBSCAN是一种常用的密度聚类算法。
然而,该算法对密度参数的选择敏感,并且在处理高维数据时效果可能不好。
4.基于模型的聚类算法:基于模型的聚类算法将数据点建模为一些概率分布的样本。
该算法可以处理不同形状和大小的簇,并且能够进行概率推断。
高斯混合模型(GMM)是一种常用的基于模型的聚类算法。
然而,该算法对模型的选择和参数估计比较困难。
5.谱聚类算法:谱聚类算法通过矩阵分解来对数据进行聚类。
该算法可以处理非线性可分的数据,并且不需要事先指定聚类个数。
然而,该算法在处理大数据集时计算开销较大,并且对相似度矩阵的构建方法敏感。
以上只是一些常见的聚类算法,实际上还有许多其他聚类算法可供选择,如affinity propagation、BIRCH、OPTICS等。
每种算法都有其独特的特点和适用范围。
在选择聚类算法时,需要考虑数据集的规模、维度、特征类型以及问题的特殊需求等因素。
时间序列聚类方法比较研究
时间序列聚类方法比较研究时间序列聚类是一种将时间序列数据进行分类的方法,通过将相似的时间序列归为一类,可以帮助我们更好地理解和分析数据。
在时间序列聚类领域,存在着多种不同的方法,每种方法都有其独特的特点和适用场景。
本文将对几种常见的时间序列聚类方法进行比较研究。
一、K-Means聚类方法K-Means是最常见且简单的聚类方法之一,它通过计算样本点之间的欧氏距离来度量相似性,并将距离较近的样本点划分到同一类别中。
在时间序列聚类中,K-Means可以通过将时间序列转化为欧氏距离或相关系数来度量相似性。
K-Means算法的优点是计算简单、易于实现,并且在处理大规模数据集时具有较高的效率。
然而,K-Means算法对初始类中心的选择较为敏感,容易收敛到局部最优解,且对异常值较为敏感。
二、基于聚类中心的方法与K-Means类似,基于聚类中心的方法也是通过计算样本点之间的距离来度量相似性。
不同的是,在基于聚类中心的方法中,聚类中心的选择不再是随机的,而是采用一种特定的策略。
例如,采用K-Medoids算法时,聚类中心被选取为样本点中具有代表性的点。
K-Medoids算法将相似性定义为两个时间序列之间的曼哈顿距离,并通过交换聚类中心和非中心样本点之间的距离来进行优化。
基于聚类中心的方法在处理大规模数据集时相对于K-Means具有一定的优势,但是也面临着计算复杂度较高的问题。
三、层次聚类方法层次聚类方法将样本点逐步合并,形成一个层次结构,最终形成聚类结果。
在时间序列聚类中,使用层次聚类方法的一个常见策略是自底向上的凝聚型层次聚类。
凝聚型层次聚类首先将每个时间序列作为一个初始类别,然后逐步合并具有较高相似性的类别,直到达到预定的停止条件。
层次聚类方法的优点是不需要提前确定聚类个数,可以自动确定最优聚类个数,并且能够展现聚类结果的层次结构。
然而,层次聚类方法也存在着较高的计算复杂度和较低的可扩展性。
四、密度聚类方法与基于距离的方法不同,密度聚类方法根据样本点的密度来度量相似性。
主成分分析聚类分析比较
主成分分析聚类分析比较
聚类分析(Cluster Analysis)是一种将数据划分为不同组(即簇)
的方法。
它通过根据数据之间的相似性度量来识别相似的数据点,并将它
们分配到同一个簇中。
聚类分析可以帮助我们在没有预先定义类别的情况下,发现数据中的特定模式和群集。
它在无监督学习中常用于探索性数据
分析和市场细分等领域。
然而,主成分分析和聚类分析也有一些明显的区别。
首先,在目标上,主成分分析旨在将原始数据映射到一个低维空间,以便更好地理解数据的
结构。
而聚类分析旨在将数据分成不同的组或簇,以便更好地识别数据中
的模式。
其次,在技术上,主成分分析使用线性变换和协方差矩阵来找到
数据中的主成分,而聚类分析使用不同的相似性度量方法(如欧氏距离、
余弦相似度等)来识别簇。
由于主成分分析和聚类分析的应用领域和基本原理不同,因此在具体
问题中选择使用哪种方法取决于数据的性质和分析的目的。
例如,如果我
们想要降低数据的维度以便更好的可视化,或者减少计算复杂性以便更容
易进行后续分析,那么主成分分析是一个不错的选择。
另一方面,如果我
们对数据中的模式和群集感兴趣,并希望找出数据中的隐藏结构,那么聚
类分析是更合适的选择。
综上所述,虽然主成分分析和聚类分析在目标和技术上存在一些差异,但它们都是有助于揭示数据的潜在结构和模式的无监督学习方法。
在数据
分析中,我们可以根据具体的需求选择适当的方法,以便更好地理解和利
用数据。
用于客户细分的不同聚类算法的比较分析。
用于客户细分的不同聚类算法的比较分析。
客户细分是指将客户群体按照特定的标准或属性划分为若干个具有相似特征的子群体,目的是更好地了解客户需求、优化营销策略和提升客户满意度。
聚类算法是一种常用的客户细分方法,它能够根据客户的行为、购买偏好、地理位置等特征将客户分为不同的群组。
本文将对以下几种常见的聚类算法进行比较分析:K-means聚类算法、层次聚类算法、DBSCAN聚类算法和高斯混合模型聚类算法。
1. K-means聚类算法:K-means是一种常见的迭代聚类算法,其主要思想是通过计算样本之间的距离将样本划分为K个不重叠的簇。
该算法的步骤包括初始化簇中心、计算样本与簇中心的距离、将样本分配到最近的簇以及更新簇中心。
K-means算法具有较高的效率和可扩展性,适用于大规模数据集的聚类。
2. 层次聚类算法:层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本之间的相似度或距离来构建一个层次化的聚类结构。
该算法能够生成完整的聚类层次,并且不需要预先指定聚类簇的个数。
层次聚类算法的优点是能够发现数据中的潜在结构和异类样本,但计算复杂度较高,不适用于大规模数据集。
3. DBSCAN聚类算法:DBSCAN是一种基于密度的聚类算法,它通过定义样本的领域密度来划分簇。
该算法能够发现任意形状和大小的聚类,并能够识别噪声点。
DBSCAN的优点是不需要预先指定聚类簇的个数,适用于大规模数据集和高维数据。
但在处理样本密度差异较大的数据集时,可能会产生较多的噪声点。
4. 高斯混合模型聚类算法:高斯混合模型(GMM)聚类算法假设样本属于多个高斯分布的混合,并通过最大似然估计来估计每个簇的参数。
该算法能够发现潜在的数据生成过程,并能够处理样本存在重叠的情况。
GMM聚类算法的优点是能够生成软聚类结果,且对异常值不敏感。
但计算复杂度较高,对参数的初始化敏感。
根据以上分析,可以看出不同的聚类算法在客户细分中具有不同的优缺点。
算法学习的聚类和分类方法比较
算法学习的聚类和分类方法比较随着人工智能技术的不断发展,算法学习已经成为了许多领域的重要研究方向。
在算法学习中,聚类和分类是两种常用的方法。
本文将对这两种方法进行比较,探讨它们的优劣势以及适用场景。
一、聚类方法聚类方法是一种无监督学习的方法,它通过将数据集中的样本分成不同的簇来发现数据集中的内在结构。
聚类方法的核心思想是通过计算样本之间的相似度或距离来确定样本之间的关系,并将相似的样本归为一类。
常见的聚类方法有K-means算法、层次聚类算法等。
K-means算法是一种常用的聚类算法,它将样本划分为K个簇,每个簇的中心点代表了该簇的特征。
K-means算法通过迭代计算样本与簇中心点之间的距离,并将样本归类到距离最近的簇中。
该算法简单易懂,计算效率高,适用于大规模数据集。
层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本之间的相似度或距离来构建一个层次结构。
该算法可以根据需求选择不同的相似度或距离度量方法,并且可以根据需要确定聚类的层次数。
层次聚类算法适用于数据集中存在多个层次结构的情况。
二、分类方法分类方法是一种有监督学习的方法,它通过已知的样本标签来训练模型,并将新的样本分类到已知类别中。
分类方法的核心思想是通过构建分类器来学习样本的特征和类别之间的关系。
常见的分类方法有决策树算法、支持向量机算法等。
决策树算法是一种常用的分类算法,它通过构建一棵树来表示样本特征和类别之间的关系。
决策树算法通过选择合适的特征和设置适当的划分条件来将样本分到不同的类别中。
该算法易于理解和解释,适用于处理具有离散特征的数据。
支持向量机算法是一种基于统计学习理论的分类算法,它通过在特征空间中构建一个最优超平面来实现分类。
支持向量机算法通过最大化样本间的间隔来提高分类的准确性,并且可以通过核函数将非线性问题映射到高维空间中。
该算法适用于处理具有连续特征的数据。
三、方法比较聚类和分类方法在算法学习中都有各自的优势和适用场景。
各种聚类算法介绍及对比
一、层次聚类1、层次聚类的原理及分类1层次法Hierarchical methods先计算样本之间的距离;每次将距离最近的点合并到同一个类;然后,再计算类与类之间的距离,将距离最近的类合并为一个大类;不停的合并,直到合成了一个类;其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等;比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离;层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法agglomerative和divisive,也可以理解为自下而上法bottom-up和自上而下法top-down;自下而上法就是一开始每个个体object都是一个类,然后根据linkage寻找同类,最后形成一个“类”;自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”;这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快;至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中;为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位;2Hierarchical methods中比较新的算法有BIRCHBalanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类主要是在数据量很大的时候使用,而且数据类型是numerical;首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCKA Hierarchical Clustering Algorithm for Categorical Attributes主要用在categorical 的数据类型上;ChameleonA Hierarchical Clustering Algorithm Using Dynamic Modeling里用到的linkage是kNNk-nearest-neighbor算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,On^2;2、层次聚类的流程凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足;绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同;这里给出采用最小距离的凝聚层次聚类算法流程:1 将每个对象看作一类,计算两两之间的最小距离;2 将距离最小的两个类合并成一个新类;3 重新计算新类与所有类之间的距离;4 重复2、3,直到所有类最后合并成一类;聚类的效果如下图,黑色是噪音点:另外我们可以看出凝聚的层次聚类并没有类似基本K均值的全局目标函数,没有局部极小问题或是很难选择初始点的问题;合并的操作往往是最终的,一旦合并两个簇之后就不会撤销;当然其计算存储的代价是昂贵的;3、层次聚类的优缺点优点:1,距离和规则的相似度容易定义,限制少;2,不需要预先制定聚类数;3,可以发现类的层次关系;4,可以聚类成其它形状缺点:1,计算复杂度太高;2,奇异值也能产生很大影响;3,算法很可能聚类成链状r语言中使用hclustd, method = "complete", members=NULL:进行层次聚类;d为距离矩阵;method 表示类的合并方法,single最短距离法,complete最长距离法,median中间距离法,mcquitty相似法,average类平均法,centroid重心法,ward离差平方和法;members为NULL或d长度的矢量;二、划分聚类法k-means基于划分的方法Partition-based methods:其原理简单来说就是,想象你有一堆散点需要聚类,想要的聚类效果就是“类内的点都足够近,类间的点都足够远”;首先你要确定这堆散点最后聚成几类,然后挑选几个点作为初始中心点,再然后依据预先定好的启发式算法heuristic algorithms给数据点做迭代重置iterative relocation,直到最后到达“类内的点都足够近,类间的点都足够远”的目标效果;Partition-based methods聚类多适用于中等体量的数据集,但我们也不知道“中等”到底有多“中”,所以不妨理解成,数据集越大,越有可能陷入局部最小;1、Kmeans算法的原理k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低;k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心,即选择K个初始质心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值; 这个过程不断重复,直到准则函数收敛,直到质心不发生明显的变化;通常,采用平方误差准则,误差的平方和SSE作为全局的目标函数,即最小化每个点到最近质心的欧几里得距离的平方和;此时,簇的质心就是该簇内所有数据点的平均值;选择K个点作为初始质心repeat将每个点指派到最近的质心,形成K个簇重新计算每个簇的质心until簇不发生变化或达到最大迭代次数时间复杂度:OtKmn,其中,t为迭代次数,K为簇的数目,m为记录数,n为维数空间复杂度:Om+Kn,其中,K为簇的数目,m为记录数,n为维数K-Means 算法的详细过程从上图中,我们可以看到,A, B, C, D, E 是五个在图中点;而灰色的点是我们的种子点,也就是我们用来找点群的点;有两个种子点,所以K=2;然后,K-Means的算法如下:①随机在图中取K这里K=2个种子点;②然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群;我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点③接下来,我们要移动种子点到属于他的“点群”的中心;见图上的第三步④然后重复第2和第3步,直到,种子点没有移动我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E;聚类的效果如下图,折线是历次循环时3个簇的质心的更新轨迹,黑点是初始质心:我们查看基本K均值算法实现步骤及上面的聚类效果可以发现,该聚类算法将所有数据点都进行了指派,不识别噪音点;另外选择适当的初试质心是基本K均值过程的关键;2、k均值的优缺点及分类优点:1,简单,易于理解和实现;2,时间复杂度低缺点:1kmeans要手工输入类数目,对初始值的设置很敏感;所以有了k-means++、intelligent k-means、genetic k-means;2k-means对噪声和离群值非常敏感,所以有了k-medoids和k-medians;3k-means只用于numerical类型数据,不适用于categorical类型数据,所以k-modes;4k-means不能解决非凸non-convex数据,所以有了kernel k-means;5k-means主要发现圆形或者球形簇,不能识别非球形的簇;3、k-means与DBSCAN的区别k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定;k-means属于动态聚类,往往聚出来的类有点圆形或者椭圆形;kmeans对于圆形区域聚类效果较好,dbscan基于密度,对于集中区域效果较好;对于不规则形状,kmeans完全无法用,dbscan可以起到很好的效果;4、k-means注意问题1K如何确定kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数;这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据的分布情况,实际上聚类就是我们发现数据分布的一种手段;如何有效的确定K值,这里大致提供几种方法:①与层次聚类结合2经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类;②稳定性方法3稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果的相似度的分布情况;2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数;采用次方法试探多个k,找到合适的k值;③系统演化方法3系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K个聚类时称系统处于状态K;系统由初始状态K=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态Ki,所对应的聚类结构决定了最优类数Ki;系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,适用于明显分离的聚类结构和轻微重叠的聚类结构;④使用canopy算法进行初始划分4基于Canopy Method的聚类算法将聚类过程分为两个阶段Stage1、聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;Stage2、在各个Canopy 内使用传统的聚类方法如K-means,不属于同一Canopy 的对象之间不进行相似性计算;从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K 的值的,通过Stage1得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性;其他方法如贝叶斯信息准则方法BIC可参看文献5;2初始质心的选取选择适当的初始质心是基本kmeans算法的关键步骤;常见的方法是随机的选取初始质心,但是这样簇的质量常常很差;处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE误差的平方和的簇集;这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数;第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类;从层次聚类中提取K个簇,并用这些簇的质心作为初始质心;该方法通常很有效,但仅对下列情况有效:1样本相对较小,例如数百到数千层次聚类开销较大;2K相对于样本大小较小第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点;然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点;使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的;但是,这种方法可能选中离群点;此外,求离当前初始质心集最远的点开销也非常大;为了克服这个问题,通常该方法用于点样本;由于离群点很少多了就不是离群点了,它们多半不会在随机样本中出现;计算量也大幅减少;第四种方法就是上面提到的canopy算法;3距离的度量常用的距离度量方法包括:欧几里得距离和余弦相似度;两者都是评定个体间差异的大小的;欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间-1,1,值越大,差异越小;但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的;也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化;感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解;举个极端的例子,两用户只对两件商品评分,向量分别为3,3和5,5,这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理;4质心的计算对于距离度量不管是采用欧式距离还是采用余弦相似度,簇的质心都是其均值,即向量各维取平均即可;5算法停止条件一般是目标函数达到最优或者达到最大的迭代次数即可终止;对于不同的距离度量,目标函数往往不同;当采用欧式距离时,目标函数一般为最小化对象到其簇质心的距离的平方和;当采用余弦相似度时,目标函数一般为最大化对象到其簇质心的余弦相似度和;6空聚类的处理如果所有的点在指派步骤都未分配到某个簇,就会得到空簇;如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大;一种方法是选择一个距离当前任何质心最远的点;这将消除当前对总平方误差影响最大的点;另一种方法是从具有最大SSE的簇中选择一个替补的质心;这将分裂簇并降低聚类的总SSE;如果有多个空簇,则该过程重复多次;另外,编程实现时,要注意空簇可能导致的程序bug;三、基于密度的聚类基于密度的方法Density-based methods:k-means解决不了不规则形状的聚类;于是就有了Density-based methods来系统解决这个问题;该方法同时也对噪声数据的处理比较好;基于密度聚类的思想:思路就是定一个距离半径,最少有多少个点,然后把可以到达的点都连起来,判定为同类;其原理简单说画圈儿,其中要定义两个参数,一个是圈儿的最大半径,一个是一个圈儿里最少应容纳几个点;最后在一个圈里的,就是一个类;DBSCAN Density-Based Spatial Clustering of Applications with Noise就是其中的典型,可惜参数设置也是个问题,对这两个参数的设置非常敏感;DBSCAN的扩展叫OPTICSOrdering Points To Identify Clustering Structure通过优先对高密度high density进行搜索,然后根据高密度的特点设置参数,改善了DBSCAN的不足;1、DBSCAN的概念dbscan基于密度,对于集中区域效果较好,为了发现任意形状的簇,这类方法将簇看做是数据空间中被低密度区域分割开的稠密对象区域;一种基于高密度连通区域的基于密度的聚类方法,该算法将具有足够高密度的区域划分为簇,并在具有噪声的空间数据中发现任意形状的簇;DBSCAN中的几个定义:Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达;密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达;注意:密度可达是单向的,密度可达即可容纳同一类;密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联;密度可达是直接密度可达的传递闭包,并且这种关系是非对称的;密度相连是对称关系;DBSCAN目的是找到密度相连对象的最大集合;有了以上的概念接下来就是算法描述了:DBSCAN通过检查数据库中每点的r邻域来搜索簇;如果点p 的r邻域包含的点多于MinPts个,则创建一个以p为核心对象的新簇;然后,DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;当没有新的点可以添加到任何簇时,该过程结束;例如:Eg: 假设半径Ε=3,MinPts=3,点p的E领域中有点{m,p,p1,p2,o}, 点m的E领域中有点{m,q,p,m1,m2},点q的E领域中有点{q,m},点o的E领域中有点{o,p,s},点s的E领域中有点{o,s,s1}.那么核心对象有p,m,o,sq不是核心对象,因为它对应的E领域中点数量等于2,小于MinPts=3;点m从点p直接密度可达,因为m在p的E领域内,并且p为核心对象;点q从点p密度可达,因为点q从点m直接密度可达,并且点m从点p直接密度可达;点q到点s密度相连,因为点q从点p密度可达,并且s从点p密度可达;2、簇的生成原理及过程1DBSCAN聚类算法原理的基本要点:确定半径eps的值①DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中;由于DBSCAN算法对高维数据定义密度很困难,所以对于二维空间中的点,可以使用欧几里德距离来进行度量;②DBSCAN算法需要用户输入2个参数:一个参数是半径Eps,表示以给定点P为中心的圆形邻域的范围;另一个参数是以点P为中心的邻域内最少点的数量MinPts;如果满足:以点P为中心、半径为Eps 的邻域内的点的个数不少于MinPts,则称点P为核心点;③DBSCAN聚类使用到一个k-距离的概念,k-距离是指:给定数据集P={pi; i=0,1,…n},对于任意点Pi,计算点Pi到集合D的子集S={p1, p2, …, pi-1, pi+1, …, pn}中所有点之间的距离,距离按照从小到大的顺序排序,假设排序后的距离集合为D={d1, d2, …, dk-1, dk, dk+1, …,dn},则dk就被称为k-距离;也就是说,k-距离是点pi到所有点除了pi点之间距离第k近的距离;对待聚类集合中每个点pi都计算k-距离,最后得到所有点的k-距离集合E={e1, e2, …, en};④根据经验计算半径Eps:根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值;⑤根据经验计算最少点的数量MinPts:确定MinPts的大小,实际上也是确定k-距离中k的值,DBSCAN 算法取k=4,则MinPts=4;⑥另外,如果觉得经验值聚类的结果不满意,可以适当调整Eps和MinPts的值,经过多次迭代计算对比,选择最合适的参数值;可以看出,如果MinPts不变,Eps取得值过大,会导致大多数点都聚到同一个簇中,Eps过小,会导致一个簇的分裂;如果Eps不变,MinPts的值取得过大,会导致同一个簇中点被标记为噪声点,MinPts过小,会导致发现大量的核心点;我们需要知道的是,DBSCAN算法,需要输入2个参数,这两个参数的计算都来自经验知识;半径Eps的计算依赖于计算k-距离,DBSCAN取k=4,也就是设置MinPts=4,然后需要根据k-距离曲线,根据经验观察找到合适的半径Eps的值;2连通核心点生成簇核心点能够连通有些书籍中称为:“密度可达”,它们构成的以Eps长度为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇;假设MinPts=4,则连通的核心点示例,如下图所示:计算连通的核心点的思路是,基于广度遍历与深度遍历集合的方式:从核心点集合S中取出一个点p,计算点p与S集合中每个点除了p点是否连通,可能会得到一个连通核心点的集合C1,然后从集合S中删除点p和C1集合中的点,得到核心点集合S1;再从S1中取出一个点p1,计算p1与核心点集合S1集中每个点除了p1点是否连通,可能得到一个连通核心点集合C2,再从集合S1中删除点p1和C2集合中所有点,得到核心点集合S2,……最后得到p、p1、p2、……,以及C1、C2、……就构成一个簇的核心点;最终将核心点集合S中的点都遍历完成,得到所有的簇;参数eps的设置,如果eps设置过大,则所有的点都会归为一个簇,如果设置过小,那么簇的数目会过多;如果MinPts设置过大的话,很多点将被视为噪声点;3、根据数据点的密度分为三类点:1核心点:该点在邻域内的密度超过给定的阀值MinPs;2边界点:该点不是核心点,但是其邻域内包含至少一个核心点;3噪音点:不是核心点,也不是边界点;有了以上对数据点的划分,聚合可以这样进行:各个核心点与其邻域内的所有核心点放在同一个簇中,把边界点跟其邻域内的某个核心点放在同一个簇中;聚类的效果如下图,黑色是噪音点:初识聚类算法:因为DBSCAN使用簇的基于密度的定义,因此它是相对抗噪音的,并且能处理任意形状和大小的簇;但是如果簇的密度变化很大,例如ABCD四个簇,AB的密度大大大于CD,而且AB附近噪音的密度与簇CD 的密度相当,这是当MinPs较大时,无法识别簇CD,簇CD和AB附近的噪音都被认为是噪音;当MinPs 较小时,能识别簇CD,但AB跟其周围的噪音被识别为一个簇;这个问题可以基于共享最近邻SNN的聚类结局;4、DBSCAN的优缺点:优点:1. 与K-means方法相比,DBSCAN不需要事先知道要形成的簇类的数量;2. 与K-means方法相比,DBSCAN可以发现任意形状的簇类;3. 同时,DBSCAN能够识别出噪声点;对于数据库中样本的顺序不敏感,即Pattern的输入顺序对结果的影响不大;但是,对于处于簇类之间边界样本,可能会根据哪个簇类优先被探测到而其归属有所摆动;缺点:1. DBScan不能很好反映高尺寸数据;2. DBScan不能很好反映数据集变化的密度;3.对于高维数据,点之间极为稀疏,密度就很难定义了;。
各种聚类算法介绍及对比
各种聚类算法介绍及对比聚类算法是一种无监督学习的方法,目标是将数据集中的样本分成不同的组或簇,使得同一个簇内的样本相似度高,而不同簇之间的相似度低。
聚类算法主要有层次聚类、K-means、DBSCAN、谱聚类和密度聚类等。
下面将介绍这些聚类算法,并进行一些对比分析。
1. 层次聚类(Hierarchical Clustering)层次聚类算法可分为自上而下的凝聚聚类和自下而上的分裂聚类。
凝聚聚类从所有样本开始,逐步合并相似的样本,形成一个层次树状结构。
分裂聚类从一个单独的样本开始,逐步分裂为更小的簇,形成一个层次树状结构。
层次聚类的优点是可以根据需要选择得到任意数量的簇,但计算复杂度较高。
2. K-meansK-means是一种划分聚类算法,其步骤为:首先随机选择K个簇中心点,然后根据样本与簇中心的距离将样本划分至最近的簇,接着根据划分结果重新计算簇中心,重复上述过程直到算法收敛。
K-means算法简单高效,但对于非球形簇的数据集表现一般。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise)DBSCAN是一种基于密度的聚类算法,不需要预先指定簇的数量。
DBSCAN将样本分为核心对象、边界对象和噪声对象,根据样本之间的密度和可达性关系进行聚类。
核心对象周围一定距离内的样本将被划分为同一个簇。
DBSCAN适用于有噪声数据和不规则形状簇的聚类,但对密度差异较大的数据集效果可能较差。
4. 谱聚类(Spectral Clustering)谱聚类算法先通过样本之间的相似度构建相似度矩阵,然后选取相似度矩阵的前k个最大特征值对应的特征向量作为样本的新表示。
接着将新表示的样本集采用K-means等方法进行聚类。
谱聚类算法在处理复杂几何结构、高维数据和大规模数据时表现出色,但需要选择合适的相似度计算方法和簇的数量。
5. 密度聚类(Density-Based Clustering)密度聚类算法通过估计样本的局部密度来发现簇。
聚类算法:K-Means和DBSCAN的比较
聚类算法:K-Means和DBSCAN的比较聚类算法是一种机器学习方法,它可以将数据分成不同的群组或类别。
这些算法在大数据分析、图像处理、模式识别等领域都有着广泛的应用。
其中,K-Means和DBSCAN是两种常用的聚类算法,它们有着各自的特点和适用范围。
在本文中,我将对K-Means和DBSCAN进行比较,探讨它们的优势和劣势,以及适用场景。
1. K-Means算法概述K-Means算法是一种基于中心的聚类算法,它将数据集划分为K个非重叠的子集,每个子集代表一个簇。
该算法的基本思想是通过迭代的方式,将数据点划分到最近的簇中,并更新每个簇的中心位置,直到收敛。
K-Means算法的流程如下:1)随机初始化K个中心点;2)将每个数据点划分到距离最近的中心点所对应的簇中;3)计算每个簇的中心点,并更新中心点的位置;4)重复步骤2和3,直到中心点位置不再发生变化,算法收敛。
K-Means算法的优点包括简单、易于实现、计算速度快等,但也存在一些缺点,比如对初始中心点位置敏感、对异常值敏感等。
2. DBSCAN算法概述DBSCAN算法是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声点不敏感。
该算法的基本思想是以每个数据点为中心,在其邻域内寻找密度满足要求的点,从而构建簇。
DBSCAN算法的流程如下:1)选择两个参数:邻域大小和最小包含点数;2)随机选择一个未被访问的数据点;3)检查该点的邻域内是否包含足够多的点,如果是,则将该点标记为核心点,并将其邻域内的点都加入当前簇;4)重复步骤2和3,直到所有点都被访问。
DBSCAN算法的优点包括能够发现任意形状的簇、对噪声点不敏感等,但也存在一些缺点,比如对参数敏感、需要对距离进行计算等。
3. K-Means和DBSCAN的比较K-Means和DBSCAN是两种经典的聚类算法,它们在应用场景、优缺点等方面有着一定的差异,下面我将对它们进行详细的比较分析。
基因表达数据分析中的聚类方法比较
基因表达数据分析中的聚类方法比较基因表达数据分析是生物信息学领域的重要研究方向之一,通过分析基因在不同条件下的表达水平,可以揭示基因调控和细胞功能等方面的信息。
而聚类分析是一种常用的数据挖掘技术,可用于将基因表达数据分为不同的群组,进而探索基因之间的关联性和功能差异。
在基因表达数据分析中,有多种聚类方法可供选择,本文将对几种常见的聚类方法进行比较与评估。
1. K-均值聚类算法K-均值聚类是最常用的聚类方法之一,其基本思想是将n个数据点划分为k个簇,使得簇内的数据点之间的差异最小。
算法步骤包括随机选择k个初始质心,将数据点分配给质心所属的簇,更新质心位置,重复以上两个步骤直至收敛。
这种算法简单、易于理解和实现,但对初始质心选择敏感,结果可能会受到局部最优解的影响。
2. 层次聚类算法层次聚类是一种将数据点逐步分割或合并为层次化结构的聚类方法。
主要分为聚合聚类和分裂聚类两种类型。
聚合聚类从单个数据点开始逐步合并,直到所有数据点形成一个大的簇。
分裂聚类从一个大的簇开始逐步分割,直到每个簇只包含一个数据点。
这种方法不需要预先确定聚类数目,但结果可能受到数据点之间的距离度量方法的影响。
3. 密度聚类算法密度聚类算法通过考察数据点周围的密度来识别簇区域。
其中最著名的算法是DBSCAN(Density-Based Spatial Clustering of Applications with Noise)。
DBSCAN根据两个参数(邻域半径和最小邻域点数)识别核心点、边界点和噪声点,并以核心点为中心构建簇。
相比于K-均值聚类,密度聚类对数据分布的假设更弱,能够捕获任意形状的簇,但结果可能受到参数选择的影响。
4. 模型聚类算法模型聚类算法通过假设数据点符合特定的概率模型来识别簇结构。
其中最常用的算法是高斯混合模型(GaussianMixture Model,GMM)。
GMM假设数据点由多个高斯分布组合而成,通过最大似然估计方法估计模型参数,并使用期望最大化(Expectation-Maximization,EM)算法进行求解。
主成分分析聚类分析比较
主成分分析聚类分析比较主成分分析是一种数据降维技术,它能够将高维数据降低到低维,同时保留主要的信息。
它的原理是通过线性变换,将原始的维度高的数据线性变换到维度较低的新坐标系下,并且在新坐标系下保持数据的原有结构特征和方差。
1.数据标准化:为了消除量纲影响,需要对数据进行标准化处理。
2.计算协方差矩阵:将标准化后的数据计算协方差矩阵。
3.计算特征值和特征向量:通过解特征值问题,计算得到特征值和对应的特征向量。
4.选择主成分:将特征值从大到小排序,选择前k个特征值所对应的特征向量作为主成分。
5.构建新坐标系:将原始数据乘以特征向量,得到新的降维后的数据。
1.数据压缩:主成分分析可以将高维数据压缩到低维空间中,同时保留主要信息。
2.数据可视化:降维后的数据可以更方便地进行可视化展示和分析。
3.特征提取:主成分分析可以从原始数据中提取出最具有代表性的主成分。
4.数据预处理:主成分分析可以用于数据预处理,减少噪声和不必要的冗余信息。
二、聚类分析(Cluster Analysis)聚类分析是一种将相似对象组成簇的方法,以确定数据中的内在结构,它的目标是将相似的对象放在一个簇中,不相似的对象放在不同的簇中。
聚类分析的步骤如下:1.确定距离度量:选择适当的距离度量方法来度量不同对象之间的相似性。
2.计算距离矩阵:通过计算对象之间的距离,得到距离矩阵。
3. 构建聚类模型:根据距离矩阵,使用聚类算法(如K-means、层次聚类等)构建聚类模型。
4.确定聚类数目:根据业务需求和算法要求,确定合适的聚类数目。
5.分配对象到簇:将对象分配给合适的簇,并且根据一定的标准评估聚类模型的性能。
聚类分析的应用:1.模式识别:聚类分析可以用于模式识别,从数据中发现数据的内在结构和规律。
2.市场细分:聚类分析可以通过分析客户的购买行为和偏好,对市场进行细分,从而进行有针对性的营销策略。
3.图像分割:聚类分析可以用于图像分割和目标提取,将图像分成若干个簇,提取出目标区域。
数据分析中的聚类分析与聚类算法比较
数据分析中的聚类分析与聚类算法比较在数据分析领域,聚类分析是一种常见的技术,用于将一组数据对象划分为相似的组或簇。
通过聚类分析,我们可以发现数据集中的隐藏模式、相似性和特征,并帮助我们更好地理解数据。
本文将比较几种常见的聚类算法,并探讨它们的优势和劣势。
聚类算法是一种无监督学习方法,它可以自动发现数据集中的结构,并将相似的数据点归为一组。
在聚类分析中,有许多不同的算法可供选择,如K均值聚类、层次聚类、DBSCAN和高斯混合模型等。
下面将对这些算法进行比较。
1. K均值聚类算法(K-means):K均值聚类算法是最常用的聚类算法之一。
它通过将数据分为预先定义的K个簇来进行聚类。
该算法的主要优势在于简单和快速,适用于大规模数据集。
然而,K均值算法对于初始聚类中心的选择非常敏感,并且对于非凸形状的簇分割效果较差。
2. 层次聚类算法(Hierarchical clustering):层次聚类算法是一种自上而下或自下而上的聚类方法。
这种方法通过计算对象之间的相似性将数据逐渐合并或拆分成不同的簇。
其优势在于可以生成层次结构和树状图,可以更好地理解数据之间的关系。
然而,由于计算复杂度高,处理大规模数据集时效率低下。
3. DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise):DBSCAN算法是一种基于密度的聚类算法,可以发现任意形状和任意大小的簇。
它通过计算数据点周围的密度来划分簇,并可以自动处理噪声和异常值。
它的优势在于不需要预设簇的数量和形状,对数据集中的离群值鲁棒性较强。
然而,该算法对于数据密度分布不均匀或者维数较高的数据集效果较差。
4. 高斯混合模型(Gaussian Mixture Model,GMM):高斯混合模型是一种使用多个高斯分布来对数据进行建模的方法。
每个高斯分布表示一个簇,在训练过程中通过最大似然估计来估计模型参数。
聚类算法:K-Means和谱聚类的比较
聚类算法:K-Means和谱聚类的比较随着数据量的快速增长,聚类已成为一种最受欢迎的机器学习方法之一。
聚类算法是一种将具有类似特征的数据对象聚集在一起的技术。
这种方法通过将数据对象分组并将它们归类,可以提供数据的有意义的洞察,因为类似对象总是彼此靠近,而彼此远离不相似的对象。
在聚类中,两种最流行的算法是K-Means和谱聚类。
在这篇文章中,我们将比较这两种算法并讨论它们的优缺点。
K-Means聚类算法K-Means算法是一种非监督学习技术,它可以将数据集划分为K个不同的簇。
该算法的目的是将所有数据点划分为K组,其中每个组作为单个簇。
K-Means算法的过程包括以下步骤:1.随机选择K个中心点,这些中心点将代表数据集中的每个簇。
2.将每个数据点分配到最近的中心点,并将其划分为该簇。
3.根据每个簇中数据点的均值重新计算中心点。
4.重复步骤2,直到中心点不再发生变化或达到最大迭代次数。
谱聚类算法谱聚类是一种基于图论的聚类方法,它的主要思想是将原始数据转换为图形结构,然后通过将节点分组来执行聚类。
谱聚类包括以下步骤:1.构建相似度矩阵,它是原始数据的函数。
此步骤通常采用高斯核函数构建相似度矩阵。
2.构建拉普拉斯矩阵,它是相似度矩阵的函数。
拉普拉斯矩阵可以分为两个部分,即度矩阵D和邻接矩阵W的差值,其中度矩阵D是一个对角矩阵,它包含每个节点的度数(即与之相连的边数)。
3.对拉普拉斯矩阵进行特征分解,将其转换为对角矩阵和正交矩阵的乘积。
4.将正交矩阵的每一行作为节点表示,并对表示进行聚类。
K-Means和谱聚类的比较性能在性能方面,K-Means算法将数据分为K个簇,每次计算都需要进行迭代。
当数据集变大时,它的计算成本也相应增加。
相比之下,谱聚类方法的计算成本较高,但在数据集较小且维度较高时更有效。
可扩展性K-Means算法是一种容易实现和扩展的算法,在数据集较大时,它也非常有效。
然而,当数据的分布不同、形状不同、密度不同或噪声不同时,它的效果就变得不稳定。
聚类分析方法比较
聚类分析方法比较聚类分析是一种数据挖掘技术,用于将一组样本分为具有相似特征的组或簇。
聚类分析方法有很多种,包括层次聚类、K-means、DBSCAN、SOM等。
这些方法在不同的领域和应用中可能有不同的优势和适用性。
下面将对几种常见的聚类分析方法进行比较。
1. 层次聚类(Hierarchical Clustering)层次聚类是一种自下而上的聚类方法,将样本逐步合并形成层次聚类树。
层次聚类的优点是可视化效果好,可以根据聚类树划分不同的组别。
然而,层次聚类的计算复杂度高,适用于小样本量的情况。
2. K-meansK-means是一种常用的聚类算法,通过计算样本间的欧式距离将样本划分为K 个簇。
K-means的优点是计算速度快,对大规模数据集效果好。
然而,K-means 对初始质心的选择敏感,并且需要预先设定簇的个数。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise) DBSCAN是一种基于密度的聚类方法,通过设定样本周围邻域的密度阈值,将稠密区域划分为簇,将稀疏区域划分为噪声。
DBSCAN的优点是对初始参数不敏感,可以发现任意形状的簇。
然而,DBSCAN对数据分布的要求较高,对密度差异较大的数据集不适用。
4. SOM(Self-Organizing Maps)SOM是一种无监督学习方法,通过将多维样本映射到低维的神经网络空间中,实现样本的聚类。
SOM的优点是可以保留样本的拓扑结构,并且对噪声具有较好的鲁棒性。
然而,SOM的计算复杂度较高,需要预先设定神经网络的参数。
除了以上几种聚类分析方法,还有许多其他的方法,如谱聚类、模糊聚类等。
这些方法的选择应根据具体应用的需求和数据特征来确定。
在选择聚类方法时,需要考虑以下几个因素:1. 数据类型:不同的聚类方法适用于不同类型的数据,如数值型数据、类别型数据、文本数据等。
聚类与分类问题的比较论文素材
聚类与分类问题的比较论文素材聚类与分类问题的比较在机器学习领域,聚类和分类是两个常见的问题。
尽管它们都是用于数据分析和分类,但它们之间存在着一些显著的区别。
本文将探讨聚类和分类的定义、思想、适用场景以及它们之间的差异。
1. 聚类的定义和思想聚类是一种无监督学习的方法,它试图将具有相似特征的数据样本划分到同一个簇中。
聚类的目标是在数据中发现隐藏的模式和结构。
聚类方法通常根据数据点之间的相似度或距离来确定它们的归属关系。
聚类是一种探索性的分析方法,常用于数据预处理、图像分析、市场细分等领域。
2. 分类的定义和思想分类是一种有监督学习的方法,它使用预定义的标签或类别来对数据进行分类。
在分类中,已标记的训练数据集用于学习和构建模型,然后将该模型应用于未标记的测试数据集,以预测其所属的类别。
分类的目标是建立一个决策边界来区分不同类别之间的特征差异。
分类广泛应用于文本分类、图像识别、垃圾邮件过滤等领域。
3. 聚类和分类的适用场景聚类适用于对未知类别的数据进行探索和分析,尤其是在数据集没有预定义标签的情况下。
聚类可以帮助我们理解数据中的模式和结构,并通过将类似的样本聚集在一起来帮助我们进行进一步的数据分析。
例如,在市场细分中,聚类可以根据消费者购买行为将他们划分为不同的群体,以便制定定制化的营销策略。
分类适用于对已知类别的数据进行预测和分类。
通过已知类别的样本进行学习和模型构建,我们可以将新的未标记数据进行分类,并预测它们所属的类别。
例如,在图像识别中,我们可以使用已标记的图像数据集对模型进行训练,然后将该模型应用于未标记的图像,以自动识别它们所属的对象或特征。
4. 聚类和分类的差异聚类和分类之间存在几个重要的差异。
- 监督与无监督:聚类是无监督学习,不需要预定义的标签信息,它依靠数据的内在结构进行样本的聚集。
而分类是有监督学习,依赖于预先标记的训练数据集进行模型构建和预测。
- 目标不同:聚类的目标是发现数据中的隐藏模式和结构,它侧重于数据的相似性和聚集;而分类的目标是将数据划分到预定义的类别中,它更关注于特征的差异和类别的划分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。
目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。
摘自数据挖掘中的聚类分析研究综述这篇论文。
1、层次聚类算法1.1聚合聚类1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离1.1.2最具代表性算法1)CURE算法特点:固定数目有代表性的点共同代表类优点:识别形状复杂,大小不一的聚类,过滤孤立点2)ROCK算法特点:对CURE算法的改进优点:同上,并适用于类别属性的数据3)CHAMELEON算法特点:利用了动态建模技术1.2分解聚类1.3优缺点优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理2、分割聚类算法2.1基于密度的聚类2.1.1特点将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类2.1.2典型算法1)DBSCAN:不断生长足够高密度的区域2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进2.2基于网格的聚类2.2.1特点利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性2.2.2典型算法1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础2.3基于图论的聚类2.3.1特点转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边1)优点:不需要进行相似度的计算2.3.2两个主要的应用形式1)基于超图的划分2)基于光谱的图划分2.4基于平方误差的迭代重分配聚类2.4.1思想逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解2.4.2具体算法1)概率聚类算法期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释2)最近邻聚类算法——共享最近邻算法SNN特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数不足:时间复杂度提高到了O(N^2)3)K-Medioids算法特点:用类中的某个点来代表该聚类优点:能处理任意类型的属性;对异常数据不敏感4)K-Means算法1》特点:聚类中心用各类别中所有数据的平均值表示2》原始K-Means算法的缺陷:结果好坏依赖于对初始聚类中心的选择、容易陷入局部最优解、对K值的选择没有准则可依循、对异常数据较为敏感、只能处理数值属性的数据、聚类结构可能不平衡3》K-Means的变体Bradley和Fayyad等:降低对中心的依赖,能适用于大规模数据集Dhillon等:调整迭代过程中重新计算中心方法,提高性能Zhang等:权值软分配调整迭代优化过程Sarafis:将遗传算法应用于目标函数构建中Berkh in等:应用扩展到了分布式聚类还有:采用图论的划分思想,平衡聚类结果,将原始算法中的目标函数对应于一个各向同性的高斯混合模型5)优缺点优点:应用最为广泛;收敛速度快;能扩展以用于大规模的数据集缺点:倾向于识别凸形分布、大小相近、密度相近的聚类;中心选择和噪声聚类对结果影响大3、基于约束的聚类算法3.1约束对个体对象的约束、对聚类参数的约束;均来自相关领域的经验知识3.2重要应用对存在障碍数据的二维空间按数据进行聚类,如COD(Clustering with Obstructed Distance):用两点之间的障碍距离取代了一般的欧式距离3.3不足通常只能处理特定应用领域中的特定需求4、用于高维数据的聚类算法4.1困难来源因素1)无关属性的出现使数据失去了聚类的趋势2)区分界限变得模糊4.2解决方法1)对原始数据降维2)子空间聚类CACTUS:对原始空间在二维平面上的投影CLIQUE:结合基于密度和网格的聚类思想,借鉴Apriori算法3)联合聚类技术特点:对数据点和属性同时进行聚类文本:基于双向划分图及其最小分割的代数学方法4.3不足:不可避免地带来了原始数据信息的损失和聚类准确性的降低5、机器学习中的聚类算法5.1两个方法1)人工神经网络方法自组织映射:向量化方法,递增逐一处理;映射至二维平面,实现可视化基于投影自适应谐振理论的人工神经网络聚类2)基于进化理论的方法缺陷:依赖于一些经验参数的选取,并具有较高的计算复杂度模拟退火:微扰因子;遗传算法(选择、交叉、变异)5.2优缺点优点:利用相应的启发式算法获得较高质量的聚类结果缺点:计算复杂度较高,结果依赖于对某些经验参数的选择K-pototypes算法K-pototypes算法结合了K-means方法和根据K-means方法改进的能够处理符号属性的K-modes方法,同K-means方法相比,K-pototypes 算法能够处理符号属性。
3.2 CLARANS算法(划分方法)CLARANS算法即随机搜索聚类算法,是一种分割聚类方法。
它首先随机选择一个点作为当前点,然后随机检查它周围不超过参数Maxneighbor 个的一些邻接点,假如找到一个比它更好的邻接点,则把它移人该邻接点,否则把该点作为局部最小量。
然后再随机选择一个点来寻找另一个局部最小量,直至所找到的局部最小量数目达到用户要求为止。
该算法要求聚类的对象必须都预先调人内存,并且需多次扫描数据集,这对大数据量而言,无论时间复杂度还是空间复杂度都相当大。
虽通过引人R-树结构对其性能进行改善,使之能够处理基于磁盘的大型数据库,但R*-树的构造和维护代价太大。
该算法对脏数据和异常数据不敏感,但对数据物人顺序异常敏感,且只能处理凸形或球形边界聚类。
3.3 BIRCH算法(层次方法)BIRCH算法即平衡迭代削减聚类法,其核心是用一个聚类特征3元组表示一个簇的有关信息,从而使一簇点的表示可用对应的聚类特征,而不必用具体的一组点来表示。
它通过构造满足分支因子和簇直径限制的聚类特征树来求聚类。
BIRCH算法通过聚类特征可以方便地进行中心、半径、直径及类内、类间距离的运算。
算法的聚类特征树是一个具有两个参数分枝因子B和类直径T的高度平衡树。
分枝因子规定了树的每个节点子女的最多个数,而类直径体现了对一类点的直径大小的限制即这些点在多大范围内可以聚为一类,非叶子结点为它的子女的最大关键字,可以根据这些关键字进行插人索引,它总结了其子女的信息。
聚类特征树可以动态构造,因此不要求所有数据读人内存,而可以在外存上逐个读人。
新的数据项总是插人到树中与该数据距离最近的叶子中。
如果插人后使得该叶子的直径大于类直径T,则把该叶子节点分裂。
其它叶子结点也需要检查是否超过分枝因子来判断其分裂与否,直至该数据插入到叶子中,并且满足不超过类直径,而每个非叶子节点的子女个数不大于分枝因子。
算法还可以通过改变类直径修改特征树大小,控制其占内存容量。
BIRCH算法通过一次扫描就可以进行较好的聚类,由此可见,该算法适合于大数据量。
对于给定的M兆内存空间,其空间复杂度为O(M),时间间复杂度为O(dNBlnB(M/P)).其中d为维数,N为节点数,P为内存页的大小,B为由P决定的分枝因子。
I/O花费与数据量成线性关系。
BIRCH算法只适用于类的分布呈凸形及球形的情况,并且由于BIRCH算法需提供正确的聚类个数和簇直径限制,对不可视的高维数据不可行。
3.4 CURE算法(层次方法)CURE算法即使用代表点的聚类方法。
该算法先把每个数据点看成一类,然后合并距离最近的类直至类个数为所要求的个数为止。
CURE算法将传统对类的表示方法进行了改进,回避了用所有点或用中心和半径来表示一个类,而是从每一个类中抽取固定数量、分布较好的点作为描述此类的代表点,并将这些点乘以一个适当的收缩因子,使它们更靠近类的中心点。
将一个类用代表点表示,使得类的外延可以向非球形的形状扩展,从而可调整类的形状以表达那些非球形的类。
另外,收缩因子的使用减小了嗓音对聚类的影响。
CURE算法采用随机抽样与分割相结合的办法来提高算法的空间和时间效率,并且在算法中用了堆和K-d树结构来提高算法效率。
3.5 DBSCAN算法(基于密度的方法)DBSCAN算法即基于密度的聚类算法。
该算法利用类的密度连通性可以快速发现任意形状的类。
其基本思想是:对于一个类中的每个对象,在其给定半径的领域中包含的对象不能少于某一给定的最小数目。
在DBSCAN算法中,发现一个类的过程是基于这样的事实:一个类能够被其中的任意一个核心对象所确定。
为了发现一个类,DBSCAN先从对象集D 中找到任意一对象P,并查找D中关于关径Eps和最小对象数Minpts的从P密度可达的所有对象。
如果P是核心对象,即半径为Eps的P的邻域中包含的对象不少于Minpts,则根据算法,可以找到一个关于参数Eps和Minpts的类。
如果P是一个边界点,则半径为Eps的P邻域包含的对象少于Minpts,P被暂时标注为噪声点。
然后,DBSCAN处理D中的下一个对象。
密度可达对象的获取是通过不断执行区域查询来实现的。
一个区域查询返回指定区域中的所有对象。
为了有效地执行区域查询,DBSCAN算法使用了空间查询R-树结构。
在进行聚类前,必须建立针对所有数据的R*-树。
另外,DBSCAN要求用户指定一个全局参数Eps(为了减少计算量,预先确定参数Minpts)。
为了确定取值,DBSCAN计算任意对象与它的第k 个最临近的对象之间的距离。
然后,根据求得的距离由小到大排序,并绘出排序后的图,称做k-dist图。
k-dist图中的横坐标表示数据对象与它的第k个最近的对象间的距离;纵坐标为对应于某一k-dist距离值的数据对象的个数。
R*-树的建立和k-dist图的绘制非常消耗时间。
此外,为了得到较好的聚类结果,用户必须根据k-dist图,通过试探选定一个比较合适的Eps值。
DBSCAN算法不进行任何的预处理而直接对整个数据集进行聚类操作。
当数据量非常大时,就必须有大内存量支持,I/O消耗也非常大。