土壤环境化学

合集下载

004.3土壤环境化学-土壤污染(农药)

004.3土壤环境化学-土壤污染(农药)

④磷酰胺和硫代磷酰胺 磷酰胺:磷酸中的羟基被被氨基取代
硫代磷酰胺:磷酰胺中的氧被硫取代。
⑵有机磷农药降解
有机磷农药是为取代有机氯农药而发展起来的, 但其毒性较高,大部分对生物体内胆碱酯酶有抑 制作用
较有机氯农药易降解

吸附催化水解
机 非生物降解

光降解

绿色木霉
药 土壤微生物降解
降 解
假单胞菌
吸附作用是农药与土壤固相之间相 互作用的主要过程,直接影响其他过程 的发生。如土壤对除草剂2,4-D的化学 吸附,使其有效扩散系数降低。
○阳离子型农药,易溶于水并完全离子化,很快吸附于粘土矿物 ○弱碱性农药,可以接受质子带正电荷,吸附于粘土矿物或有机 质表面 ○酸性农药在水溶液中解离成有机阴离子,不易被胶体吸附,是 靠范德华力和其他物理作用
有机物的离子或基团从自由水向 土壤矿物的亚表面层扩散;离子 或基团以表面反应或进入双电层 的扩散层的方式为土壤矿物质吸 附。
分配作用(partition)
有机化合物在自然环境中 的主要化学机理之一,指 水-土壤(沉积物)中, 土壤有机质对有机化合物 的溶解,或称吸附( sorption, uptake),用分 配系数 Kd 来描述。
4.光解
4.南方水田里DDT降解快于北方
1.从土壤和空气转入水体 林 2.挥发而进入大气 丹 3.在土壤生物体内积累
4.植物积累
1. 易溶于水 2. 挥发性强,持久性低 3. 在生物体内积累性较DDT低
2.有机磷农药(organophosphorpus pesticides,
ops)
磷酸的脂类或酰胺类化合物
非生物降解 降解
水解反应
(Hydrolysis Reaction)

土壤环境化学

土壤环境化学

土壤环境化学
土壤环境化学是研究土壤中化学元素、化学反应和化学过程的学科。

土壤是地球上最重要的自然资源之一,它不仅是植物生长的基础,也是生态系统的重要组成部分。

因此,了解土壤环境化学对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。

土壤中的化学元素是土壤环境化学的重要研究内容之一。

土壤中的化学元素包括有机元素和无机元素。

有机元素主要来自于植物和动物的残体,而无机元素则来自于岩石、土壤和大气等。

土壤中的化学元素对于植物生长和土壤肥力有着重要的影响。

例如,氮、磷、钾等元素是植物生长所必需的营养元素,而铁、锰、铜、锌等微量元素则对植物生长和发育有着重要的作用。

土壤中的化学反应和化学过程也是土壤环境化学的重要研究内容。

土壤中的化学反应和化学过程包括酸碱反应、氧化还原反应、络合反应、离子交换等。

这些反应和过程对土壤的肥力、酸碱度、微生物活动等都有着重要的影响。

例如,土壤的酸碱度对于植物生长和土壤微生物的生长和活动都有着重要的影响。

土壤中的氧化还原反应则对土壤中的有机物质分解和微生物代谢有着重要的作用。

土壤环境化学的研究对于保护土壤资源、提高农业生产和维护生态平衡具有重要意义。

通过研究土壤中的化学元素、化学反应和化学过程,可以制定科学的土壤管理措施,提高土壤肥力和农业生产效益。

同时,也可以减少土壤污染和土地退化,保护生态环境。

因此,
加强土壤环境化学的研究和应用,对于实现可持续发展具有重要的意义。

环境化学复习资料第四章 土壤环境化学 名词术语

环境化学复习资料第四章  土壤环境化学  名词术语

第四章土壤环境化学名词术语1.土壤化学组成(Chemical composition of soil)指构成土壤的各种化学物质的种类和比例,土壤的化学组成包括①土壤矿物质:包括原生矿物和次生矿物;②土壤有机质,主要源于动植物和微生物残体,包括非腐殖物质和腐殖质;③土壤水分,并非纯水,实际上是土壤中各种成分和污染物溶解形成的溶液;④土壤中的空气。

2.土壤反应(Soil reaction)土壤酸碱性质的量度。

取决于土壤中氢离子浓度的大小,以pH值表示。

氢离子浓度高时,土壤呈酸性反应。

反之,呈碱性反应。

3.盐基饱和度(Base saturation percentage of soil)指土壤交换性阳离子中盐基离子所占的百分数,与土壤母质、气候等因素有关4.土壤吸附(Soil adsorption)指土壤矿物质、土壤胶体和土壤有机质通过各种物理化学作用力对外源物质的结合。

土壤吸附能降低污染物的扩散系数,影响其生物可利用性,从而影响污染物在土壤中的行为和生态风险。

5.土壤络合(Soil complex)指土壤中,一些配位体通过配位键结合与进入土壤的物质结合而形成复杂的分子或离子,从而影响土壤中污染物的迁移和转化行为。

6.土壤退化(Soil degradation)又称土壤衰弱,是指土壤肥力衰退导致生产力下降的过程。

是土壤环境和土壤理化性状恶化的综合表征,包括有机质含量下降、营养元素减少、土壤结构遭到破坏、土壤侵蚀,土层变浅,土体板结、土壤盐化、酸化、沙化等。

其中,有机质下降,是土壤退化的主要标志。

在干旱、半干旱地区,原来稀疏的植被受破坏,土壤沙化,就是严重的土壤退化现象。

7.土壤污染源(Soil contaminant source)造成土壤污染的污染物来源,主要为工业和城市的废废弃物堆放、农业用的化肥及农药、污水直接排放、受污染的地表径流、大气沉降、以及放射性物质和有害微生物等。

8.土壤酸化(Soil acidification)土壤内部产生和外部输入的氢离子引起土壤pH值降低和盐基饱和度减少的过程,它又是一种重要的土壤退化形式,对区域食物安全、环境质量及人畜健康产生明显负面影响。

环境化学课后答案(戴树桂)主编_第二版(4-7章)

环境化学课后答案(戴树桂)主编_第二版(4-7章)

第四章土壤环境化学1.什么是土壤的活性酸度与潜性酸度?试用它们二者的关系讨论我国南方土壤酸度偏高的原因。

根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。

(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。

(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。

当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。

南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。

2.土壤的缓冲作用有哪几种?举例说明其作用原理。

土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:(1)土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。

以碳酸及其钠盐为例说明。

向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。

Na2CO3 + 2HCl2NaCl + H2CO3当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。

H2CO3 + Ca(OH)2CaCO3 + 2H2O土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。

RCHNH2COOH+ HClNH3ClR CHCOOH+ NaOH + H 2ORCHNH 2COOH R CH NH 2COONa(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。

对酸缓冲(M -盐基离子):土壤胶体 M +HCl 土壤胶体 H +MCl对碱缓冲:土壤胶体 H +MOH 土壤胶体 M +H 2OAl 3+对碱的缓冲作用:在pH 小于5的酸性土壤中,土壤溶液中Al 3+有6个水分子围绕,当OH -增多时,Al 3+周围的6个水分子中有一、二个水分子离解出H +,中和OH -:2Al(H 2O)63+ + 2OH - [Al 2(OH)2(H 2O)8]4+ + 4H 2O3.植物对重金属污染产生耐性作用的主要机制是什么?不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。

土壤环境化学

土壤环境化学

土壤环境化学
《土壤环境化学》
第一章土壤基础
1.1 土壤组成
土壤是由固体、液体和气体组成的:固体由颗粒组成,液体是由土壤中的水分和有机物所构成,气体是由土壤根系空间和排出的空气中所含的气体构成。

1.2 土壤类型
土壤主要分为三类:水泥土、粘土及砂土。

水泥土是一种半水泥状的土壤,其中含有较多的碳酸钙和镁酸钙,有利于土壤的吸水和保水能力,但其中的有机物含量比较低,表层颗粒较小,土壤水分去向也不利于植物的生长。

粘土一般具有悬浮性,它的颗粒小而密,其中含有较多的有机物和黏土矿物,具有良好的吸附性,对植物有较大的造林价值。

砂土是指由砂砾组成的土壤,对水分和有机物的保存和吸收能力较差,表层颗粒较大,可以较容易的通过空气或降雨而运出,一般用作农田种植。

1.3 土壤温度和湿度
土壤的温度和湿度是土壤形成、发育和演变的重要因素。

一般情况下,随着土壤的深度不断增加,温度也会不断降低;湿度也会随着深度的增加而不断上升,这是由于土壤根系空间中的水分会不断从空气和降雨中补充,使其相对湿度更高。

第四章土壤环境化学(SoilEnvironmentalChemistry)

第四章土壤环境化学(SoilEnvironmentalChemistry)
土壤胶体吸附的阳离子全部是盐基阳离 子时,这种土壤称为盐基饱和土壤。
可交换性盐基总量 盐基饱和度(%) 100 阳离子交换量
(2)土壤胶体的阴离子交换吸附
带正电荷的胶体吸附的阴离子与土壤溶 液中的阴离子交换。 吸附顺序:
F- > C2O42- > 柠檬酸根 > PO43- > HCO3-> H2BO3- > Ac- > SCN- > SO42- > Cl- > NO3-
代换性酸度:
用过量中性盐(KCl、NaCl等) 溶液 淋洗土壤,溶液中金属离子与土壤中H+、 Al3+发生离子交换作用:
|土壤胶体|-H+ + KCl → |土壤胶体|-K+ + HCl |土壤胶体|-Al3++ 3KCl→|土壤胶体|-3K+ + AlCl3 AlCl3 + H2O → Al(OH)3 + 3HCl
形成过程:由地壳的岩石、矿物经过风化作用形成的。 按成因类型分类: 原生矿物
Soil)
次生矿物
原生矿物:
土壤中原先存在的岩石颗粒,受到不同
程度物理风化后形成的。
类别:
硅酸盐(石英、长石、云母等);
氧化物(SiO2 、Al2O3、 TiO2、 Fe2O3);
硫化物 (FeS);
磷酸盐如氟磷灰石Ca5(PO4)3F等。
有机质和低价金属离子。
土壤氧化还原能力的大小可以用土壤的氧 化还原电位(Eh)来衡量。 根据土壤Eh值可以确定土壤中有机物和
无机物可能发生的氧化还原反应和环境行为。
一般旱地土壤的氧化还原电位(Eh)为 +400—+700mV;水田的Eh值在-200—300mV。

004.2土壤环境化学-土壤污染(重金属)

004.2土壤环境化学-土壤污染(重金属)

而不同种类的重金属,在土壤和农作物系统中迁移转化规律明 显不同。
重金属在土壤中的含量和植物吸收累积研究的结果为: Cd、As较易被植物吸收, Cu、Mn、Se、Zn等次之, Co、Pb、Ni等难于被吸收, Cr极难被吸收。
研究春麦受重金属污染状况后发现, Cd是强积累性元素, 而Pb的迁移性则相对较弱; 铬和铅是生物不易积累的元素。������
5
(3)土壤环境容量:
土壤环境单元所容许承纳的污染物质的最大 允许量或负荷量(土壤环境静容量).
土壤环境单元一定时限内遵循环境质量标准, 既保证农产品产量和生物学质量,同时也不使环 境污染时,土壤所能允许承纳的污染物的最大数 量或负荷量(土壤环境动容量)。
6
(4)当土壤中含有害物质过多,超过土壤的自净能 力,就会引起土壤的组成、结构和功能发生变化, 微生物活动受到抑制,有害物质或其分解产物在 土壤中逐渐积累,通过“土壤→植物→人体”, 或通过“土壤→水→人体” 间接被人体吸收,达 到危害人体健康的程度,就是土壤污染。
4.放射性污染物
9
(6)重金属污染土壤的特点:
重金属不被土壤微生物降解,可在土壤中 不断积累,也可以为生物所富集,并通过食物 链在人体内积累,危害人体健康。
重金属一旦进入土壤就很难予以彻底的 清除。日本的“痛痛病”,我国沈阳郊区张 士灌区的“镉米”事件等是重金属污染的典 型实例。
10
•克山病 •大骨节病 •水俣病 •痛痛病 •黑脚病
第四章 土壤环境化学
Chapter 4. Soil Environmental Chemistry
补充掌握
土壤污染概述
(1)土壤背景值 土壤本身含有微量的金属元素,其中很
多是作物生长必需的微量营养元素,如Mn、 Zn、Cu等。不同地区土壤中重金属的种类和 含量也有很大差别。

土壤环境化学

土壤环境化学

土壤环境化学土壤环境化学是环境科学与化学交叉的一门学科。

它研究土壤中各种化学元素的分布、特性和作用,探讨土壤物质的结构与性质,分析生态系统和人类活动对土壤环境的影响,为改善土壤质量和保护生态环境提供理论和技术支持。

下面从几个方面对土壤环境化学进行分析和探讨。

1.土壤中化学元素的分布与作用土壤中含有丰富的化学元素,其中有些元素对植物生长和土壤质量有着重要作用。

例如,土壤中的氮、磷、钾等元素是植物生长所必需的养分元素,它们对植物营养生长和产量起着重要作用;而铁、锰等微量元素则对生物酶活性和土壤微生物的生长起到促进作用。

因此,研究土壤中各种化学元素的分布与作用,对于保持土壤生态平衡和提高土壤生产力具有重要意义。

2.土壤化学性质及其测定方法土壤的化学性质包括pH值、电导率、有机质、离子交换等,这些性质对于土壤物质的性质和土壤生态系统的平衡起着重要作用。

测定土壤中各种元素的含量和范围,对于判断土壤质量和土壤养分状况具有重要意义。

常用的土壤化学性质测定方法包括pH试剂法、离子交换色谱法、原子吸收光谱法等。

3.土壤环境污染及其防治土壤污染对于土壤生态环境和人类健康产生严重威胁。

土壤污染的主要来源包括农业生产、工业生产、城市人类活动等。

土壤环境化学研究土壤污染的来源、性质、分布规律等,为土壤污染防治提供科学依据。

土壤环境污染的防治手段包括土壤修复、土壤保护、土地整治和土壤资源综合利用等。

4.土壤有机质及其作用土壤有机质指在枯枝、落叶、残渣等废弃物的分解作用下形成的含碳物质。

有机质对土壤的肥力、结构和水分保持能力起着重要作用,同时还能促进土壤微生物生长,参与土壤健康发展。

因此,研究土壤有机质的来源、形成和作用对于提高土壤生产力和改善生态环境具有重要意义。

总的来说,土壤环境化学是一门涵盖广泛,应用领域广泛的交叉学科,它在促进土地资源的合理管理和提高土壤生产力方面拥有重要作用,也对保护生态环境和人民健康具有重要意义。

土壤环境化学省公开课一等奖全国示范课微课金奖课件

土壤环境化学省公开课一等奖全国示范课微课金奖课件
23/100
c. 断键: 硅酸盐黏土矿物在破碎时,引发晶层断 裂,使硅氧片和水铝片断裂边角上出现电性未中和键。 腐殖质胶体也常发生碳键断裂,从而产生剩下负电荷;
d. 胶体表面从介质中吸附离子: 使得土壤胶体带 电。
3)土壤胶体分散性和凝聚性 因为土壤胶体微粒带负电荷,胶体粒子相互排斥, 含有分散性。负电荷越多,负电动电位越高,
土壤还含有同化和代谢外界进入土壤 物质能力——净化能力。所以, 土壤又是保 护环围土壤环境问题 (Environmental Problem in Soil)
土壤酸化、盐碱化、土壤污染 土壤沙漠化(石漠化) 陆地植被破坏 水土流失
4/100
一、研究简史 1850s’ 英国学者Way和Lawes发觉土壤
特征:
(1)不连续性,存在于土粒间隙之间;
(2)湿度高; 大气
土壤
(3)OO22少,C20O.925%多,有机0-质20.腐90%烂分解;
CO2
0.03%
0.03%-20%
(4)有还原性气体(H2S、NH3.H2、CH4)存 在。
18/100
5. 土壤生物(Organisms in Soil)
土壤中存在大量生物群落,包含微生物和 土壤动物两大类。
16/100
3. 土壤水分(Water in Soil) (1)土壤水分存在形式 土壤颗粒吸附水分称吸着水, 几乎不移动, 不被植物吸收。 外层膜状水称内聚水或毛细管水, 为植物 生长主要水源。 (2)土壤水分意义 土壤水分既是植物营养物起源, 也是污染 物向其它圈层迁移媒介。
17/100
4. 土壤空气(Atmosphere in Soil)
b. 土壤质地越细,阳离子交换量越高;
29/100

土壤环境化学课程思政

土壤环境化学课程思政

土壤环境化学课程思政
课程介绍
土壤环境化学是一门探究土壤中物质循环和变化的科学,旨在揭示土壤污染的产生、扩散、转化和归趋的规律,以寻求有效的防治和修复方法。

在当前社会,随着环境问题的日益严重,土壤环境化学的重要性和迫切性日益凸显。

融入思政元素
在讲授土壤环境化学的过程中,我们可以自然地融入思政元素,对学生进行全面的教育。

首先,我们应强调科学的社会责任感,让学生明白,作为科学工作者,他们有义务为社会和环境的可持续发展贡献自己的力量。

这不仅体现在对科学知识的掌握上,更体现在对社会责任的担当上。

其次,我们可以通过对土壤污染案例的深入分析,引导学生认识到人类活动对环境的影响,培养他们的环保意识。

例如,通过研究农业活动中化肥和农药的使用对土壤环境的影响,让学生认识到人类行为的双刃剑性质,从而树立正确的生态观和发展观。

此外,我们还可以通过课堂讨论的形式,引导学生思考如何在经济发展的同时保护环境,培养他们的生态文明观念。

这不仅可以加深学生对土壤环境化学知识的
理解,还可以培养他们的思辨能力和社会责任感。

教学方法
为了更好地实现思政教育目标,我们可以采用多种教学方法。

首先,我们可以采用案例教学法,通过生动的案例让学生深刻理解环境保护的重要性。

其次,我们可以采用互动教学法,鼓励学生参与课堂讨论,引导他们主动思考如何在日常生活中践行环保理念。

最后,我们可以采用实践教学法,组织学生开展实地考察和实验研究,让他们在实践中加深对课程内容的理解和对环保的认识。

土壤环境化学

土壤环境化学
和土壤有机质,两者约占土壤总量的90-95%。
液体:土壤水分以及其中的溶解物构成土壤
溶液
气体:土壤中有无数空隙充满空气,典型的土
壤约有35%的体积是充满空气的孔隙.
细菌、微生物:一般作为土壤有机物而被视
为土壤固体物质。
矿物质~45%:包括矿物岩石碎屑及无 机固体
有机物~5%
空气20~30%:存在于土壤的孔隙里
c+ 4H+ + 2e- = Mn2+ + 2H2O
d、硫体系
有机态硫--般不参予Redox反应
SO42- / SO32- / H2S
e、氢体系
H2极少,产生条件特殊
RCOOH CO2, CH4, H2
f、氮体系
NO3- / NO2-
g、有机体系
(Eh < 100 mV时,有机体系起作用)
c、脂肪、蜡质及树脂
可溶于有机溶剂的类脂类化合物、酸、醇 型的萜烯聚合含氧衍生物。疏水,可防止土壤 结构破坏,对植物有毒。
d、有机氮化合物
腐殖质中N、氨基酸等,提供微生物养分 和土壤氮肥。
e、有机磷化合物
磷酸脂、磷脂等植物磷酸盐的来源。
f、灰分残留物
有机化合物中除C、H、O、N、P外的 Ca、Mg、 K、 Na、 Si、 S、 Fe、 Al、 Mn、 Cl为植物生活要素的来源。
第四章 土壤环境化学
Lithosphere
土壤圈不仅与大气圈、水圈、生物 圈之间进行着物质和能量交换,而 且对环境的自净能力和容量有着重 大贡献。
4-1 土壤的组成与性质
4-1-1 土壤的组成
土壤是以固相为主的不均质多相体,由 固体、液体、气体物质共同组成,它们的相对 含量因时因地而异。

环境化学第四章土壤

环境化学第四章土壤

价交换和受质量作用定律支配外,各种阳离子交换能力的强
弱,主要依赖于以下因素: 电荷数,离子电荷数越高,阳离子交换能力越强;
离子半径及水化程度,同价离子中,离于半径越大,水
化离子半径就越小,因而具有较强的交换能力。
第二节 土壤的性质
土壤中一些常见阳离子的交换能力顺序如下: Fe3+>Al3+>H+>Ba2+>Sr2+>Ca2+>Mg2+>Cs+>Ru+>
第二节 土壤的性质
b.潜性酸:
其来源是土壤胶体吸附的可代换性H+和Al3+。当这些离
子处于吸附状态时,是不显酸性的,但当它们通过离子交 换作用进入土壤溶液之后,即可增加土壤溶液的 H+ 浓度, 使土壤 pH 值降低。只有盐基不饱和土壤才有潜性酸度,其 大小与土壤代换量和盐基饱和度有关。据测定土壤潜性酸
②水解性酸度: 用弱酸强碱盐 (如醋酸钠)淋洗土壤,溶液中金属离子可
以将土壤胶体吸附的 H+ 、 A13+ 代换出来,同时生成某弱酸
(醋酸)。此时,所测定出的该弱酸的酸度称为水解性酸度。
第二节 土壤的性质
③活性酸与潜性酸的关系:
土壤的活性酸与潜性酸是同一个平衡体系的两种强度,
二者可以互相转化,在一定条件下处于暂时平衡状态。土 壤活性酸度是土壤酸度的根本起点和现实表现。土壤胶体
第二节 土壤的性质
一般土壤缓冲能力的大小顺序是: 腐殖质土>枯土>砂土。 土壤的可变电荷越多,缓冲能力越强。土壤缓冲能力 越大,对酸碱污染物的容量就越大。但是,土壤的缓冲能 力的大小是有一定限度的,超出这个限度,土壤的酸碱度 会发生强烈的变化。
1 2 3 4 5 6

4 土壤环境化学

4 土壤环境化学
土壤环境化学
土壤的形成
土壤是由固、液、气三相共同组 成的多相体系。
土体构型
土壤中的无机矿物质
原生矿物
– – – – 硅酸盐类:长石、云母、辉石、角闪石、橄榄石 氧化物类:石英、赤铁矿、金红石 硫化物类:白铁矿、黄铁矿 磷酸盐类:磷灰石
次生矿物
– 简单盐类:方解石、白云石、石膏、泻盐、芒硝 – 三氧化物:褐铁矿、三水铝石、针铁矿 – 次生硅酸盐:伊利石、蒙脱石、高岭石
Mn(IV) Mn(II) SO42NO3H2S NO2N2 NH4+ CH4
主要还原剂:
– 有机质、 – 低价金属离子
有机碳体系 CO2
土壤的基本环境机能
培育植物 推动物质循环 保存水资源 防止灾害 自净能力 土壤的退化包括: 水土流失;沙漠化; 酸化、碱化;营养物流失;土壤污染
土壤污染
土壤污染的类型
土壤中的有机质
土壤中的生物
土壤中的粒级划分
颗粒名称 石块 石砾 砂粒 粉粒 粘粒 粒径(mm) 粒径(mm) >10 10-3-1 10- 1-0.25-0.05 0.25- 0.05-0.01- 0.05-0.01-0.005 0.005- 0.005-0.001<
由不同的粒级混合在一起所表现出来的 土壤的粗细状况,称为土壤质地。
水体污染型 大气污染型 农业污染型 固体废物污染型
土壤中的主要污染物
无机污染物
– (重金属、非金属、放射元 素、酸碱盐)
有机污染物
– (农药、塑料、酚、氰化物、 石油、苯并芘、有机洗涤剂、 脂肪蛋白质)
我国土壤污染状况 土壤的自净作用
有害微生物
土壤污染迁移及其机制
土壤中农药
土壤中农药的迁移和转化

土壤环境化学

土壤环境化学

土壤环境化学土壤环境化学是研究土壤中化学元素的组成、转化和迁移规律的一个重要领域。

土壤是生物圈中的一个重要组成部分,它承载着植物的生长和发育,保持着生物多样性的平衡,同时也是污染物的重要存储和传播介质。

因此,了解土壤中的化学性质对于环境保护和农业生产具有重要意义。

土壤中的化学成分主要包括无机物质和有机物质两部分。

无机物质是土壤的主要组成部分,包括矿物质、水和气体。

矿物质是土壤固体颗粒的主要成分,它们来源于岩石的风化和分解,包括石英、长石、云母等。

水分是土壤中的重要组成部分,它对土壤中化学物质的溶解、扩散和迁移起着重要作用。

气体主要是土壤孔隙中的氧气、二氧化碳和氮气等,对土壤中微生物活动和植物生长具有重要影响。

有机物质是土壤中的另一个重要组成部分,主要来源于植物残体、动物粪便和微生物分解产物。

有机物质对土壤的肥力、结构和水分保持起着重要作用,同时也是土壤中微生物的主要营养来源。

土壤中的有机物质含量和组成对土壤的肥力和生物多样性具有重要影响,因此研究土壤中有机物质的化学性质对于土壤生态系统的健康维护和可持续发展至关重要。

土壤中的化学元素主要包括宏量元素和微量元素两类。

宏量元素是植物生长必需的元素,包括碳、氧、氮、磷、钾、钙、镁、硫等。

这些元素对于植物的生长和发育至关重要,缺乏或过量都会影响植物的生长状况。

微量元素虽然在土壤中含量较少,但对植物的生长也具有重要作用,如铁、锰、锌、铜、硼、钼、氯等。

这些微量元素在植物生长过程中参与了许多生物代谢反应,保证了植物的正常生长和发育。

土壤中的化学元素在土壤中的迁移和转化受到许多因素的影响,如土壤的pH值、纹理、有机质含量、温度、湿度等。

不同的土壤类型和环境条件会对化学元素的形态和活性产生影响,进而影响植物对元素的吸收和利用。

因此,研究土壤环境化学对于合理施肥、减少污染物排放、保护土壤生态环境具有重要意义。

土壤环境化学是一个综合性的学科,它涉及土壤中各种化学元素的来源、转化和迁移规律,对于环境保护、农业生产和生态系统的可持续发展具有重要意义。

土壤环境化学

土壤环境化学

土壤环境化学土壤圈是自然环境要素的重要组成之一,它是处于岩石圈最外面的一层疏松的部分,具有支持植物和微生物生长繁殖的能力,称作土壤圈。

1、土壤的组成土壤除固相、液相和气相组成外,土壤中还有数量众多的细菌和微生物。

2、原生矿物3、次生矿物(1)按形态分类①非晶态次生矿物呈胶膜状态,它包裹于土粒表面,如水合氧化铁、铝及硅等;呈粒状凝胶成为极细的土粒,如水铝类石等,是一种无固定组成的硅铝氧化物,并有较高的阳离子和阴离子代换量,特别是无定形氧化物具有巨大的比表面和较高的化学活性。

②晶态次生矿物-主要是铝硅酸盐类黏土矿物由硅氧四面体和铝氢氧八面体的层片组成硅氧四面体:一个硅原子与四个氧原子组成,形成一个三角锥形的晶格单元铝氢氧八面体:一个铝原子与六个氧原子或氢氧原子组组成,形成具有八个面的晶格单元(2)按性质分类①简单盐类:方解石(CaCO3)、石膏(CaSO4·H2O)原生矿物化学风化后的最终产物水溶性盐,易淋溶流失土壤中存在较少、主要存在盐渍土壤中、干旱地区②三氧化物类硅酸盐矿物彻底风化后的产物③次生铝硅酸盐类(粘土矿物)由长石等原生硅酸盐矿物风化后形成在土壤中普遍存在、土壤的主要成分,种类多黏土矿物分类:伊利石、蒙脱石、高岭石不足的正电荷被处在两个钾离子起桥梁作用,把上下相邻的两个晶层连结起来。

但以温带干旱地区的土壤中含量其颗粒直径 ,膨胀性较小, 晶层间没有氢水分子或其他交换性阳离子可以进入层 是基性岩在碱性环境条件其颗粒直径 ,阳离子代换量极高。

因此富含蒙脱石的土壤,水分缺乏,同时干裂现象严重而不利于植物生长。

型二层晶层之间水分子和其他离子 主要见于湿热的热带地区的土; 其颗粒直径较大,为0.1~,膨胀性小,阳离子植物可获得的有效水4、土壤矿物质的粒级划分(1)石块和石砾:多为岩石碎块,直径大于1mm。

山区土壤和河滩土壤中常见。

土壤中含石块和石砾多时,其孔隙过大,水和养分易流失。

(2)砂粒:主要为原生矿物,大多为石英、长石、云母、角闪石等,其中以石英为主,粒径为1~0.05mm。

环 境 化 学 (第四章 土壤环境化学-第二节)

环 境 化 学 (第四章 土壤环境化学-第二节)

主动迁移
在需消耗一定的代谢能量下,一些物质可 在低浓度侧与膜上高浓度的特异性蛋白载体结 合,通过生物膜至高浓度侧解离出原物质。这 一转运称为主动转运 所需代谢能量来自膜的三磷酸酰苷酶分解 三磷酸酰苷(ATP)成二磷酸酰苷(ADP)和磷 酸时所释放的能量。
具有竞争性抑制、特异性选择和饱和 现象。 如钾离子在细胞内外浓度分布: [K+](细胞内) 》[K+](细胞外)
三、重金属在土壤-植物体系中的迁移及其机制
1.土壤-植物体系
土壤-植物体系具有转化储存太阳能为 生物化学能的功能,而微量重金属是土 壤中植物生长酶的催化剂;
又是一个强的“活过滤器”,当有机 体密度高时,生命活力旺盛,可以经过 化学降解和生物代谢过程分解许多污染 物;
微量重金属可以促进土壤中许多物质的 生物化学转化,但土壤受重金属污染负荷 超过它所承受的容量时,生物产量会受到 影响。 因此,土壤-植物系统通过一系列物理 化学或生物代谢过程对污染物进行吸附、 交换、沉淀或降解作用,使污染物分解或 去毒,从而净化和保护了环境。
五 几种重金属在土壤-植物体系中的积累和迁移 砷 (As)
土壤中砷的形态:水溶态、吸附态和 难溶态前二者又称可给态砷,可被植物吸收 吸收:有机态砷 → 被植物吸收 → 体内降 解为无机态 → 通过根系、叶片的吸收→体 内集中在生长旺盛的器官 如:水稻,根 > 茎叶 > 谷壳 > 糙米
毒性:甲基化砷 > H3AsO3> H3AsO4 微生物转化 (p276)
土壤背景值中含量较高的元素 为: Mn、Cr、Zn、Cu、Ni、La、 Pb、Co、 As、Be、Hg、Se、Sc、 Mo(mg/kg)。
土壤中重金属污染
重金属污染土壤的特点:

土壤环境化学

土壤环境化学

土壤环境化学土壤环境化学是研究土壤中化学元素和化学反应的科学领域。

土壤是地球表面的重要自然资源,其化学性质对农作物生长、环境保护和生态平衡具有重要影响。

了解土壤环境化学的基本原理和特点,有助于科学合理地利用土壤资源,保护生态环境。

土壤中的化学元素是土壤环境化学研究的重点之一。

土壤中的主要化学元素包括有机物质、矿物质和无机盐等。

有机物质是土壤中的重要组成部分,可以提供植物生长所需的营养元素和能量。

矿物质是土壤中的无机物质,其主要成分包括氧化物、碳酸盐、硅酸盐等。

无机盐是土壤中的无机离子,包括氮、磷、钾等元素。

这些化学元素在土壤中以不同形式存在,对土壤的肥力和生物活性起着重要作用。

土壤中的化学反应是土壤环境化学研究的另一个重要方面。

土壤中的化学反应包括氧化还原反应、酸碱中和反应、络合反应等。

氧化还原反应是土壤中氧气与有机物质或无机物质之间的化学反应,可以释放能量或吸收能量,影响土壤中微生物的代谢和植物的生长。

酸碱中和反应是土壤中酸性物质与碱性物质之间的中和反应,可以调节土壤的酸碱度,影响土壤中微生物的生长和植物的吸收营养。

络合反应是土壤中金属离子与有机物质或无机物质之间的络合作用,可以影响土壤中金属元素的迁移和转化。

土壤环境化学还涉及土壤中的污染物质和其化学行为。

土壤中的污染物质包括重金属、有机污染物、放射性物质等。

这些污染物质会影响土壤的生物多样性和生态平衡,对人类健康和环境造成危害。

了解土壤中污染物质的化学性质和行为规律,有助于科学合理地治理土壤污染,保护生态环境。

土壤环境化学是一门综合性的学科,涉及土壤中化学元素、化学反应、污染物质等多个方面。

通过深入研究土壤环境化学的基本原理和特点,可以更好地利用土壤资源,保护生态环境,实现可持续发展。

希望通过不断努力和探索,能够更好地认识和理解土壤环境化学,为建设美丽家园贡献自己的力量。

土壤环境化学公开课一等奖优质课大赛微课获奖课件

土壤环境化学公开课一等奖优质课大赛微课获奖课件
及作用机制。 ❖ 掌握土壤吸附、酸碱和氧化还原特性。 ❖ 理解主要农药在土壤中迁移原理与主要影响原因 ❖ 掌握造成土壤污染主要原因、危害及防治办法。
第3页
引言
土壤是自然环境要素主要构成之一, 它是处于 岩石圈最外面一层疏松部分,含有支持植物和微生物 生长繁殖能力, 称作土壤圈。
土壤还含有同化和代谢外界进入土壤物质能力, 因此土壤又是保护环境主要净化剂, 这就是土壤两 个主要功效。
酸及其盐类,构成较好缓冲体系。
如: 碳酸及其钠盐缓冲作用 当加入盐酸时,碳酸钠与它作用,生成中性盐和碳酸,大大抑 制了土壤酸度提升。
Na2CO3+2HCL=2NaCL+ H2CO3 当加大Ca(OH)2时,碳酸与它作用,生成溶解度较小碳酸 钙,限制了土壤碱度。
H2CO3+Ca(OH)2= CaCO3+ 2H2O
①电荷数:离子电荷数越高,阳离子互换能力越强。 ②离子半径及水化程度: 同价离子中,离子半径越大,水化 离子半径就越小,因而含有较强互换能力。 ③土壤
第27页
第一节 土壤构成和性质
❖ 不同土壤阳离子互换量不同:
❖ (1)不同种类胶体阳离子互换量次序 有机 胶体 >
❖ 蒙脱石 > 水化云母 > 高岭土 > 水合氧化铁 、铝
第四章 土壤环境化学
(Soil Environmental Chemistry)
第1页
教学内容
❖ 1、土壤构成与性质; ❖ 2、重金属在土壤—植物体系中迁移及其作
用机制; ❖ 3、主要农药在土壤中迁移、转化和归趋。
第2页
教学要求
❖ 掌握土壤构成与性质, 土壤粒级与质地分组特性。 ❖ 理解污染物在土壤-植物体系中迁移特点、影响原因

土壤的主要成分及它们在环境化学中的作用

土壤的主要成分及它们在环境化学中的作用

土壤的主要成分及它们在环境化学中的作用土壤是由无机和有机物质组成的复杂体系。

以下是土壤的主要成分及其在环境化学中的作用:1. 矿物质:矿物质是土壤的主要无机成分,包括石英、长石、黏土矿物等。

矿物质在环境化学中具有以下作用:-提供土壤的物理支持和结构稳定性。

-影响土壤的质地、保水性和透气性。

-可以吸附和释放养分,影响土壤肥力。

-可能吸附有机污染物和重金属,影响它们在土壤中的迁移和生物可及性。

2. 有机质:有机质是由已死和正在分解的植物和动物残体形成的有机物质。

有机质在环境化学中具有以下作用:-提供土壤的肥力和营养素。

-促进土壤结构的形成和稳定。

-提供微生物生长和活动所需的碳源和能量。

-可以吸附和解毒有机污染物。

3. 水分:水是土壤中的重要组成部分,对环境化学过程有重要影响:-水是溶解和迁移物质的介质,通过溶解作用可以促进养分和污染物在土壤中的迁移。

-水的存在和分布状况影响土壤的氧气和二氧化碳扩散,从而影响土壤中的生物活性和化学反应。

4. 气体:土壤中的气体包括空气中的氮气、氧气、二氧化碳等。

气体在环境化学中的作用包括:-影响土壤中微生物的呼吸和代谢过程。

-参与土壤中的氧化还原反应,如氮的硝化和脱氮过程。

5. 生物:土壤中存在着丰富的生物群落,包括细菌、真菌、线虫、蚯蚓等。

生物在环境化学中的作用包括:-分解有机物质,促进有机质的转化和循环。

-参与氮循环和其他生物地球化学过程。

-影响土壤中污染物的生物降解和转化。

综上所述,土壤的主要成分包括矿物质、有机质、水分、气体和生物。

它们在环境化学中发挥着关键的作用。

在环境化学中,土壤的成分与作用之间存在着密切的相互关系。

以下是一些关键的作用:1. 营养元素的储存和释放:土壤中的矿物质和有机质可以吸附和储存营养元素,如氮、磷、钾等。

这些养分对植物的生长至关重要。

土壤中的微生物和根系也参与了养分的循环和转化过程。

当植物需要时,土壤可以释放储存的营养元素,满足植物的需要。

环境化学第四章土壤环境化学

环境化学第四章土壤环境化学

环境化学第四章土壤环境化学第四章土壤环境化学1、土壤圈:处于岩石圈最外面的一层疏松的部分,具有支持植物和微生物生长繁殖的能力。

是联系有机界和无机界的中心环节,还具有同化和代谢外界进入土壤的物质的能力。

主要元素O、Si、Al、Fe、C、Ca、K、Na、Mg、Ti、N、S、P等。

2、土壤是由固体、液体和气体三相共同组成的多相体系。

其本质属性是具有肥力土壤固相包括土壤矿物质和土壤有机质。

土壤矿物质:是岩石经过物理和化学风化的产物,由原生矿物和次生矿物构成。

土壤有机质:土壤中含碳有机物的总称,是土壤形成的标志,土壤肥力的表现。

土壤水分:来自大气降水和灌溉土壤中的空气:成分与大气相似,不连续,二氧化碳比氧气多。

3、土壤具有缓和其酸碱度发生激烈变化的能力,它可以保持土壤反应的相对稳定,称为土壤的缓冲性能。

4、土壤中存在着由土壤动物、土壤微生物和细菌组成的生物群体。

5、典型土壤随深度呈现不同层次,分别为覆盖层、淋溶层、淀积层和母质层。

6、土壤的显著特点是具有:隐蔽性、潜在性和不可逆性。

7、岩石化学风化分为氧化、水解和酸性水解三个过程。

8、什么是土壤的活性酸度与潜性酸度?根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。

(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。

(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。

当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。

根据测定潜性酸度的提取液不同,可分为代换性酸度、水解性酸度:代换性酸度:用过量的中性盐(KCl、NaCl等) 淋洗土壤,溶液中金属离子与土壤中H+、Al3+离子交换。

用强碱弱酸盐淋洗土壤,溶液中金属离子可将土壤胶体吸附的H+、Al3+离子代换出来,同时生成弱酸,此时测定该弱酸的酸度称水解性酸度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
事故性排放的有毒化合物和废物处理中的有机物,用
微生物降解等生物技术加速其降解的可能性。
开展土壤中金属的迁移和形态变化研究,证明克 山病和大骨节病与土壤缺硒的密切关系;研究硒的形 态、生物有效性和地方病的防治途径;
研究酸雨引起的土壤活性铝浓度变化、Al3+形态
转化和生物有效性; 研究土壤对重金属、有机污染物的吸附作用和污 染控制; 全面开展土壤元素背景值研究,为土壤环境质量
相互排斥力越强,分散性也越强; 由于胶体的比表面和表面能都很大,为减小表面 能,胶体具有相互吸引、凝聚的趋势,这就是胶体的
凝聚性。
土壤胶体的凝聚液中的电解质和 pH
值也有影响。常见阳离子凝聚力的强弱顺序:
Fe3+ > Al3+ > Ca2+ >Mg2+ > H+ > NH4+ > K+ > Na+
气相(土壤空气)
土壤中固、液、气相结构图
典型土壤随深度呈现不同的层次
覆盖层(A0)
淋溶层(A)
淀积层(B) 母质层(C) 基岩(D)
1. 土壤矿物质(Soil Minerals)
土壤矿物质是岩石经过物理风化和化学风化形
成的。按成因类型分类: 原生矿物
各种岩石受到程度不同的物理风化而未经 化学风化的碎屑物,其原有化学组成和结 晶构造都没有改变。 大多数是由原生矿物经化学风化后形成的 新矿物,其化学组成和晶体结构都有所改 变。
次生矿物
2. 土壤有机质(Soil Organic Matter)
土壤有机质是土壤形成的主要标志,土壤肥力
的表现,土壤中含碳有机物的总称,含量在土壤中
一般为5%以下。
土壤有机质主要来源于动植物残体,微生物体 及其分解和合成的有机物质。可分为非腐殖质和腐 殖质两大类。
3. 土壤水分(Water in Soil)
中,最关注Se、Pb和Al等的行为;研究内容集中于
化学物质的形态及其在土壤中的转化、降解等行为。
二、研究热点
1. 土壤中有毒有机污染物的降解与转化等环境行 为; 2. 金属存在形态及其转化过程; 3. 污染物在土壤固-液界面的相互作用; 4. 稀土元素在土壤环境中的归宿及其生态效应; 5. 土壤中温室气体的释放、吸收与传输; 6. 土壤污染的化学与生物修复。
评价、土壤质量标准和土壤环境容量研究提供科学依
据和背景数据; 开展污染土壤的化学与生物修复研究。
第一节 土壤的形成、组成和性质
一、土壤的形成
土壤的形成与发展是在五大成土因素——母质、 气候、地形、生物和时间的影响下形成的。 1983年, Hubble等从成土过程的共性出发,把 主要的成土过程归纳为: 1. 消耗过程:包括淋溶、分解和溶解等,也包括 盐基、其它可溶物质在土壤中的重新分配和新矿物的 形成;
(2)土壤胶体的离子交换吸附
离子交换:土壤胶体扩散层中的补偿离子,可以
和溶液中相同电荷的离子以离子价为依据作等价交换。
离子交换作用包括阳离子交换吸附和阴离子交换吸附。
1)土壤胶体的阳离子交换吸附(Cation
Exchange Adsorption)
土壤胶体 2Na Ca 土壤胶体-Ca 2Na
b. 土壤质地越细,阳离子交换量越高;
c. 土壤胶体中SiO2/R2O3比值越大,阳离子交换量 越大; d. 土壤pH值下降,阳离子交换量降低。 可交换性 阳离子 盐基离子(Ca2+、Mg2+、K+、 Na+和NH4+等) 致酸离子(Al3+、H+)
盐基饱和土壤:当土壤胶体上吸附的阳离子均为 盐基离子,且已达到吸附饱和时的土壤。
吞食和消化,初步降解或释放养分; 土壤微生物包括细菌、放线菌、真菌和藻类;它 们可使有机物彻底分解,释放出C、N、S、P等元素 供自身生长和植物利用。
三、土壤的物理化学性质
土壤具有肥力和净化力,其功能的体现源于它 特殊的物理化学性质:特殊的结构性和空隙性,特
别的吸附性能、酸碱性和氧化还原性。
1. 土壤的吸附性(Soil Adsorption)
水解性酸度:
用弱酸强碱盐(如NaAc)淋洗土壤,溶液中金 属离子可将土壤胶体吸附的H+、Al3+代换出来,同时 生成弱酸(HAc),再测定出该弱酸的酸度。 NaAc + H2O → HAc + Na+ + OH-
|土壤胶体|-Al3+、H+ + 4NaAc →
|土壤胶体|-4Na+ + Al(OH)3 + 4HAc

2
2

土壤胶体对阳离子的交换吸附过程是一种以等当
量关系进行的可逆反应,且一般能迅速达到平衡。该
平衡是相对的、动态的平衡。
阳离子交换量(Cation Exchange Capacity, CEC):每千克干土中所吸附的全部交换性阳离子的 总量,是表示土壤吸附性质的重要指标。 单位:厘摩尔/每千克土(cmol/kg) 测定:用Ca2+作指示剂,Ba2+作萃取剂,原子吸 收分光光度法测定。
土壤中两个最活跃的组分是土壤胶体和土壤微
生物,它们对污染物在土壤中的迁移转化有着重要 的作用。土壤胶体以其巨大的比表面和带电性,而 使土壤具有吸附性。
土壤对不同物质产生吸附性,是土壤力求使其表
面能减小,以便使分散体系稳定的结果。所以土壤的
吸附性表现为正吸附和负吸附两个方面。如:土壤对
一些有机酸和无机碱,表现为正吸附;对一些无机酸 及其盐类,表现为负吸附(解吸)。 (1)土壤胶体的性质 1)具有巨大的比表面和表面能 比表面是单位体积(或重量)物质的总表面积。 一定体积的物质被分割时,随着颗粒物的增多,比表
三、我国的研究现状
1970s’中期 调查以DDT和六六六为代表的有机氯 农药在粮、棉、油、烟草等主要作物区的污染状况, 为农药的更新换代提供科学依据; 1980s’前后 调查三氯乙醛、三氯乙酸、苯并(a)芘、 二苯醚、酞酸酚等有机物对农田的污染;
1990s’ 研究PCBs、PVCs和PAHs等难降解化合物、
2)具有带电性 土壤胶体微粒内部一般带负电荷,形成一个负离 子层(决定电位离子层),其外部由于电性吸引而形
成一个正离子层 (反离子层或扩散层),合称为双电
层。土壤胶体电荷产生的原因为:
a. 同晶臵换:硅氧片或水铝片中的配位中心离子,
被大小相近的离子所取代; b. 表面分子解离:土壤胶体上的一些基团,由于 解离出H+,而使胶核表面带负电荷;
2. 有机物质的循环:包括生物对养分的选择吸收
和积累,有机物质的分解对消耗过程的补偿,可溶性
有机物在矿物风化、元素的活化和迁移中的作用; 3. 无机物质的循环:包括矿物由物理力引起的加 成、混合和分离。 总之,成土过程是在物理风化、化学风化和生物 风化作用下进行的。
二、土壤的基本物质组成
固相(土壤矿物质、有机质和生物) 土壤组成 液相 (土壤水分和土壤溶液)
HCO3- > H2BO3- > Ac- > SCN- > SO42- > Cl- > NO3-
2. 土壤的酸碱性(Acidity-Alkalinity of Soil) (1)土壤酸度 根据土壤中H+的存在形式:
活性酸度(Active Acidity,或有效酸度) 土壤溶液中H+浓度直接反映出来的酸度,通常用 pH表示。 代换性酸度 潜性酸度(Potential Acidity) 水解性酸度 由土壤胶体吸附的可代换性H+、Al3+离子造成的。
土壤环境化学
(Soil Environmental Chemistry)
本章重点:
1. 土壤的物理化学性质;
2. 重金属在土壤-植物体系中的积累与迁 移;
3. 农药在土壤中的迁移、转化和归趋。
土壤是自然环境要素的重要组成之一,
它是处于岩石圈最外面的一层疏松的部分,具
有支持作物生长所需水、气、热和养料的能
力——肥力作用。
土壤还具有同化和代谢外界进入土壤的
物质能力——净化能力。所以,土壤又是保
护环境的重要净化剂。
全球范围的土壤环境问题 (Environmental Problem in Soil)

土壤酸化、盐碱化、土壤污染 土壤沙漠化(石漠化) 陆地植被破坏

水土流失
一、研究简史
1850s’ 英国学者Way和Lawes发现土壤中阴离 子的交换作用,开创了土壤中元素化学行为研究的 新领域; 1930s’-1940s’ 应用X射线进行黏土矿物分析; 1940s’ Schofield提出土壤矿物中同晶臵换引起 的永久负电荷和在酸性条件下质子化水合氧化物带 有正电荷;
c. 断键:硅酸盐黏土矿物在破碎时,引起晶层断
裂,使硅氧片和水铝片的断裂边角上出现电性未中和
的键。腐殖质胶体也常发生碳键断裂,从而产生剩余
负电荷; d. 胶体表面从介质中吸附离子:使得土壤胶体带 电。 3)土壤胶体的分散性和凝聚性 由于土壤胶体微粒带负电荷,胶体粒子相互排斥, 具有分散性。负电荷越多,负的电动电位越高,
(1)土壤水分存在的形式
土壤颗粒吸附的水分称吸着水,几乎不移动,不 被植物吸收。 外层的膜状水称内聚水或毛细管水,为植物生长 的主要水源。 (2)土壤水分的意义
土壤水分既是植物营养物的来源,也是污染物向
其它圈层迁移的媒介。
4. 土壤空气(Atmosphere in Soil)
特性: (1)不连续性,存在于土粒间隙之间; (2)湿度高; (3)O2少,CO2多,有机质腐烂分解;
面也显著地增大。
胶体表面分子与内部分子所处的状态不同,受到
内外部两种不同的引力,因而具有多余的自由能即表
相关文档
最新文档