计算方法大作业(第三次)
计算方法习题及答案
![计算方法习题及答案](https://img.taocdn.com/s3/m/f8b9ee4cf02d2af90242a8956bec0975f465a4db.png)
计算方法习题及答案在学习计算方法的过程中,习题的练习和答案的掌握是非常重要的。
下面将为大家提供一些计算方法习题及答案,希望能够帮助大家更好地巩固知识。
一、整数运算习题1. 计算以下整数的和:-5 + 8 + (-3) + (-2) + 10。
答案:-5 + 8 + (-3) + (-2) + 10 = 8。
2. 计算以下整数的差:15 - (-6) - 10 + 3。
答案:15 - (-6) - 10 + 3 = 24。
3. 将 -3 × (-4) - 2 × 5 的结果化简。
答案:-3 × (-4) - 2 × 5 = 12 - 10 = 2。
二、分数运算习题1. 计算以下分数的和:1/2 + 2/3 + 3/4 + 4/5。
答案:1/2 + 2/3 + 3/4 + 4/5 = 47/20。
2. 计算以下分数的差:2/3 - 1/4 - 5/6。
答案:2/3 - 1/4 - 5/6 = -1/12。
3. 计算以下分数的积:2/3 × 3/4 × 4/5。
答案:2/3 × 3/4 × 4/5 = 4/15。
4. 将以下分数的除法化简为整数:3/8 ÷ 1/4。
答案:3/8 ÷ 1/4 = (3/8) × (4/1) = 3/2 = 1 1/2。
三、百分数运算习题1. 计算60% × 80%的结果。
答案:60% × 80% = 0.6 × 0.8 = 0.48 = 48%。
2. 计算40%除以20%的结果。
答案:40% ÷ 20% = (40/100) ÷ (20/100) = 2。
3. 计算200中的20%是多少。
答案:200 × 20% = 200 × 0.2 = 40。
四、多项式运算习题1. 计算以下多项式的和:(3x^2 + 4x + 5) + (2x^2 + x + 3)。
实用计算方法习题3解答
![实用计算方法习题3解答](https://img.taocdn.com/s3/m/1eeeb97dae1ffc4ffe4733687e21af45b307febc.png)
实⽤计算⽅法习题3解答习题3已知函数表如表1试⽤两点和三点公式计算 x i 处的⼀阶、⼆阶导数。
解:⼀阶导数的等距两点公式:⼀阶导数的等距三点公式:⼆阶导数的等距三点公式:[]101222(4)1()()2()() ()12h f''x f x f x f x f h ξ=+--计算结果如下表:依据的计算结果,利⽤插值法构造f (x )的导函数f ′(x)。
构造4次插值多项式作为f ′(x)的近似。
设⽣产某产品的成本函数c(x)的数据如表2,求边际成本函数143)(2+-='x x x C ,从节约成本的⾓度考虑,选择使平均成本较低的产量x 。
表2()()0101101()()()1()()()f'x f x f x h f'x f x f x h ≈-≈-001210220121()3()4()() 21()()() 21()()4()3()2f'x f x f x f x h f'x f x f x h f'x f x f x f x h ≈-+-≈-+≈-+解:提⽰:构造过点(x i ,c i )(i=0,1,2,3)的插值多项式p 3(x)作为c(x)的近似;⽤p 3(x)的导数近似代替143)(2+-='x x x C 。
由于143)(2+-='x x x C < c(x)/x 时,提⾼产量可降低成本,所以应选使143)(2+-='x x x C =c(x)/x 的产量x 。
设某产品的总成本C (万元)与产量q (万件)之间的函数关系式(即总成本函数C=C(q))数据如表3,求⽣产⽔平为q=10(万件)时的平均成本和边际成本,并从降低成本⾓度看,继续提⾼产量是否合适解:提⽰:构造过点(x i ,c i )(i=0,1,2,3)的插值多项式p 3(x)作为c(x)的近似;⽤p 3(x)的导数近似代替)('q c 。
计算方法大作业1 克服Runge现象
![计算方法大作业1 克服Runge现象](https://img.taocdn.com/s3/m/45eb03f2551810a6f52486f8.png)
x3
x2
x
1
S1 ( x)
-0.34685
0.2086
0.073964
0.038462
S2 (x)
S (xi 0 ) S x(i 0 )
S
'
(xi
0) S
xi' (
0 )i
S
'
'
x(i
0)S
xi' ' (
0)
1 ,n2, . . . , 1
(1)
这里共有了 3n-3 个条件,再加上条件(2)中的 n+1 个插值条件,共有 4n-2 个条件,
因此还需要 2 个方程才能确定 S (x) .通常可在区间[a, b]的端点 a x0,b xn 上各加一个边
dn1
1
2
Mn
dn
(6)
2 1
2
2
2
1 M1 d1
M2
d2
n 1
2
n
1
M
n
1
dn1
n
n 2 M n dn
由式(1)内点拼接条件,可得
i M i1 2M i i M i1 d j i 1, 2,..., n 1
(3) (4)
其中
i
hi 1 hi1
, hi
i
hi hi 1
计算方法大作业作业((北京科技大学研究生结课考试)
![计算方法大作业作业((北京科技大学研究生结课考试)](https://img.taocdn.com/s3/m/116aeae2172ded630b1cb6b2.png)
《计算方法》平时作业(2010-2011学年第一学期)学 院:_________________________ 专 业:_________________________ 姓 名:_________________________ 学 号:_________________________ 联 系 方 式:_________________________机研111班机械工程学院作业(考试前交, 给出证明或计算过程、计算程序及计算结果) 1. 对向量()12Tn x x x x = 定义1211,max ,nk k k nk x x xx x ∞≤≤====∑设A 是n n ⨯矩阵,规定1111max x A Ax ==,1max x A Ax ∞∞∞==,2221max x A Ax ==证明111112max (),max (),.n nkj jk j nj nk k T A a A a A A A λ∞≤≤≤≤=====∑∑列范数行范数是最大特征值证明:1) 证明111||||max||nijj n i A a≤≤==∑1111111111||||max ||max ||||max ||||||max ||nnn nij iiji ij ij j nj nj nj ni i i i AX a x ax a x a ≤≤≤≤≤≤≤≤=====≤≤=∑∑∑∑所以 111||||111||||max ||||max||nijx j ni A Ax a=≤≤==≤∑设 1111max||||,1,0,1,0,||||1,nnijip i ip i ip j ni i aa x a x a x ≤≤====≥=-<=∑∑取若取若则11||n nip i ip i i a x a ===∑∑且。
因此,1111111||||max ||||||max ||n nn nij i ip iip ij j nj ni i i i Ax a x ax a a ≤≤≤≤=====≥==∑∑∑∑即 111||||111||||max ||||max||nijx j ni A Ax a=≤≤==≥∑ 则 111||||m a x ||nij j ni A a ≤≤==∑2)证明11||||max||niji n j A a∞≤≤==∑11111111||||m a x ||m a x ||||m a x ||||||m a x||nnnni j j i j j i j i j i ni ni ni nj j j j A X a x a x a x a ∞∞≤≤≤≤≤≤≤≤=====≤≤=∑∑∑∑ 所以 ||||111||||m a x ||||m a x ||nij x i n j A Ax a ∞∞∞=≤≤==≤∑设 111max||||,1,0,1,0,||||1,nnijpj j pj j pj i nj j aa x a x a x ∞≤≤====≥=-<=∑∑取若取若则11||nn pj j pj j j a a ===∑∑且。
北航数值分析报告大作业第三题(fortran)
![北航数值分析报告大作业第三题(fortran)](https://img.taocdn.com/s3/m/23fa42d985254b35eefdc8d376eeaeaad1f316ad.png)
北航数值分析报告大作业第三题(fortran)“数值分析“计算实习大作业第三题——SY1415215孔维鹏一、计算说明1、将x i=0.08i,y j=0.5+0.05j分别代入方程组(A.3)得到关于t,u,v,w的的方程组,调用离散牛顿迭代子函数求出与x i,y j对应的t i,u j。
2、调用分片二次代数插值子函数在点(t i,u j)处插值得到z(x i,y j)=f(x i,y j),得到数表(x i,y j,f(x i,y j))。
3、对于k=1,2,3,4?,分别调用最小二乘拟合子函数计算系数矩阵c rs 及误差σ,直到满足精度,即求得最小的k值及系数矩阵c rs。
4、将x i?=0.1i,y j?=0.5+0.2j分别代入方程组(A.3)得到关于t?,u?,v?,w?的的方程组,调用离散牛顿迭代子函数求出与x i?,y j?对应的t i?,u j?,调用分片二次代数插值子函数在点(t i?,u j?)处插值得到z?(x i?,y j?)=f(x i?,y j?);调用步骤3中求得的系数矩阵c rs求得p(x i?,y j?),打印数表(x i?,y j?,f(x i?,y j?),p(x i?,y j?))。
二、源程序(FORTRAN)PROGRAM SY1415215DIMENSIONX(11),Y(21),T(6),U(6),Z(6,6),UX(11,21),TY(11,21),FXY(11,21), C(6,6) DIMENSIONX1(8),Y1(5),FXY1(8,5),PXY1(8,5),UX1(8,5),TY1(8,5)REAL(8) X,Y,T,U,Z,FXY,UX,TY,C,E,X1,Y1,FXY1,PXY1,UX1,TY1OPEN (1,FILE='第三题计算结果.TXT')DO I=1,11X(I)=0.08*(I-1)ENDDODO I=1,21Y(I)=0.5+0.05*(I-1)ENDDO!*****求解非线性方程组,得到z=f(t,u)的函数*******DO I=1,11DO J=1,21CALL DISNEWTON_NONLINEAR(X(I),Y(J),UX(I,J),TY(I,J)) ENDDO ENDDO!*************分片二次插值得到z=f(x,y)***********DO I=1,11DO J=1,21CALL INTERPOLATION(UX(I,J),TY(I,J),FXY(I,J))ENDDO ENDDOWRITE (1,"('数表(x,y,f(x,y)):')")WRITE (1,"(3X,'X',7X,'Y',10X,'F(X,Y)')")DO I=1,11DO J=1,21WRITE(1,'(1X,F5.2,2X,F5.3,2X,E20.13)') X(I),Y(J),FXY(I,J) ENDDOWRITE (1,"('')")ENDDO!***********最小二乘拟合得到P(x,y)**************N=11M=21WRITE (1,'(" ","K和σ分别为:")')DO K=1,20CALL LSFITTING(X,Y,FXY,C,N,M,K,K,E) WRITE (1,'(I3,2X,E20.13)') K-1,EIF(ETA).OR.(A(L,K)==TA)) THENTA=A(L,K)TL=LDO J=K,NT(K,J)=A(K,J)A(K,J)=A(TL,J)A(TL,J)=T(K,J)ENDDOTB(K)=B(K)B(K)=B(TL)B(TL)=TB(K)ENDIF ENDDODO I=K+1,NM(I,K)=A(I,K)/A(K,K)A(I,K)=0DO J=K+1,NA(I,J)=A(I,J)-M(I,K)*A(K,J) ENDDOB(I)=B(I)-M(I,K)*B(K)ENDDOENDDO!回代过程X(N)=B(N)/A(N,N)DO K=N-1,1,-1S=0.0DO J=K+1,NS=S+A(K,J)*X(J)ENDDOX(K)=(B(K)-S)/A(K,K)ENDDORETURNEND!***********求向量的无穷数************ SUBROUTINE NORM(X,N,A) DIMENSION X(N)REAL(8) X,AA=ABS(X(1))DO I=2,NIF(ABS(X(I))>ABS(X(I-1))) THENA=ABS(X(I)) ENDIFENDDORETURNEND!**************分片二次代数插值************** SUBROUTINE INTERPOLATION(U,V,W) PARAMETER (N=6,M=6)DIMENSION X(N),Y(M),Z(M,N),LK(3),LR(3)REAL(8) X,Y,Z,H,TREAL(8) U,V,W,LK,LR !U,V分别为插值点处的坐标,W为插值结果INTEGER R!**********************数据赋值********************** DATA Y/0.0,0.2,0.4,0.6,0.8,1.0/DATA X/0.0,0.4,0.8,1.2,1.6,2.0/DATA Z/-0.5,-0.42,-0.18,0.22,0.78,1.5,&&-0.34,-0.5,-0.5,-0.34,-0.02,0.46,&&0.14,-0.26,-0.5,-0.58,-0.5,-0.26,&&0.94,0.3,-0.18,-0.5,-0.66,-0.66,&&2.06,1.18,0.46,-0.1,-0.5,-0.74,&&3.5,2.38,1.42,0.62,-0.02,-0.5/H=0.4T=0.2!******************计算K,R************************* IF(UX(N-1)-H/2) THENK=N-1ELSEDO I=3,N-2IF((U>X(I)-H/2).AND.(UY(M-1)-T/2) THENR=M-1 ELSEDO J=3,M-2IF((V>Y(J)-T/2).AND.(VN) P=N IF(P>20) P=20IF(Q>M) Q=MIF(Q>20) Q=20XX=0YY=0D1=NAPX(1)=0.0DO I=1,NAPX(1)=APX(1)+X(I)ENDDOAPX(1)=APX(1)/D1DO J=1,MV(1,J)=0.0DO I=1,NV(1,J)=V(1,J)+Z(I,J)ENDDOV(1,J)=V(1,J)/D1ENDDOIF(P>1) THEND2=0.0APX(2)=0.0DO I=1,NG=X(I)-APX(1)D2=D2+G*GAPX(2)=APX(2)+(X(I)-XX)*G*G ENDDO APX(2)=APX(2)/D2BX(2)=D2/D1DO J=1,MV(2,J)=0.0DO I=1,NG=X(I)-APX(1)V(2,J)=V(2,J)+Z(I,J)*G ENDDOV(2,J)=V(2,J)/D2ENDDOD1=D2ENDIFDO K=3,PD2=0.0APX(K)=0.0DO J=1,MV(K,J)=0.0ENDDODO I=1,NG1=1.0G2=X(I)-APX(1)DO J=3,KG=(X(I)-APX(J-1))*G2-BX(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPX(K)=APX(K)+X(I)*G*GDO J=1,M V(K,J)=V(K,J)+Z(I,J)*G ENDDOENDDODO J=1,MV(K,J)=V(K,J)/D2ENDDOAPX(K)=APX(K)/D2BX(K)=D2/D1D1=D2ENDDOD1=MAPY(1)=0.0DO I=1,MAPY(1)=APY(1)+Y(I)ENDDOAPY(1)=APY(1)/D1DO J=1,PU(J,1)=0.0DO I=1,MU(J,1)=U(J,1)+V(J,I) ENDDO U(J,1)=U(J,1)/D1ENDDOIF(Q>1)THEND2=0.0APY(2)=0.0DO I=1,MG=Y(I)-APY(1)D2=D2+G*G APY(2)=APY(2)+(Y(I))*G*G ENDDO APY(2)=APY(2)/D2BY(2)=D2/D1DO J=1,PU(J,2)=0.0DO I=1,MG=Y(I)-APY(1)U(J,2)=U(J,2)+V(J,I)*GENDDOU(J,2)=U(J,2)/D2ENDDOD1=D2ENDIFDO K=3,QD2=0.0APY(K)=0.0DO J=1,PU(J,K)=0.0ENDDODO I=1,MG1=1.0G2=Y(I)-APY(1)DO J=3,KG=(Y(I)-APY(J-1))*G2-BY(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPY(K)=APY(K)+Y(I)*G*G DO J=1,PU(J,K)=U(J,K)+V(J,I)*G ENDDOENDDODO J=1,PU(J,K)=U(J,K)/D2ENDDOAPY(K)=APY(K)/D2BY(K)=D2/D1D1=D2ENDDOV(1,1)=1.0V(2,1)=-APY(1)V(2,2)=1.0DO I=1,PDO J=1,QA(I,J)=0.0ENDDOENDDODO I=3,QV(I,I)=V(I-1,I-1)V(I,I-1)=-APY(I-1)*V(I-1,I-1)+V(I-1,I-2)IF(I>=4) THENDO K=I-2,2,-1V(I,K)=-APY(I-1)*V(I-1,K)+V(I-1,K-1)-BY(I-1)*V(I-2,K) ENDDO ENDIFV(I,1)=-APY(I-1)*V(I-1,1)-BY(I-1)*V(I-2,1)ENDDO DO I=1,PIF(I==1) THENT(1)=1.0T1(1)=1.0ELSEIF(I==2) THENT(1)=-APX(1)T(2)=1.0T2(1)=T(1)T2(2)=T(2)ELSET(I)=T2(I-1)T(I-1)=-APX(I-1)*T2(I-1)+T2(I-2) IF(I>=4) THENDO K=I-2,2,-1T(K)=-APX(I-1)*T2(K)+T2(K-1)-BX(I-1)*T1(K) ENDDOENDIFT(1)=-APX(I-1)*T2(1)-BX(I-1)*T1(1)T2(I)=T(I)DO K=I-1,1,-1T1(K)=T2(K)T2(K)=T(K)ENDDOENDIFDO J=1,QDO K=I,1,-1DO L=J,1,-1A(K,L)=A(K,L)+U(I,J)*T(K)*V(J,L) ENDDOENDDOENDDOENDDODT1=0.0DO I=1,NX1=X(I)DO J=1,MY1=Y(J)X2=1.0DD=0.0DO K=1,PG=A(K,Q)DO KK=Q-1,1,-1G=G*Y1+A(K,KK)ENDDOG=G*X2DD=DD+GX2=X2*X1ENDDODT=DD-Z(I,J)DT1=DT1+DT*DTENDDOENDDORETURNEND三、计算结果数表(x,y,f(x,y)): X Y UX TY F(X,Y) 0.00 0.500 1.345 0.243 0.17E+000.00 0.550 1.322 0.269 0.66E+000.00 0.600 1.299 0.295 0.35E+000.00 0.650 1.277 0.322 0.94E+000.00 0.700 1.255 0.350 0.30E-020.00 0.750 1.235 0.377 -0.87E-010.00 0.800 1.215 0.406 -0.58E+000.00 0.850 1.196 0.434 -0.72E+000.00 0.900 1.177 0.463 -0.54E+000.00 0.950 1.159 0.492 -0.86E+000.00 1.050 1.125 0.550 -0.74E+00 0.00 1.100 1.109 0.580 -0.06E+00 0.00 1.150 1.093 0.609 -0.00E+00 0.00 1.200 1.0790.639 -0.18E+00 0.00 1.250 1.064 0.669 -0.52E+00 0.00 1.3001.050 0.699 -0.19E+00 0.00 1.350 1.037 0.729 -0.48E+00 0.001.400 1.024 0.759 -0.68E+00 0.00 1.450 1.011 0.790 -0.52E+00 0.00 1.500 1.000 0.820 -0.29E+000.08 0.500 1.415 0.228 0.67E+00 0.08 0.550 1.391 0.253 0.08E+00 0.08 0.600 1.368 0.279 0.02E+00 0.08 0.650 1.346 0.306 0.47E+00 0.08 0.700 1.325 0.333 0.57E+00 0.08 0.750 1.304 0.360 0.48E-01 0.08 0.800 1.284 0.388 -0.73E-01 0.08 0.850 1.265 0.416 -0.16E+00 0.08 0.900 1.246 0.444 -0.29E+00 0.08 0.950 1.229 0.473 -0.36E+00 0.08 1.000 1.211 0.502 -0.08E+00 0.08 1.050 1.194 0.531 -0.29E+00 0.08 1.100 1.178 0.560 -0.78E+00 0.08 1.150 1.163 0.589 -0.93E+00 0.08 1.200 1.148 0.619 -0.44E+00 0.08 1.250 1.133 0.649 -0.92E+00 0.08 1.300 1.119 0.679 -0.71E+000.08 1.400 1.093 0.739 -0.37E+00 0.08 1.450 1.080 0.769-0.83E+00 0.08 1.500 1.068 0.799 -0.92E+000.16 0.500 1.483 0.214 0.31E+00 0.16 0.550 1.460 0.239 0.64E+00 0.16 0.600 1.437 0.264 0.91E+00 0.16 0.650 1.414 0.290 0.06E+00 0.16 0.700 1.393 0.316 0.70E+00 0.16 0.750 1.372 0.343 0.59E+00 0.16 0.800 1.352 0.370 0.12E+00 0.16 0.850 1.333 0.398 0.77E-02 0.16 0.900 1.315 0.426 -0.83E-01 0.16 0.950 1.297 0.454-0.58E+00 0.16 1.000 1.279 0.483 -0.20E+00 0.16 1.050 1.2620.512 -0.11E+00 0.16 1.100 1.246 0.541 -0.74E+00 0.16 1.1501.231 0.570 -0.09E+00 0.16 1.200 1.216 0.600 -0.59E+00 0.16 1.250 1.201 0.629 -0.66E+00 0.16 1.300 1.187 0.659 -0.71E+00 0.16 1.350 1.174 0.689 -0.32E+00 0.16 1.400 1.161 0.718-0.56E+00 0.16 1.450 1.148 0.748 -0.31E+00 0.16 1.500 1.136 0.778 -0.75E+000.24 0.500 1.551 0.201 0.66E+01 0.24 0.550 1.527 0.2250.03E+000.24 0.650 1.482 0.275 0.64E+00 0.24 0.700 1.460 0.3010.47E+00 0.24 0.750 1.439 0.327 0.34E+00 0.24 0.800 1.419 0.354 0.24E+00 0.24 0.850 1.400 0.381 0.69E+00 0.24 0.900 1.381 0.409 0.04E-01 0.24 0.950 1.363 0.437 -0.42E-01 0.24 1.000 1.346 0.465 -0.06E+00 0.24 1.050 1.329 0.494 -0.59E+00 0.24 1.100 1.313 0.523 -0.83E+00 0.24 1.150 1.297 0.552 -0.15E+00 0.24 1.200 1.282 0.581 -0.19E+00 0.24 1.250 1.267 0.610 -0.84E+00 0.24 1.300 1.253 0.640 -0.66E+00 0.24 1.350 1.240 0.669 -0.30E+00 0.24 1.400 1.227 0.699 -0.86E+00 0.24 1.450 1.214 0.729 -0.84E+00 0.24 1.500 1.202 0.759 -0.77E+000.32 0.500 1.617 0.188 0.28E+01 0.32 0.550 1.593 0.212 0.49E+01 0.32 0.600 1.570 0.236 0.68E+00 0.32 0.650 1.547 0.261 0.75E+00 0.32 0.700 1.526 0.286 0.60E+00 0.32 0.750 1.505 0.312 0.77E+00 0.32 0.800 1.485 0.339 0.05E+00 0.32 0.850 1.466 0.365 0.99E+00 0.32 0.900 1.447 0.393 0.27E+00 0.32 1.000 1.411 0.448 -0.01E-02 0.32 1.050 1.395 0.477-0.41E-01 0.32 1.100 1.378 0.505 -0.18E+00 0.32 1.150 1.3630.534 -0.25E+00 0.32 1.200 1.347 0.563 -0.29E+00 0.32 1.2501.333 0.592 -0.90E+00 0.32 1.300 1.319 0.621 -0.00E+00 0.32 1.350 1.305 0.650 -0.40E+00 0.32 1.400 1.292 0.680 -0.54E+00 0.32 1.450 1.279 0.710 -0.79E+00 0.32 1.500 1.267 0.739-0.91E+000.40 0.500 1.681 0.177 0.91E+01 0.40 0.550 1.658 0.1990.00E+01 0.40 0.600 1.634 0.223 0.83E+01 0.40 0.650 1.612 0.247 0.02E+01 0.40 0.700 1.591 0.272 0.94E+00 0.40 0.750 1.570 0.298 0.49E+00 0.40 0.800 1.550 0.324 0.94E+00 0.40 0.850 1.530 0.350 0.40E+00 0.40 0.900 1.512 0.377 0.33E+00 0.40 0.950 1.493 0.405 0.99E+00 0.40 1.000 1.476 0.432 0.68E+00 0.40 1.050 1.459 0.460 0.08E-01 0.40 1.100 1.443 0.488 -0.84E-01 0.40 1.150 1.427 0.517-0.98E+00 0.40 1.200 1.412 0.545 -0.27E+00 0.40 1.250 1.397 0.574 -0.06E+000.40 1.350 1.369 0.632 -0.66E+00 0.40 1.400 1.356 0.662-0.37E+00 0.40 1.450 1.343 0.691 -0.43E+00 0.40 1.500 1.331 0.721 -0.12E+000.48 0.500 1.745 0.166 0.69E+01 0.48 0.550 1.721 0.188 0.02E+01 0.48 0.600 1.698 0.211 0.74E+01 0.48 0.650 1.676 0.235 0.40E+01 0.48 0.700 1.654 0.259 0.23E+01 0.48 0.750 1.634 0.284 0.56E+00 0.48 0.800 1.613 0.310 0.28E+00 0.48 0.850 1.594 0.336 0.49E+00 0.48 0.900 1.575 0.363 0.31E+00 0.48 0.950 1.557 0.390 0.66E+00 0.48 1.000 1.539 0.417 0.30E+00 0.48 1.050 1.522 0.444 0.34E+00 0.48 1.100 1.506 0.472 0.07E-01 0.48 1.150 1.490 0.500 -0.62E-01 0.48 1.200 1.475 0.529 -0.45E+00 0.48 1.250 1.460 0.557 -0.86E+00 0.48 1.300 1.446 0.586 -0.39E+00 0.48 1.350 1.432 0.615 -0.22E+00 0.48 1.400 1.419 0.644 -0.67E+00 0.48 1.450 1.406 0.674-0.55E+00 0.48 1.500 1.394 0.703 -0.14E+000.56 0.500 1.808 0.156 0.48E+010.56 0.600 1.761 0.200 0.10E+01 0.56 0.650 1.739 0.2230.68E+01 0.56 0.700 1.717 0.247 0.94E+01 0.56 0.750 1.696 0.272 0.33E+01 0.56 0.800 1.676 0.297 0.11E+00 0.56 0.850 1.657 0.323 0.63E+00 0.56 0.900 1.638 0.349 0.97E+00 0.56 0.950 1.620 0.375 0.52E+00 0.56 1.000 1.602 0.402 0.56E+00 0.56 1.050 1.585 0.429 0.47E+00 0.56 1.100 1.568 0.457 0.20E+00 0.56 1.150 1.552 0.485 0.13E+00 0.56 1.200 1.537 0.513 0.09E-01 0.56 1.250 1.522 0.541 -0.47E-01 0.56 1.300 1.508 0.570 -0.99E+00 0.56 1.350 1.4940.599 -0.82E+00 0.56 1.400 1.481 0.627 -0.26E+00 0.56 1.4501.468 0.657 -0.71E+00 0.56 1.500 1.455 0.686 -0.98E+000.64 0.500 1.870 0.147 0.74E+01 0.64 0.550 1.846 0.1680.10E+01 0.64 0.600 1.823 0.190 0.54E+01 0.64 0.650 1.801 0.213 0.42E+01 0.64 0.700 1.779 0.236 0.56E+01 0.64 0.750 1.758 0.260 0.03E+01 0.64 0.800 1.738 0.285 0.42E+01 0.64 0.850 1.718 0.310 0.41E+010.64 0.950 1.681 0.362 0.36E+00 0.64 1.000 1.664 0.388 0.18E+00 0.64 1.050 1.646 0.415 0.28E+00 0.64 1.100 1.630 0.443 0.07E+00 0.64 1.150 1.614 0.470 0.66E+00 0.64 1.200 1.598 0.498 0.09E+00 0.64 1.250 1.584 0.526 0.50E-01 0.64 1.300 1.569 0.554 -0.88E-01 0.64 1.350 1.555 0.583 -0.76E+00 0.64 1.400 1.542 0.611 -0.66E+00 0.64 1.450 1.529 0.640 -0.33E+00 0.64 1.500 1.516 0.669 -0.56E+00 0.72 0.500 1.931 0.139 0.94E+01 0.72 0.550 1.907 0.159 0.84E+01 0.72 0.600 1.884 0.181 0.36E+01 0.72 0.650 1.862 0.203 0.40E+01 0.72 0.700 1.840 0.226 0.47E+01 0.72 0.750 1.819 0.249 0.56E+01 0.72 0.800 1.799 0.273 0.19E+01 0.72 0.850 1.779 0.298 0.37E+01 0.72 0.900 1.760 0.323 0.86E+01 0.72 0.950 1.742 0.349 0.76E+00 0.72 1.000 1.724 0.375 0.24E+00 0.72 1.050 1.707 0.402 0.55E+00 0.72 1.100 1.691 0.429 0.97E+00 0.72 1.150 1.675 0.456 0.27E+00 0.72 1.200 1.659 0.484 0.31E+000.72 1.300 1.630 0.539 0.49E+00 0.72 1.350 1.616 0.5680.72E-02 0.72 1.400 1.602 0.596 -0.69E-01 0.72 1.450 1.589 0.625 -0.67E+00 0.72 1.500 1.576 0.653 -0.20E+000.80 0.500 1.992 0.131 0.31E+01 0.80 0.550 1.968 0.1510.44E+01 0.80 0.600 1.945 0.172 0.41E+01 0.80 0.650 1.922 0.193 0.45E+01 0.80 0.700 1.900 0.216 0.00E+01 0.80 0.750 1.879 0.239 0.10E+01 0.80 0.800 1.859 0.263 0.16E+01 0.80 0.850 1.840 0.287 0.52E+01 0.80 0.900 1.821 0.312 0.02E+01 0.80 0.950 1.802 0.337 0.38E+01 0.80 1.000 1.784 0.363 0.89E+01 0.80 1.050 1.767 0.389 0.28E+00 0.80 1.100 1.751 0.416 0.09E+00 0.80 1.150 1.734 0.4430.23E+00 0.80 1.200 1.719 0.470 0.93E+00 0.80 1.250 1.704 0.498 0.15E+00 0.80 1.300 1.689 0.525 0.86E+00 0.80 1.350 1.675 0.553 0.64E+00 0.80 1.400 1.662 0.582 0.74E-01 0.80 1.450 1.649 0.610 -0.37E-01 0.80 1.500 1.636 0.638 -0.81E+00K和σ分别为:0 0.93E+031 0.61E+012 0.92E-023 0.53E-034 0.16E-055 0.77E-07系数矩阵Crs(按行)为:0.00E+01 -0.83E+01 0.56E+00 0.97E+00 -0.03E+00 0.70E-010.91E+01 -0.99E+00 -0.96E+01 0.17E+01 -0.66E+00 0.10E-01 0.77E+00 0.42E+01 -0.10E+00 -0.81E+00 0.81E+00 -0.62E-01-0.25E+00 -0.21E+00 0.97E+00 -0.18E+00 0.49E+00 -0.63E-010.34E+00 -0.56E+00 0.69E-01 0.51E+00 -0.77E-01 0.27E-01-0.94E-01 0.94E+00 -0.58E+00 0.69E-01 -0.50E-01 0.53E-02 数表(x,y,f(x,y),p(x,y)):X Y F(X,Y) P(X,Y)0.100 0.700 0.58E+00 0.05E+000.100 1.100 -0.66E+00 -0.26E+00 0.100 1.300 -0.68E+00-0.31E+00 0.100 1.500 -0.52E+00 -0.49E+000.200 0.700 0.54E+00 0.19E+00 0.200 0.900 -0.63E-01 -0.65E-01 0.200 1.100 -0.90E+00 -0.90E+00 0.200 1.300 -0.84E+00 -0.90E+00 0.200 1.500 -0.03E+00 -0.04E+000.300 0.700 0.82E+00 0.09E+00 0.300 0.900 0.48E+00 0.11E+00 0.300 1.100 -0.63E+00 -0.88E+00 0.300 1.300 -0.72E+00 -0.96E+00 0.300 1.500 -0.34E+00 -0.84E+000.400 0.700 0.79E+00 0.89E+00 0.400 0.900 0.56E+00 0.63E+00 0.400 1.100 -0.83E-01 -0.04E-01 0.400 1.300 -0.72E+00 -0.71E+00 0.400 1.500 -0.85E+00 -0.07E+000.500 0.700 0.56E+01 0.92E+01 0.500 0.900 0.51E+00 0.23E+00 0.500 1.100 0.59E+00 0.27E+00 0.500 1.300 -0.53E+00 -0.11E+00 0.500 1.500 -0.67E+00 -0.33E+000.600 0.900 0.14E+00 0.75E+00 0.600 1.100 0.19E+00 0.32E+00 0.600 1.300 -0.70E-01 -0.82E-01 0.600 1.500 -0.08E+00 -0.75E+00 0.700 0.700 0.89E+01 0.29E+01 0.700 0.900 0.91E+01 0.11E+010.700 1.100 0.60E+00 0.97E+00 0.700 1.300 0.22E-01 0.06E-01 0.7001.500 -0.53E+00 -0.80E+00 0.800 0.700 0.09E+01 0.06E+01 0.800 0.900 0.32E+01 0.50E+01 0.800 1.100 0.03E+00 0.79E+00 0.800 1.300 0.25E+00 0.50E+00 0.800 1.500 -0.14E+00 -0.28E+00。
BUAA数值分析大作业三
![BUAA数值分析大作业三](https://img.taocdn.com/s3/m/b948d0424afe04a1b071deb7.png)
北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。
将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。
再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。
2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。
UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。
最新国家开放大学电大本科《计算方法》期末试题标准题库及答案(试卷号:1084)
![最新国家开放大学电大本科《计算方法》期末试题标准题库及答案(试卷号:1084)](https://img.taocdn.com/s3/m/db90afab2f60ddccdb38a04f.png)
最新国家开放大学电大本科《计算方法》期末试题标准题库及答案(试卷号:1084)
考试说明:本人汇总了历年来该科的试题及答案,形成了一个完整的标准考试题库,对考生的复习和考试起着非常重要的作用,会给您节省大量的时间。
内容包含:单选题、填空题、计算题、证明题。
做考题时,利用本文档中的查找工具(Ctrl+F),把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核、机考及教学考一体化试题答案,敬请查看。
《计算方法》题库一
试题答案及评分标准(仅供参考)
《计算方法》题库二
试题答案及评分标准(仅供参考)
《计算方法》题库三
试题答案及评分标准(仅供参考)
《计算方法》题库四
试题答案及评分标准(仅供参考)
《计算方法》题库五一、单项选择题(每小题5分,共15分)
二、填空题(每小题5分,共15分)
三、计算题(每小题15分,共60分)
四、证明题(本题10分)
试题答案及评分标准
(仅供参考)
《计算方法》题库六
试题答案及评分标准(仅供参考)。
数值计算方法大作业
![数值计算方法大作业](https://img.taocdn.com/s3/m/4d134a14ce84b9d528ea81c758f5f61fb736283a.png)
数值计算方法大作业
嘿,咱今儿来聊聊数值计算方法大作业呀!这可真是个有趣又有点
头疼的事儿呢!
你想想看,数值计算方法就像是一把神奇的钥匙,能打开好多好多
知识的大门。
做数值计算方法大作业的时候,那感觉就好像在探索一
个神秘的宝藏岛,每一步都充满了未知和挑战。
比如说吧,遇到一个复杂的公式,就像是在森林里碰到了一团乱麻,得耐心地一点点解开。
有时候可能会觉得,哎呀,这可咋整呀,咋这
么难呢!但别急呀,咱得静下心来,仔细琢磨。
这不就跟咱平时解一
道特别难的谜题一样嘛,刚开始觉得毫无头绪,可一旦找到那个关键点,嘿,豁然开朗啦!
在做这个大作业的过程中,可千万不能马虎哟!每一个数据都得像
宝贝一样对待,要是不小心弄错了一个,那可能整个结果都跑偏啦!
这就好比盖房子,一块砖没放好,那房子说不定就歪了呀。
而且呀,团队合作也很重要呢!大家一起讨论,一起想办法,那可
比一个人闷头苦干强多啦。
就好像一群小伙伴一起去冒险,每个人都
能发挥自己的长处,互相帮助,多有意思呀!
还有啊,别忘了多检查几遍自己的成果。
这就跟出门前照镜子一样,得看看自己有没有哪里不妥当。
可别嫌麻烦,这可是关乎最后成果好
不好的关键一步呢!
数值计算方法大作业,它既是挑战,也是机会呀!通过完成它,我们能学到好多好多实用的知识和技能,以后遇到类似的问题,咱就可以轻松应对啦,这多棒呀!所以呀,别害怕它,勇敢地去面对,去探索,去享受这个过程吧!咱肯定能把它完成得漂漂亮亮的,让别人都竖起大拇指,你说是不是呢?。
计算方法大作业
![计算方法大作业](https://img.taocdn.com/s3/m/6b4fc55fa2161479171128bb.png)
计算方法大作业
1、试探法证明方程0128423=++-x x x 有三个实根,并确定三个根所在区间(区间长度不超过1).
2、方程0123=--x x 在5.10=x 附近有根, 将方程作三种改写,可得三种迭代式: (1) 21211,11k
k x x x x +=+=+; (2) 321231,1k k x x x x +=+=+; (3) 11,1112-=-=+x x x x k .
判断各迭代式在5.10=x 附近的收敛性;选一种收敛最快的迭代式,计算5.10=x 附近的根,准确的4位小数.
3、用牛顿法于方程0n x a -=和1/0n a x -=
的迭代公式。
已知0 1.3x ≈=,问用这种迭代公式迭代一、二次能得几位小数准确的近似值(已
1.31607401=⋅⋅⋅)?
4、用雅可比迭代法与赛德尔迭代法解方程组 ⎪⎩⎪⎨⎧=-+=+-=++-7416518321
321321x x x x x x x x x ,取初值T x )0,0,0()0(=,准确到两位小数。
5、设有方程组
⎪⎩⎪⎨⎧=++=++=++.251084,118104,134410321
321321x x x x x x x x x ,写出雅可比迭代、赛德尔、2.1=ω的SOR 迭代算式。
三种迭代是否收敛?为什么?
6、设有方程组1231231231.25 3.6912.370.58,10.019.050.12 1.43,1.22 4.33 2.76 3.22.x x x x x x x x x --=⎧⎪-++=⎨⎪-+=⎩
写出收敛的迭代格式,说明收敛的理由。
算法设计分析第三次作业题及答案.doc
![算法设计分析第三次作业题及答案.doc](https://img.taocdn.com/s3/m/e4356f3db9f3f90f77c61b18.png)
第3次作业一、填空题(本大题共30分,共10小题,每小题3分)1.矩阵连乘问题的算法可由()设计实现。
2.算法的时间复杂度随着问题规模n的增大而 ______________ 。
3.一个30行20列的矩阵可与一个______________ 行75列的矩阵相乘。
4.Huffmann 算法是一,种:________ 。
5.下列关于算法的说法正确的是___________ .(填上正确的序号)①某算法可以无止境地运算下去②一个问题的算法步骤不能超过1万次③完成一件事情的算法有且只有一种④设计算法要本着简单方便可操作的原则6.有如下递归过程:void print(int w){int i;if(w!=0){print(w-1);for(i=l;i<=w;i++) printf ( "%3d" , w);printf ( “\n”); }}调用语句print (4)的结果是 ___________ 。
7.算法的空间复杂度是指()8.常见的指数时间限界函数:0(20、0(F)、0(n!)按从小到大排列:______________9.考虑01 背包问题:n=6, C=10, V(l:6) = (15, 59,21,30, 60, 5),W(l:6) = (l,5, 2, 3, 6, 1) o 则最大效益值为 _____________ o10.Edmonds&Karp算法相对于Ford-Fulkerson算法的优点是______________二、简答题(本大题共30分,共5小题,每小题6分)1.设[P_B6C08A32AD81B63820B61B65945E5FD3]是一个流网络,(S, T)被称为G 的一个割的条件是什么?2.为什么一般情况下,讨论的时间复杂度均是最坏情况下的时间复杂度?3.分治法的基本思想?4.有11个待安排的活动,它们具有下表所示的开始时间与结束时间,如果以贪心算法求解这些活动的最优安排(即为活动安排问题:在所给的活动集合中选出最大的相容活动子集合),得到的最大相容活动子集合为活动[P_A7ED08F73283858249090BA7F02088C5]5.描述分治法与动态规划法的的异同。
计算方法大作业(第三次)
![计算方法大作业(第三次)](https://img.taocdn.com/s3/m/811aafd3195f312b3169a509.png)
大作业3 对于常微方程数值解问题 检查各种数值算法的长期行为 观察步长对于收敛效果的影响给定方程组()()()()(0)0(0)x t ay t y t bx t x y b'=⎧⎪'=-⎪⎨=⎪⎪=⎩ 1.证明方程组的解是xOy 平面上的一个椭圆;2.利用①改进的欧拉折线法,②4阶标准龙格-库塔法,选几个不同的步长h ,计算上述方程组的轨道,看看哪种方法和步长能够保持椭圆轨道不变。
(计算的时间步要足够多――至少10000步) 1. 证明:因为'()(),x t ay t ='()(),y t bx t =- 所以''()'()(),x t ay t abx t ==- 所给方程的特征方程为2,r ab =-所以12,,r r ==是一对共轭复根,所以所求通解为12())),x t C t C t =+ 因为(0)0,x =所以2()),x t C t =同理可得:4()))y t b t C t =+ 因为'()(),x t ay t =即24'()))),x t C t ab t aC t ==+所以240C C ==,所以()),x t t =()) y t b t=所以2221 x yab b+=方程组的解是xOy平面上的一个椭圆。
2.设a=4,b=1;(1)用改进的欧拉折线法计算,程序及结果如下:>>a=4;b=1;n=10000;>> H=6*pi;>> [x,y]=eulermend(a,b,H,n);>>plot(x,y)图1 h=6*pi/10000时的椭圆轨道图像>> H=7*pi;>> [x,y]=eulermend(a,b,H,n);>> plot(x,y,'g--')图2 h=7*pi/10000时的椭圆轨道图像>> H=10*pi;>> [x,y]=eulermend(a,b,H,n);>> plot(x,y,'r--')图3 h=10*pi/10000时的椭圆轨道图像>> H=20*pi;>> [x,y]=eulermend(a,b,H,n);>> plot(x,y)图4 h=20*pi/10000时的椭圆轨道图像>> H=30*pi;>> [x,y]=eulermend(a,b,H,n);>> figure(2),plot(x,y,'r-')图5 h=30*pi/10000时的椭圆轨道图像从上述结果可知,改进的欧拉折线法对于不同步长能够保持椭圆轨道不变。
吉大19年3月课程考试《计算方法》离线作业考核要求
![吉大19年3月课程考试《计算方法》离线作业考核要求](https://img.taocdn.com/s3/m/74b5514ede80d4d8d05a4f37.png)
一、构造次数不超过三次的多项式P3(X),使满足:P 3(0)= 1;P3(1)=0;P 3′(0)=P3′(1)=0。
(10分)解:p3(x)=2x3-3x2+1.二、设f(xi )=i(i=0,1,2),构造二次式p2(x),使满足:p2(xi)=f(xi)(i=0,1,2) (10分)解:三、设节点xi=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(xi)=f(xi),i=0,1,2,3 (10分)解:四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P3(X)满足:P3(0)= P3(1)=0,P3′(0)=P3′(1)=1。
(10分)解:六、在第五题的插值条件上,另加上p 4(2)=1,试用构造满足插值条件的四次插值多项式。
(10分) 解:P 4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2)七、利用Doolittle 分解法解方程组Ax=b 即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ (10分) 解:用公式八、基于迭代原理证明22...22+++= (10分) 解:九、构造二次多项式2()x p 满足:'010222()1;()0;()1p p p x x x === (10分) 解:p 2(x )=-x 2+x+1.十、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(10分) 解:f(x)=x ³-x ²-1f'(x)=3x ²-2x则x(n+1)=x n -(x n ³-x n ²-1)/(3x n ²-2x n )所以x 0=1.3则x 1≈1.4996删除:远程教育复学科的教学和研究工作有利于总结我国远程教育的实践经验并进行理论概括和创新,开创开放与远程教育的中国模式和中国学派,为世界制远程教育的繁荣和发展作出我们的贡献;有利于借鉴世界各国远程教育的实践经验和理论研究成果,使我国远程教育学科理论研究和教学的起点高、成效快;同时,将有利于更好百地以理论指导教育决策。
计算方法考试题及其答案
![计算方法考试题及其答案](https://img.taocdn.com/s3/m/d14ed9a118e8b8f67c1cfad6195f312b3069eb42.png)
计算方法考试题及其答案题目一:1. 计算以下方程的实根个数:3x^2 - 5x + 2 = 0解答一:首先,我们需要判断方程的判别式是否大于0。
判别式 D = b^2 - 4ac,其中 a、b、c 分别为方程中各项的系数。
对于方程 3x^2 - 5x + 2 = 0,a = 3,b = -5,c = 2。
将这些值代入判别式公式得到 D = (-5)^2 - 4 * 3 * 2 = 25 - 24 = 1。
由于判别式大于0,根据二次方程解的性质可知,该方程有两个不相等的实根。
题目二:2. 求下列函数的导数:f(x) = sin(2x) + 3x^2 - 2x解答二:对于这个函数,我们需要分别求出各项的导数,然后将其相加。
f'(x) = (sin(2x))' + (3x^2)' - (2x)'对于第一项,根据链式求导法则,其导数为 cos(2x) * (2x)' =2cos(2x)。
对于第二项,使用幂函数求导法则,其导数为 3 * 2x^(2-1) = 6x。
对于第三项,一次项的导数为常数系数,即 -2。
将上述导数相加,得到 f'(x) = 2cos(2x) + 6x - 2。
题目三:3. 某公司年利润为 100 万元,假设每年增长 10%,那么经过 n 年后公司的利润是多少?解答三:假设 n 年后公司的利润为 P(万元)。
根据题意可知,公司每年的利润增长率为 10%,也即每年的利润增加量为当前利润的 10%。
因此,我们可以得到以下关系式:P = 100 + 0.1 * 100 + 0.1^2 * 100 + ... + 0.1^n * 100这是一个等比数列求和的问题,我们可以使用等比数列求和公式来解决:P = 100 * [(1 - 0.1^(n+1)) / (1 - 0.1)]简化上述公式后可得 P = 1000 * (1 - 0.1^(n+1)) / (1 - 0.1)。
2019-2020学年第一学期期末考试《计算方法》大作业答案
![2019-2020学年第一学期期末考试《计算方法》大作业答案](https://img.taocdn.com/s3/m/fb8dca866c85ec3a86c2c54d.png)
吉林大学网络教育学院2019-2020学年第一学期期末考试《计算方法》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。
一、解线性方程(每小题8分,共80分)1、用矩阵的LU分解算法求解线性方程组X1+2X2+3X3= 02X1+2X2+8X3= -4-3X1-10X2-2X3= -11答:2、用矩阵的Doolittle分解算法求解线性方程组X1+2X2+3X3= 12X1– X2+9X3= 0-3X1+ 4X2+9X3= 1答:3、用矩阵的Doolittle分解算法求解线性方程组2X1+X2+X3= 46X1+4X2+5X3=154X1+3X2+6X3= 13答:4、用高斯消去法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:5、用无回代过程消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:6、用主元素消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:7、用高斯消去法求解线性方程组1231231232344272266x x x x x x x x x -+=++=-++=答:8、利用Doolittle 分解法解方程组Ax=b ,即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 答:9、利用Doolittle 分解法解方程组Ax=b ,即解方程组123421111443306776081011112x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 答:10、用高斯消元法解方程组1237811351341231x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦答案:二、计算(每小题10分,共20分)1、已知节点x1,x2及节点处函数值f(x1),f(x2),构造线性插值多项式p1(x). 答:2、设f(xi)=i(i=0,1,2),构造二次式p2(x),使满足: p2(xi)=f(xi)(i=0,1,2)答:。
计算方法大作业——三次样条插值
![计算方法大作业——三次样条插值](https://img.taocdn.com/s3/m/63356e31af45b307e8719768.png)
计算方法上机报告
此完成所有数据的输入。继续按 Enter 键会出现提示“选择封闭方程组的边界条件: 第 一类边界条件输入 1,第二类边界条件输入 2,第三类边界条件输入 3。 ”根据已知情况 选择相应的边界条件,若为自然三次样条插值,则选 1,并将插值区间两端点的二阶导 数值设置为 0。输入完成之后按 Enter 开始求解,程序运行结束后命令窗口会显示要求 的三次样条插值函数,同时会出现该插值函数以及插值节点的图像,便于直接观察。 2.3 算例及计算结果 (1) 《数值分析》课本第 137 页的例题 4.6.1,已知函数 y=f(x)的数值如下表,求它 的自然三次样条插值函数。 xi yi -3 7 -1 11 0 26 3 56 4 29
(2) 给定函数 f ( x)
3 x 1 1 x 0 0 x3 3 x 4
1 (1 x 1) 。取等距节点,构造牛顿插值多项式 N5(x) 1 25x 2 和 N10(x)及三次样条插值函数 S10(x)。分别将三种插值多项式与 f(x)的曲线画在同一个
N10 x
22757 10 5444 8 20216 6 17147 4 3725 2 x x x x x 1 103 11 53 139 221
将牛顿插值多项式 N5(x)和 N10(x)及三次样条插值函数 S10(x)分别与 f(x)的曲线画在 同一个坐标系上进行比较,如图 12。可以看出三次样条函数与原函数符合的非常好, 对于低次的牛顿插值多项式,与原函数的大致趋势相同,而高次的牛顿插值多项式由 于龙格现象的出现,与原函数之间相差比较大。
S ( xi ) S ( xi ), ( xi ) S ( xi ), S S ( x ) S ( x ), i i i 1, 2, , n 1
2018-2019学年第二学期期末考试《计算方法》大作业参考答案
![2018-2019学年第二学期期末考试《计算方法》大作业参考答案](https://img.taocdn.com/s3/m/97f40fb276a20029bd642dd0.png)
吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。
二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。
(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大作业3 对于常微方程数值解问题 检查各种数值算法的长期行为 观察步长对于收敛效果的影响
给定方程组
()()()()
(0)0(0)x t ay t y t bx t x y b
'=⎧⎪'
=-⎪⎨
=⎪⎪=⎩ 1.证明方程组的解是xOy 平面上的一个椭圆;
2.利用①改进的欧拉折线法,②4阶标准龙格-库塔法,选几个不同的步长h ,计算上述方程组的轨道,看看哪种方法和步长能够保持椭圆轨道不变。
(计算的时间步要足够多――至少10000步) 1. 证明:
因为'()(),x t ay t ='()(),y t bx t =- 所以''()'()(),x t ay t abx t ==- 所给方程的特征方程为2,r ab =-
所以12,,r r ==是一对共轭复根,
所以所求通解为12())),x t C t C t =+ 因为(0)0,x =
所以2()),x t C t =
同理可得:4()))y t b t C t =+ 因为'()(),x t ay t =
即24'()))),x t C t ab t aC t ==+
所以240C C ==,
所以()),x t t =
()) y t b t
=
所以
22
2
1 x y
ab b
+=
方程组的解是xOy平面上的一个椭圆。
2.设a=4,b=1;
(1)用改进的欧拉折线法计算,程序及结果如下:
>>a=4;b=1;n=10000;
>> H=6*pi;
>> [x,y]=eulermend(a,b,H,n);
>>plot(x,y)
图1 h=6*pi/10000时的椭圆轨道图像
>> H=7*pi;
>> [x,y]=eulermend(a,b,H,n);
>> plot(x,y,'g--')
图2 h=7*pi/10000时的椭圆轨道图像
>> H=10*pi;
>> [x,y]=eulermend(a,b,H,n);
>> plot(x,y,'r--')
图3 h=10*pi/10000时的椭圆轨道图像
>> H=20*pi;
>> [x,y]=eulermend(a,b,H,n);
>> plot(x,y)
图4 h=20*pi/10000时的椭圆轨道图像>> H=30*pi;
>> [x,y]=eulermend(a,b,H,n);
>> figure(2),plot(x,y,'r-')
图5 h=30*pi/10000时的椭圆轨道图像
从上述结果可知,改进的欧拉折线法对于不同步长能够保持椭圆轨道不变。
以下是欧拉改进方法函数eulermend.m
function [x,y]=eulermend(a,b,H,n)
h=H/n;
x(1)=0;
y(1)=b;
for i=1:n
x1=x(i)+h*a*y(i);
y1=y(i)+h*(-b)*x(i);
x2=x(i)+h*a*y1;
y2=y(i)+h*(-b)*x1;
x(i+1)=(x1+x2)/2;
y(i+1)=(y1+y2)/2;
end
(2)用4阶标准龙格-库塔法计算,程序及结果如下:
>> a=4;b=1;
>> n=10000;
>> H=pi;
>> [x,y]=ronger4(a,b,H,n);
>> plot(x,y)
图6 h=1*pi/10000时的椭圆轨道图像>> H=2*pi;
>> [x,y]=ronger4(a,b,H,n);
>> plot(x,y,'r-')
图7 h=2*pi/10000时的椭圆轨道图像
>> H=6*pi;
>> [x,y]=ronger4(a,b,H,n);
>> plot(x,y)
图8 h=6*pi/10000时的椭圆轨道图像>> H=7*pi;
>> [x,y]=ronger4(a,b,H,n);
>> plot(x,y,'g--')
图9 h=7*pi/10000时的椭圆轨道图像
>> H=10*pi;
>> [x,y]=ronger4(a,b,H,n);
>> plot(x,y,’r-‘)
图10 h=10*pi/10000时的椭圆轨道图像
从以上结果可知,随着步长越来越大,用4阶标准龙格-库塔法计算的椭圆轨道变化也越来越大,只有当步长比较小时,如图7,图8所示中步长取得相对较小,椭圆轨道才保持不变。
以下是4阶标准龙格-库塔法程序ronger4.m:
function [x,y]=ronger4(a,b,H,n)
h=H/n;
x(1)=0;
y(1)=b;
for i=1:n
K1=a*y(i);
K2=a*(y(i)+0.5*h*K1);
K3=a*(y(i)+0.5*h*K2);
K4=a*(y(i)+h*K3);
x(i+1)=x(i)+h/6*(K1+2*K2+2*K3+K4);
R1=-b*x(i);
R2=-b*(x(i)+0.5*h*R1);
R3=-b*(x(i)+0.5*h*R2);
R4=-b*(x(i)+h*R3);
y(i+1)=y(i)+h/6*(R1+2*R2+2*R3+R4); end。