变频器原理图讲解ppt课件
合集下载
变频器介绍PPT课件
欠电压故障排除
检查电源电压、缺相和主回路电压,确保电 源稳定且符合要求。
过电压故障排除
检查电源电压、减速时间和制动单元,调整 参数或更换故障部件。
过热故障排除
改善环境温度、散热条件和风扇状况,确保 变频器正常散热。
预防措施建议
定期检查
定期对变频器进行检查和维护,确保其正常运行。
参数设置
根据负载特性和使用要求合理设置变频器参数, 避免过载或超速等故障发生。
工业领域
楼宇自动化
交通运输
新能源领域
对变频器调速精度、动态响应等性能 要求较高,用于实现精确控制和节能 降耗。
对变频器可靠性、环境适应性要求较 高,用于电机车、地铁等牵引系统。
市场竞争格局概述
国内外品牌竞争
国内外变频器品牌众多,市场竞争激烈,但国内品牌 市场份额逐年提升。
技术竞争
随着电力电子技术的发展,变频器技术不断创新,产 品性能不断提升。
04
变频器安装调试与操作 维护技巧
安装前准备工作和注意事项
确认电源容量及电压等级是否符 合变频器要求
检查变频器型号、规格及附件是 否齐全
预留足够的空间进行安装,确保 通风散热良好
接地处理要符合规范,确保安全 可靠
调试过程检查项目清单
01
检查变频器接线是否正确、紧固
02 核对变频器参数设置,确保与实际负载相 匹配
频率跳变
测试变频器在负载变化时的频率跳变幅度和 恢复时间,以评估其抗干扰能力。
效率、功率因数和谐波等关键参数分析
效率
测试变频器在不同负载下的效率,以评估其 能量转换效率。
功率因数
测试变频器的输入功率因数,以评估其对电 网的影响。
谐波分析
检查电源电压、缺相和主回路电压,确保电 源稳定且符合要求。
过电压故障排除
检查电源电压、减速时间和制动单元,调整 参数或更换故障部件。
过热故障排除
改善环境温度、散热条件和风扇状况,确保 变频器正常散热。
预防措施建议
定期检查
定期对变频器进行检查和维护,确保其正常运行。
参数设置
根据负载特性和使用要求合理设置变频器参数, 避免过载或超速等故障发生。
工业领域
楼宇自动化
交通运输
新能源领域
对变频器调速精度、动态响应等性能 要求较高,用于实现精确控制和节能 降耗。
对变频器可靠性、环境适应性要求较 高,用于电机车、地铁等牵引系统。
市场竞争格局概述
国内外品牌竞争
国内外变频器品牌众多,市场竞争激烈,但国内品牌 市场份额逐年提升。
技术竞争
随着电力电子技术的发展,变频器技术不断创新,产 品性能不断提升。
04
变频器安装调试与操作 维护技巧
安装前准备工作和注意事项
确认电源容量及电压等级是否符 合变频器要求
检查变频器型号、规格及附件是 否齐全
预留足够的空间进行安装,确保 通风散热良好
接地处理要符合规范,确保安全 可靠
调试过程检查项目清单
01
检查变频器接线是否正确、紧固
02 核对变频器参数设置,确保与实际负载相 匹配
频率跳变
测试变频器在负载变化时的频率跳变幅度和 恢复时间,以评估其抗干扰能力。
效率、功率因数和谐波等关键参数分析
效率
测试变频器在不同负载下的效率,以评估其 能量转换效率。
功率因数
测试变频器的输入功率因数,以评估其对电 网的影响。
谐波分析
变频器工作原理ppt课件(2024)
通过控制电机定子电流的矢量大 小和相位,实现对电机转矩和转 速的精确控制。
坐标变换
将三相定子电流通过坐标变换转 换为两相旋转坐标系下的直流分 量,从而简化控制算法。
闭环控制
采用速度环和电流环的双闭环控 制结构,提高系统的动态响应和 稳态精度。
2024/1/30
16
直接转矩控制技术(DTC)
直接转矩控制原理
32
THANKS
感谢观看
2024/1/30
33
新风换气系统控制
利用变频器对新风换气机进行调速和控制,实现楼宇内空 气质量的自动调节和换气过程。
楼宇照明系统控制
通过变频器对照明设备进行调光和控制,实现楼宇内照明 的自动调节和节能运行。
31
其他行业应用案例
2024/1/30
食品加工行业
变频器在食品加工机械如切割机、搅拌机等设备中广泛应用,实现精 确的速度控制和节能运行。
2024/1/30
12
03
变频器工作原理详解2024/1/3013交-直-交变换过程分析
整流过程
将交流电通过整流器转换为直流电,通常采用三相桥式不可控整 流电路。
滤波过程
对整流后的直流电进行滤波,以消除谐波和减小纹波系数。
2024/1/30
逆变过程
将滤波后的直流电通过逆变器转换为频率和电压可调的交流电, 通常采用三相桥式逆变电路。
适的变频器。
19
频率范围和输出波形质量指标
频率调节范围
根据应用需求,选择具有合适频率调节范围的变频器 。
输出波形失真度
分析变频器的输出波形失真度,确保其对电机和系统 的影响在可接受范围内。
谐波含量和电磁干扰
考虑变频器的谐波含量和电磁干扰水平,选择符合相 关标准的变频器。
坐标变换
将三相定子电流通过坐标变换转 换为两相旋转坐标系下的直流分 量,从而简化控制算法。
闭环控制
采用速度环和电流环的双闭环控 制结构,提高系统的动态响应和 稳态精度。
2024/1/30
16
直接转矩控制技术(DTC)
直接转矩控制原理
32
THANKS
感谢观看
2024/1/30
33
新风换气系统控制
利用变频器对新风换气机进行调速和控制,实现楼宇内空 气质量的自动调节和换气过程。
楼宇照明系统控制
通过变频器对照明设备进行调光和控制,实现楼宇内照明 的自动调节和节能运行。
31
其他行业应用案例
2024/1/30
食品加工行业
变频器在食品加工机械如切割机、搅拌机等设备中广泛应用,实现精 确的速度控制和节能运行。
2024/1/30
12
03
变频器工作原理详解2024/1/3013交-直-交变换过程分析
整流过程
将交流电通过整流器转换为直流电,通常采用三相桥式不可控整 流电路。
滤波过程
对整流后的直流电进行滤波,以消除谐波和减小纹波系数。
2024/1/30
逆变过程
将滤波后的直流电通过逆变器转换为频率和电压可调的交流电, 通常采用三相桥式逆变电路。
适的变频器。
19
频率范围和输出波形质量指标
频率调节范围
根据应用需求,选择具有合适频率调节范围的变频器 。
输出波形失真度
分析变频器的输出波形失真度,确保其对电机和系统 的影响在可接受范围内。
谐波含量和电磁干扰
考虑变频器的谐波含量和电磁干扰水平,选择符合相 关标准的变频器。
变频器工作原理ppt
变频器工作原理ppt
1. 变频器的定义
2. 变频器的作用与应用领域
3. 变频器的基本组成部分
4. 变频器的工作原理
5. 变频器的控制方式
6. 变频器的优点与局限性
7. 变频器的发展趋势
8. 变频器的市场前景
9. 变频器的应用案例
10. 变频器的未来发展方向
11. 变频器的主要供应商
12. 变频器的相关技术趋势
13. 变频器的关键技术研究
14. 变频器的发展历程
15. 变频器的发展对环境的影响
16. 变频器的经济效益分析
17. 变频器的应用效果评价
18. 变频器在节能降耗中的作用
19. 变频器在工业自动化中的应用
20. 变频器与工业4.0的结合
21. 变频器的市场竞争格局
22. 变频器的技术发展趋势分析
23. 变频器的市场需求和产品创新
24. 变频器的故障排除与维护
25. 变频器的安全使用注意事项。
变频器原理及应用ppt完整版
未来发展趋势预测和机遇挑战剖析
01
发展趋势
随着新能源、智能制造等新兴产业的快速发展,变频器市场需求将不断
增长,同时产品将向高性能、高可靠性、节能环保等方向发展。
02
机遇
国家政策的支持以及新兴市场的开拓为变频器行业带来了巨大的发展机
遇,如“一带一路”倡议、工业4.0等。
03
挑战
国际贸易环境的变化、原材料价格波动以及技术更新换代速度加快等因
作用
在工业生产中,变频器被广泛应用于电动机的速度控制和节能领域。通过调节 电源频率,变频器可以实现对电动机的无级调速,满足不同生产工艺对电机速 度的需求。
变频器分类与特点
01
分类:根据电压等级、功率大小、控制方式等,变频器可分 为低压变频器、中压变频器、高压变频器等类型。
02
特点
03
调速范围广,可实现无级调速;
03
变频器可用于太阳能、风能等新能源发电系统中,提高能源利
用效率。
案例分析:典型行业解决方案
电力行业
变频器在电力行业中的应用主要包括风力发电、火 力发电和水力发电等。通过变频器对发电机组的转 速进行精确控制,可实现电力系统的稳定运行和能 源的高效利用。
石油化工行业
变频器在石油化工行业中的应用主要包括输油泵、 压缩机、搅拌器等设备。通过变频器对设备的运行 速度进行精确控制,可实现石油化工生产过程的优 化和能源的节约。
输标02入题
对于过压和欠压故障,应检查输入电源电压是否稳定, 并调整变频器参数以适应电源电压波动。
01
Hale Waihona Puke 03在排除故障时,应注意安全操作规范,切勿带电操作 或随意拆卸变频器内部元器件。同时,建议定期对变
变频器的原理介绍完整版课件
(1)自然采样法 (2)规则采样法
图(十) 三相SPWM变 频器输出波形
三、异步电机变频调速控制策略
变频器控制的对象是电机,首先研究电机等效图
(一)等效图: 1、转子电势: 转子电势的频率为f2 ,转子旋转后,由于转子导体与磁
场之间的相对运动速度减小,转子感应电势的频率也随之减小,此时:
f2=f1S
1、定义:利用半导体器件的开通和关断,把直流电压变成一定形状的 电压脉冲序列,以实现变频、变压及控制和消除谐波为目标的一门技术。
2、数学分析:
f (t) a0 (an cosnt bn sin nt)
n1
t 02
a 1
0
2 t 0
f (t)dt
f(t)
t 02
a 1
n
2 t 0
f (t)dt
1
4 sin ntdt
3
m
sin ntdt]
m 1
2
[
c
osn
1
c
osn
n
2
c
osn
2
]
2 n
m
(1)k1 cosnk
k 1
(4)
于是,由(3)和(4)式对于奇数n和任意的m均有:
m
bn
(1) k 1 cos nk
(5)
k 1
式中 : 0
1
2 m
2
对于奇函数,偶次谐波为零,仅有奇次谐波,即:
一.变频器的原理与组成
(一)概述:
1.定义:转换电能并能改变频率的电能转换装置。 2.交流调速技术发展的概况与趋势: 交流电机:结构简单,价低,动态响应好、维护方便,但调速困难。 直流电机:结构复杂、成本高、故障多、维护困难且工作量大;机械换向 器的换向能力限制了电动机的容量(单机容量12000kW~14000kW)、电压和 速度(最高电压1000多伏、最高转速3000r/min)。接触式的电流传输又限制 了其使用场合;电枢在转子上,电动机的效率低,散热条件差。为改善换向 能力,减小电枢漏感,转子变得粗短惯性增大,影响系统的动态响应。 交流调速飞速技术发展的原因: 电力电子器件制造技术;电力电子电路的变换技术;PWM技术,矢量控 制技术,直接转矩控制技术;微机和大规模集成电路基础的数字控制技术。
电机变频器基本原理概述PPT课件
第34页/共67页
三、变频器的基本原理 2.晶闸管交交变频——单相交交变频电路
单相交交变频电路是由P组和N组反 并联的晶闸管变流电路构成。电流 器P和N都是相控整流电路,P组工 作时负载电流为正,N组工作是负载 电流为负。让两组变流器按一定的 频率交替工作,负载就得到该频率 的交流电。改变变流电路工作时的 控制角α就可以改变交流输出电压的 幅值。其中甲流电路通常采用6脉波 的三相桥式电路或12脉波变流电路。
堵转状态 电动机状态
n=0 s=1
0<n<n0 1>s>0
理想空 载状态
n=n0 s=0
发电机 状态
n>n0 s<0
第13页/共67页
二、三相交流异步电动机的基本应用 1.三相交流异步电动机工作状态
电动机转子绕组的 结构有笼型(又称 鼠笼型)和绕线型 两种。因而三相异 步电动机也分为笼 型异步电动机和绕 线型异步电动机两 种。
第18页/共67页
二、三相交流异步电动机的基本应用 2.三相交流异步电动机起动——减压起动(定子串联电阻或电抗)
(a)定子串电阻起动
(b)定子串电抗起动
通过开关断开闭合,定子电流在电阻和电抗上产生电压降,使 定子电压降低,减小起动电流。起动后开关闭合,切除电阻或 电抗。
起动方法简单,但定子串电阻起动耗能较多,主要用于低压小 功率电动机。定子串电抗起动投资较大,主要用于高压大功率 电动机。
(a)制动前电路
(b)制动时电路
(c)机械特性
第32页/共67页
二、三相交流异步电动机的基本应用 4.三相交流异步电动机制动——回馈制动
(a)调速中的回馈制动
(b)下放重物时的回馈制动
第33页/共67页
三、变频器的基本原理 1.变频器的基本概念 改变频率的电路称为变频电路。变频电路有交交变频电路和交直交变频电路两种形 式。前者直接把一种频率的交流便哼另一种频率或可变频率的交流,也称为直接变 频电路。后者先把交流整流成直流,再把直流逆变成另一种频率或可变频率的交流, 这种通过直流中间环节的变频电路也称为间接变频电路。 直接变频电路中又包含晶闸管交交变频和矩阵式变频电路。
三、变频器的基本原理 2.晶闸管交交变频——单相交交变频电路
单相交交变频电路是由P组和N组反 并联的晶闸管变流电路构成。电流 器P和N都是相控整流电路,P组工 作时负载电流为正,N组工作是负载 电流为负。让两组变流器按一定的 频率交替工作,负载就得到该频率 的交流电。改变变流电路工作时的 控制角α就可以改变交流输出电压的 幅值。其中甲流电路通常采用6脉波 的三相桥式电路或12脉波变流电路。
堵转状态 电动机状态
n=0 s=1
0<n<n0 1>s>0
理想空 载状态
n=n0 s=0
发电机 状态
n>n0 s<0
第13页/共67页
二、三相交流异步电动机的基本应用 1.三相交流异步电动机工作状态
电动机转子绕组的 结构有笼型(又称 鼠笼型)和绕线型 两种。因而三相异 步电动机也分为笼 型异步电动机和绕 线型异步电动机两 种。
第18页/共67页
二、三相交流异步电动机的基本应用 2.三相交流异步电动机起动——减压起动(定子串联电阻或电抗)
(a)定子串电阻起动
(b)定子串电抗起动
通过开关断开闭合,定子电流在电阻和电抗上产生电压降,使 定子电压降低,减小起动电流。起动后开关闭合,切除电阻或 电抗。
起动方法简单,但定子串电阻起动耗能较多,主要用于低压小 功率电动机。定子串电抗起动投资较大,主要用于高压大功率 电动机。
(a)制动前电路
(b)制动时电路
(c)机械特性
第32页/共67页
二、三相交流异步电动机的基本应用 4.三相交流异步电动机制动——回馈制动
(a)调速中的回馈制动
(b)下放重物时的回馈制动
第33页/共67页
三、变频器的基本原理 1.变频器的基本概念 改变频率的电路称为变频电路。变频电路有交交变频电路和交直交变频电路两种形 式。前者直接把一种频率的交流便哼另一种频率或可变频率的交流,也称为直接变 频电路。后者先把交流整流成直流,再把直流逆变成另一种频率或可变频率的交流, 这种通过直流中间环节的变频电路也称为间接变频电路。 直接变频电路中又包含晶闸管交交变频和矩阵式变频电路。
《变频器讲义》ppt课件
特点
控制精度高,动态响应快;但需要较复杂的算法和较高的运算能 力。
应用场合
适用于对控制性能要求较高的场合,如数控机床、印刷通过检测定子电压和电流,实 时计算电机的磁链和转矩,并调整电压矢量的幅值和相位, 以实现电机的快速响应和高效运行。
特点
动态响应快,转矩脉动小;但对电机参数的依赖性较大, 且算法较为复杂。
出接口等。
滤波电路
对整流后的直流电进行 滤波,减小纹波电压对
逆变器的影响。
选型依据及参数设置方法
负载类型
根据负载的性质(如恒转矩负载、变转矩负 载等)选择合适的变频器类型。
控制方式
根据控制需求(如速度控制、位置控制等) 选择合适的控制方式。
额定功率
根据电动机的额定功率和负载的实际需求选 择合适的变频器容量。
04
变频器运行维护与故 障诊断
日常维护项目清单
01
检查变频器工作环境, 包括温度、湿度、粉尘 等
02
定期检查变频器内部元 器件,如电容、电阻、 电感等
03
04
检查变频器接线端子是 否松动、腐蚀,确保接 线可靠
对变频器进行定期除尘, 保持清洁
故障诊断方法及步骤
01
02
03
04
通过变频器面板查看故障代码 或故障信息
变频器在节能减排中作用
01
变频器节能原理
通过调整电机转速,实现流量、压力等负荷的匹配,从而达到节能的目
的。
02
变频器在节能减排领域的应用
变频器广泛应用于电力、冶金、石化、建材、造纸、印染等高耗能行业,
有效降低了能源消耗和污染物排放。
03
变频器与其他节能技术的结合
变频器可以与PLC、DCS等自动化控制系统相结合,实现更加精准的节
控制精度高,动态响应快;但需要较复杂的算法和较高的运算能 力。
应用场合
适用于对控制性能要求较高的场合,如数控机床、印刷通过检测定子电压和电流,实 时计算电机的磁链和转矩,并调整电压矢量的幅值和相位, 以实现电机的快速响应和高效运行。
特点
动态响应快,转矩脉动小;但对电机参数的依赖性较大, 且算法较为复杂。
出接口等。
滤波电路
对整流后的直流电进行 滤波,减小纹波电压对
逆变器的影响。
选型依据及参数设置方法
负载类型
根据负载的性质(如恒转矩负载、变转矩负 载等)选择合适的变频器类型。
控制方式
根据控制需求(如速度控制、位置控制等) 选择合适的控制方式。
额定功率
根据电动机的额定功率和负载的实际需求选 择合适的变频器容量。
04
变频器运行维护与故 障诊断
日常维护项目清单
01
检查变频器工作环境, 包括温度、湿度、粉尘 等
02
定期检查变频器内部元 器件,如电容、电阻、 电感等
03
04
检查变频器接线端子是 否松动、腐蚀,确保接 线可靠
对变频器进行定期除尘, 保持清洁
故障诊断方法及步骤
01
02
03
04
通过变频器面板查看故障代码 或故障信息
变频器在节能减排中作用
01
变频器节能原理
通过调整电机转速,实现流量、压力等负荷的匹配,从而达到节能的目
的。
02
变频器在节能减排领域的应用
变频器广泛应用于电力、冶金、石化、建材、造纸、印染等高耗能行业,
有效降低了能源消耗和污染物排放。
03
变频器与其他节能技术的结合
变频器可以与PLC、DCS等自动化控制系统相结合,实现更加精准的节
变频器工作原理及故障排除课件
环等。
变频器故障案例分析
案例一
案例二
某工厂的变频器出现电源故障,经检查发 现电源电压过低,通过增加电源变压器解 决故障。
某车间的大型设备在使用过程中出现停机 现象,经检查发现是过载故障导致,通过 更换更大功率的变频器和电机解决故障。
案例三
案例四
某印刷厂的印刷机在使用过程中出现参数 设置错误,导致无法正常工作,通过重新 设置参数解决故障。
工作原理
控制电路通过采集输入输出信号,根据设定的控制算法,输出控制 信号,控制整流和逆变电路的工作状态。
控制电路的种类
模拟控制、数字控制等。
CHAPTER 03
变频器的故障排除
变频器常见故障及原因
01
电源故障
电源电压过高或过低,导致变频器 无法正常工作。
参数设置错误
用户在设置参数时出现错误,导致 变频器无法正常运行。
制造业
用于生产线的速度控制,提高 生产效率。
交通运输业
用于控制电机速度,实现节能 减排。
建筑行业
用于电梯、空调等设备的节能 控制。
变频器的发展趋势与未来展望
高效化
提高变频器的效率,降低能耗。
智能化
实现变频器的远程监控和智能控制。
小型化
减小变频器的体积,便于集成和安装。
多样化
开发更多类型的变频器,满足不同领域的需 求。
某化工厂的变频器受到雷电干扰导致故障 ,通过增加防雷设备解决故障。
CHAPTER 04
变频器的维护与保养
变频器的日常维护
定期检查变频器的运行状态
01
观察变频器的外观是否正常,检查接线是否牢固,以及是否有
异常声音或气味。
保持变频器的清洁
变频器故障案例分析
案例一
案例二
某工厂的变频器出现电源故障,经检查发 现电源电压过低,通过增加电源变压器解 决故障。
某车间的大型设备在使用过程中出现停机 现象,经检查发现是过载故障导致,通过 更换更大功率的变频器和电机解决故障。
案例三
案例四
某印刷厂的印刷机在使用过程中出现参数 设置错误,导致无法正常工作,通过重新 设置参数解决故障。
工作原理
控制电路通过采集输入输出信号,根据设定的控制算法,输出控制 信号,控制整流和逆变电路的工作状态。
控制电路的种类
模拟控制、数字控制等。
CHAPTER 03
变频器的故障排除
变频器常见故障及原因
01
电源故障
电源电压过高或过低,导致变频器 无法正常工作。
参数设置错误
用户在设置参数时出现错误,导致 变频器无法正常运行。
制造业
用于生产线的速度控制,提高 生产效率。
交通运输业
用于控制电机速度,实现节能 减排。
建筑行业
用于电梯、空调等设备的节能 控制。
变频器的发展趋势与未来展望
高效化
提高变频器的效率,降低能耗。
智能化
实现变频器的远程监控和智能控制。
小型化
减小变频器的体积,便于集成和安装。
多样化
开发更多类型的变频器,满足不同领域的需 求。
某化工厂的变频器受到雷电干扰导致故障 ,通过增加防雷设备解决故障。
CHAPTER 04
变频器的维护与保养
变频器的日常维护
定期检查变频器的运行状态
01
观察变频器的外观是否正常,检查接线是否牢固,以及是否有
异常声音或气味。
保持变频器的清洁
《变频器原理及应用》ppt课件
• 当再次衔接电机电缆时,应检查相序能否正确。 • 假设电机的额定电压小于传动单元额定输入电压
的1/2,那么不允许运转。在DTC 方式下电机额 定电流的范围是1/6 ... 2 ·I2hd,在SCALAR 方式 下电机额定电流的范围是0 ... 2 ·I2hd。电机控制 方式是由传动的一个参数来选择的。
• 26 MOTOR CONTROL • 30 FAULT FUNCTIONS • 31 AUTOMATIC RESET • 32 SUPERVISION • 40 PID CONTROL
〔性能优化〕
可编程的缺点维护功能 自动缺点复位。
监控极限值。
ACS800
99
9904 SCALAR
规范控制
9905
• 14 RELAY OUTPUTS
继电器输出的形状信号
• 15 ANALOGUE OUTPUTS 选择由模拟输出显示的实践信号。 •
20 LIMITS 21 START/STOP 22 ACCEL/DECEL 23 SPEED CTRL 25 CRITICAL SPEEDS
传动运转极限值。 电机启动和停顿的方式 加速和减速时间。 速度控制器的变量。〔微积分〕 危险速度区,电机不允许在这区域里运转。
根本启动过程。假设选择 ID MAGN那么自动进入下一步。 • 或选择ID Run (STANDARD 或 REDUCED) : • 按LOC/REM 键改为本地控制 (L 显示在第一排)。 • 按启动键运转辨识励磁方式。在零速下电机励磁20-60秒。
电动机的快速启动
• 检查电机的运转方向
• 设置最小转速。
• 风机、泵等轴输出功率于速度的立方成比 例添加,所以转速少许升高时也要留意〕。
日常维护与检查 对于延续运转的变频
的1/2,那么不允许运转。在DTC 方式下电机额 定电流的范围是1/6 ... 2 ·I2hd,在SCALAR 方式 下电机额定电流的范围是0 ... 2 ·I2hd。电机控制 方式是由传动的一个参数来选择的。
• 26 MOTOR CONTROL • 30 FAULT FUNCTIONS • 31 AUTOMATIC RESET • 32 SUPERVISION • 40 PID CONTROL
〔性能优化〕
可编程的缺点维护功能 自动缺点复位。
监控极限值。
ACS800
99
9904 SCALAR
规范控制
9905
• 14 RELAY OUTPUTS
继电器输出的形状信号
• 15 ANALOGUE OUTPUTS 选择由模拟输出显示的实践信号。 •
20 LIMITS 21 START/STOP 22 ACCEL/DECEL 23 SPEED CTRL 25 CRITICAL SPEEDS
传动运转极限值。 电机启动和停顿的方式 加速和减速时间。 速度控制器的变量。〔微积分〕 危险速度区,电机不允许在这区域里运转。
根本启动过程。假设选择 ID MAGN那么自动进入下一步。 • 或选择ID Run (STANDARD 或 REDUCED) : • 按LOC/REM 键改为本地控制 (L 显示在第一排)。 • 按启动键运转辨识励磁方式。在零速下电机励磁20-60秒。
电动机的快速启动
• 检查电机的运转方向
• 设置最小转速。
• 风机、泵等轴输出功率于速度的立方成比 例添加,所以转速少许升高时也要留意〕。
日常维护与检查 对于延续运转的变频
变频器的工作原理ppt课件
.
VD1~VD6 组成三相不 可控整流桥, 220V系列 采用单相全 波整流桥电 路;380V 系列采用桥 式全波整流
电路。
.
1).选用西门子哪个系列的变频 MICROMASTER器?
Micromaster430是全新一代标准变频器中的风机和 泵类变转矩负载专家。功率范围7.5kw至250kw。它 按照专用要求设计,并实用内部功能互联(BiCo) 技术,具有高度可靠性和灵活性。旁路功能,断带 及缺水检测,节能运行方式等(Micromaster4系列 标准变频器 矢量型Micromaster440 节能型Micromaster430 基本型Micromaster420 紧凑型Micromaster410
.
.
3).什么是U/f控制?说明U/f控制的原理?
❖ 异步电动机的转矩是电机的磁通与转子内流过电 流之间相互作用而产生的,在额定频率下,如果 电压一定而只降低频率,那么磁通就过大,磁回 路饱和,严重时将烧毁电机。因此,频率与电压 要成比例的改变,即改变频率的同时,控制变频 器输出电压,使电动机的磁通保持一致,避免弱 磁和磁饱和现象的产生,这种控制方式多用于风 机,泵类节能型变频器。
1.变频器的分类
变频器分为: 交一交型 交一直一交型
a.交一交变频器可将工频交流 直接换成频率, 电压均可控制的交流,又称直接式变频器。 b.交一直一交变频器则是先把工频交流电通 过整流变成直流电,然后再把直流电变换成 频率,电压均可控制的交流电,又称为间接 型变频器。
.
2.变频器的基本组成(交一直一交型)
.
变频器的介绍
❖ 变频器:是应用变频技术与微电子技术,通过改 变电机工作电源频率方式来控制交流电动机的电 力控制设备。变频器主要由整流(交流变直流) 滤波,逆变(直流变交流),制动单元,驱动电 源,检测电源微处理单元等组成。
VD1~VD6 组成三相不 可控整流桥, 220V系列 采用单相全 波整流桥电 路;380V 系列采用桥 式全波整流
电路。
.
1).选用西门子哪个系列的变频 MICROMASTER器?
Micromaster430是全新一代标准变频器中的风机和 泵类变转矩负载专家。功率范围7.5kw至250kw。它 按照专用要求设计,并实用内部功能互联(BiCo) 技术,具有高度可靠性和灵活性。旁路功能,断带 及缺水检测,节能运行方式等(Micromaster4系列 标准变频器 矢量型Micromaster440 节能型Micromaster430 基本型Micromaster420 紧凑型Micromaster410
.
.
3).什么是U/f控制?说明U/f控制的原理?
❖ 异步电动机的转矩是电机的磁通与转子内流过电 流之间相互作用而产生的,在额定频率下,如果 电压一定而只降低频率,那么磁通就过大,磁回 路饱和,严重时将烧毁电机。因此,频率与电压 要成比例的改变,即改变频率的同时,控制变频 器输出电压,使电动机的磁通保持一致,避免弱 磁和磁饱和现象的产生,这种控制方式多用于风 机,泵类节能型变频器。
1.变频器的分类
变频器分为: 交一交型 交一直一交型
a.交一交变频器可将工频交流 直接换成频率, 电压均可控制的交流,又称直接式变频器。 b.交一直一交变频器则是先把工频交流电通 过整流变成直流电,然后再把直流电变换成 频率,电压均可控制的交流电,又称为间接 型变频器。
.
2.变频器的基本组成(交一直一交型)
.
变频器的介绍
❖ 变频器:是应用变频技术与微电子技术,通过改 变电机工作电源频率方式来控制交流电动机的电 力控制设备。变频器主要由整流(交流变直流) 滤波,逆变(直流变交流),制动单元,驱动电 源,检测电源微处理单元等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德莱尔变频器原理图讲解 1. 开关电源 5.逆变电路 2. 整流电路 3. 充电电路 4. 驱动电路
1
一,开关电源
• 1,DC电源芯片UC2844
输出补偿 电压反馈 电流取样
RT/CT
2844
Vref基准电压 供电电源VCC 脉冲输出
地
2
开启电压16V,关断电压10V 工作环境温度:-40 ℃~+105 ℃ 工作结温:150 ℃ VCC供电电源:+15V (先将电压调节为高于开启电压)
12
• 2844芯片6脚输出为矩形波,DQ1的栅极受 控电压为矩形波,当其占空比越大,DQ1导 通时间越长,变压器所储存的能量也就越 多; 当DQ1截止时,变压器通过缓冲电路释放 能量,同时也达到了磁场复位的目的,为 变压器的下一次存储、传递能量做好了准 备。IC 根据输出电压和电流时刻调整着⑥ 脚矩形波占空比的大小,从而稳定了整机 的输出电流和电压。
组成缓冲器,和MOS管连接,使开关管电压应力 减小, EMI减少,不会发生二次击穿,在开关管 DQ1 关断时,变压器的原边线圈易产生尖峰电压 和尖峰电流,这些元件组合一起,能很好地吸收尖 峰电压和电流。从 R92.R93 测得的电流峰值信号 参与当前工作周波的占空比控制,因此是当前工作 周波的电流限制。 当芯片3脚上的电压达到 1V.UC2844 停止工作,开关管 DQ1 立即关断
8
反溃电路 :
当输出电压VCC升高时,输出电压经R71及R8分 压得到的采样电压(即稳压管431的参考电压) 也升高,431的稳压值也升高 ,流过光耦中发光 二极管中的电流减小,导致流过光电三极管中的 电流减小,误差放大器的增益变大,导致UC2844 脚6输出驱动信号的占空比变小,输出电压下 降,达到稳压的目的。当输出电压降低时,误差 放大器的增益变小,输出的开关信号占空比变 大,最终使输出电压稳定在设定的值。
驱动电源 VD1- , VD1+
VD2- , VD2+
24V
VD3- , VD3+
VD4- , VD4+
6
1脚电压就升高
电流 变化
F频率计算
f 1 1 T Ton Toff
0.5465 RtCt
1 RtCt
ln
Id
*Rt3.8Id * Rt 2.2
7
配TL431的多路输出的光耦反馈电路的特点
15
开关电源的电源波形如下:
• 电源波形
16
P(正极) 2,整流电路
滤波电容
三 ①②③ 相 交 流 输 入
N(负极)
17
• 三相电源输入波形
u uR uS uT
0
t
R,S,T,三相电。每相电压波形相差120 度。
18
• ① R相
V
② S相
V
③ T相
V
T
T T
19
• P(正极)电压波形(三相电压叠加)。
V
T
对于工频50HZ的电压,周期T=1/F=0.02S,经过 滤波电容后Vpn近似为一条直线:
V
VPN值
T
交流380V电压整流后的值约为 380×1.414=538V
20
• 一般整流桥(整流二级管)的选择: 对于380V的额定电源来说.一般选择二极管 的反向耐压值为1200V,二极管的正向电流 为变频器额定电流2倍以上.
11
• R87,R88和DQ1中的结电容(CGS、CGD) 构成RC网络,其充放电直接影响开关管的开 关速度,电阻过小R1,易引起振荡,电磁干 扰也会很大;电阻过大,会降低开关管的开 关速度增加损耗。
DZ14为18V稳压管将 MOS 管的 GS 电压限制 在 18V 以下,从而保护了 MOS 管,MOS管 的驱动电压不能超过20V。
9
因为,UC2844的电压反馈输入端脚2接地,所以, 误差放大器的输入误差总是固定的,改变的是误 差放大器的增益。
• 反馈环路是影响开关电源稳定性的重要电 路。如反馈电阻电容错、漏、虚焊等,会 产生自激
• 振荡,故障现象为:波形异常,空、满载 振荡,输出电压不稳定等。
10
• 电路工作原理:
R73,C85,D10.D13.C78.R91,R146
13
• 过载短路保护
当幅值超过1V时,开关电源就停止工作
14
• 过压保护电路
输出过压保护电路的作用是:当输出电压超过设 计值时,把输出电压限定在一安全值的范围内。 当开关电源内部稳压环路出现故障或者由于用户 操作不当引起输出过压现象时,过压保护电路进 行保护以防止损坏后级用电设备。 当反馈电路出现故障,主输出5V升高时,其它辅 助电源升高,VDD芯片供电电源升高超过18V时, 稳压管DZ7导通,Q3,Q7导通,VDD电位拉低,2844 供电电源拉低,芯片停止工作,整个开关电源停 止工作,对后续整个电路起到保护作用。
整流桥的检测: 检测方法跟检测二极管的一样,只不是几个 二极管组合在一起的,分别测几个二级管的 特性.
21
三,充电电路
• 充电原理图如下:
电容
22
电容的特性:电压不能突变,即瞬间加在电容2 端的电压不能变化,开机前电容上的电压为0V, 所以在上电的瞬间电容对地视为短路,若不加冲 电电阻(限流电阻)在整流桥和电容之间,相当 于PN直接短路,瞬间整流桥将承受巨大的能量, 导致损坏。
• 1.利用TL431型可调式精密并联稳压器构成 二次侧的误差电流放大器,再通过光耦合 器对主输出进行精确地调整:
• 2.除主输出提供主要的反馈信号之外,其他 辅助输出也按照一定的比例关系反馈到 TL431的2.50V基准端,这对于全面提高多 路输出式开关电源的稳压性能具有重要意 义;
• 3.主输出的负载调整率可达±1%
若不在限流电阻上并继电器或其它元件,,变频器 带负载运行时,那么长时间流在电阻上电流将会 很大,将会产生很大的功耗,P=I²×R,电阻将会 烧坏,要是电阻足够好,变频器PN母线电压将会被 拉低到欠压.一直到变频器停止输出,显示恢复正 常.
23
• 不同功率的变频器,充电电阻就不一样. 变频器功率越大充电电阻就越小. ???为什么呢? 因为变频器功率越大,需要电解电容的容量
3
2844内部电路图
4
时序图
电容CT
锁存器置 位输入
输入/补偿 电流输入取样
锁存器复 位输入
输出
大RT/小CT
大RT/小CT
5
2.我们以DVB-POWER-E线路板的开关电源为例
多路输出(CMM连续模式)开关电源(配有TL431 的光耦反馈电路)
主输出 +5V
辅输出 +15V,-15V,G24,+24V,VBUS电压
1
一,开关电源
• 1,DC电源芯片UC2844
输出补偿 电压反馈 电流取样
RT/CT
2844
Vref基准电压 供电电源VCC 脉冲输出
地
2
开启电压16V,关断电压10V 工作环境温度:-40 ℃~+105 ℃ 工作结温:150 ℃ VCC供电电源:+15V (先将电压调节为高于开启电压)
12
• 2844芯片6脚输出为矩形波,DQ1的栅极受 控电压为矩形波,当其占空比越大,DQ1导 通时间越长,变压器所储存的能量也就越 多; 当DQ1截止时,变压器通过缓冲电路释放 能量,同时也达到了磁场复位的目的,为 变压器的下一次存储、传递能量做好了准 备。IC 根据输出电压和电流时刻调整着⑥ 脚矩形波占空比的大小,从而稳定了整机 的输出电流和电压。
组成缓冲器,和MOS管连接,使开关管电压应力 减小, EMI减少,不会发生二次击穿,在开关管 DQ1 关断时,变压器的原边线圈易产生尖峰电压 和尖峰电流,这些元件组合一起,能很好地吸收尖 峰电压和电流。从 R92.R93 测得的电流峰值信号 参与当前工作周波的占空比控制,因此是当前工作 周波的电流限制。 当芯片3脚上的电压达到 1V.UC2844 停止工作,开关管 DQ1 立即关断
8
反溃电路 :
当输出电压VCC升高时,输出电压经R71及R8分 压得到的采样电压(即稳压管431的参考电压) 也升高,431的稳压值也升高 ,流过光耦中发光 二极管中的电流减小,导致流过光电三极管中的 电流减小,误差放大器的增益变大,导致UC2844 脚6输出驱动信号的占空比变小,输出电压下 降,达到稳压的目的。当输出电压降低时,误差 放大器的增益变小,输出的开关信号占空比变 大,最终使输出电压稳定在设定的值。
驱动电源 VD1- , VD1+
VD2- , VD2+
24V
VD3- , VD3+
VD4- , VD4+
6
1脚电压就升高
电流 变化
F频率计算
f 1 1 T Ton Toff
0.5465 RtCt
1 RtCt
ln
Id
*Rt3.8Id * Rt 2.2
7
配TL431的多路输出的光耦反馈电路的特点
15
开关电源的电源波形如下:
• 电源波形
16
P(正极) 2,整流电路
滤波电容
三 ①②③ 相 交 流 输 入
N(负极)
17
• 三相电源输入波形
u uR uS uT
0
t
R,S,T,三相电。每相电压波形相差120 度。
18
• ① R相
V
② S相
V
③ T相
V
T
T T
19
• P(正极)电压波形(三相电压叠加)。
V
T
对于工频50HZ的电压,周期T=1/F=0.02S,经过 滤波电容后Vpn近似为一条直线:
V
VPN值
T
交流380V电压整流后的值约为 380×1.414=538V
20
• 一般整流桥(整流二级管)的选择: 对于380V的额定电源来说.一般选择二极管 的反向耐压值为1200V,二极管的正向电流 为变频器额定电流2倍以上.
11
• R87,R88和DQ1中的结电容(CGS、CGD) 构成RC网络,其充放电直接影响开关管的开 关速度,电阻过小R1,易引起振荡,电磁干 扰也会很大;电阻过大,会降低开关管的开 关速度增加损耗。
DZ14为18V稳压管将 MOS 管的 GS 电压限制 在 18V 以下,从而保护了 MOS 管,MOS管 的驱动电压不能超过20V。
9
因为,UC2844的电压反馈输入端脚2接地,所以, 误差放大器的输入误差总是固定的,改变的是误 差放大器的增益。
• 反馈环路是影响开关电源稳定性的重要电 路。如反馈电阻电容错、漏、虚焊等,会 产生自激
• 振荡,故障现象为:波形异常,空、满载 振荡,输出电压不稳定等。
10
• 电路工作原理:
R73,C85,D10.D13.C78.R91,R146
13
• 过载短路保护
当幅值超过1V时,开关电源就停止工作
14
• 过压保护电路
输出过压保护电路的作用是:当输出电压超过设 计值时,把输出电压限定在一安全值的范围内。 当开关电源内部稳压环路出现故障或者由于用户 操作不当引起输出过压现象时,过压保护电路进 行保护以防止损坏后级用电设备。 当反馈电路出现故障,主输出5V升高时,其它辅 助电源升高,VDD芯片供电电源升高超过18V时, 稳压管DZ7导通,Q3,Q7导通,VDD电位拉低,2844 供电电源拉低,芯片停止工作,整个开关电源停 止工作,对后续整个电路起到保护作用。
整流桥的检测: 检测方法跟检测二极管的一样,只不是几个 二极管组合在一起的,分别测几个二级管的 特性.
21
三,充电电路
• 充电原理图如下:
电容
22
电容的特性:电压不能突变,即瞬间加在电容2 端的电压不能变化,开机前电容上的电压为0V, 所以在上电的瞬间电容对地视为短路,若不加冲 电电阻(限流电阻)在整流桥和电容之间,相当 于PN直接短路,瞬间整流桥将承受巨大的能量, 导致损坏。
• 1.利用TL431型可调式精密并联稳压器构成 二次侧的误差电流放大器,再通过光耦合 器对主输出进行精确地调整:
• 2.除主输出提供主要的反馈信号之外,其他 辅助输出也按照一定的比例关系反馈到 TL431的2.50V基准端,这对于全面提高多 路输出式开关电源的稳压性能具有重要意 义;
• 3.主输出的负载调整率可达±1%
若不在限流电阻上并继电器或其它元件,,变频器 带负载运行时,那么长时间流在电阻上电流将会 很大,将会产生很大的功耗,P=I²×R,电阻将会 烧坏,要是电阻足够好,变频器PN母线电压将会被 拉低到欠压.一直到变频器停止输出,显示恢复正 常.
23
• 不同功率的变频器,充电电阻就不一样. 变频器功率越大充电电阻就越小. ???为什么呢? 因为变频器功率越大,需要电解电容的容量
3
2844内部电路图
4
时序图
电容CT
锁存器置 位输入
输入/补偿 电流输入取样
锁存器复 位输入
输出
大RT/小CT
大RT/小CT
5
2.我们以DVB-POWER-E线路板的开关电源为例
多路输出(CMM连续模式)开关电源(配有TL431 的光耦反馈电路)
主输出 +5V
辅输出 +15V,-15V,G24,+24V,VBUS电压