沪教版(上海)数学高三上册-14.4 空间点到平面的距离 课件
高中数学课件 点到平面的距离
归纳总结
⑴、直接法: 一作、二证、三计算
⑵、间接法: 向量法:利用法向量与点到面的距 离关系,把几何问题转化为代数问 题。还有等体积法,转移法待续。
例1:如图9-75,已知 正三角形ABC的边长为 6㎝,点D到三角形ABC 各顶点的距离都是4㎝, 求点D到这三角形所在 平面的距离。
H E
小结:求距离的三步:一作,二证,三计算 找垂足的方法:
练习
如 图 9-76 在 四 棱 锥
P-ABCD中底面ABC
H
D是边长为1的菱形,
∠ABC=600,
P A⊥ 平 面 A B C D ,
PA=1.求 O 到 面 P AD 的 距
离.
例2 : 如图,在棱长为1的正方体ABCD A1B1C1D1中, 点E是棱AD的中点, 求A1到平面BD1E的距离.
D1
C1
A1
B1
ED A
C B
练习:
z S
A
D
y
B
C
x
2. 直线到它平行平面的距离
定义:直线上任一点到与它平行的平面的 距离,叫做这条直线到平面的距离。 由定义可知,求直线到它平行平面的距离 的问题可由点到平面距离的知识来解决。
3. 两个平行平面的距离
和两个平行平面同时垂直的直线,叫做这两个 平面的公垂线。公垂线夹在平行平面间的部分, 叫做这两个平面的公垂线段。 两个平行平面的公垂线段都相等,公垂线段长 小于或等于任一条夹在这两平行平面间的线段 长。 两个平行平面的公垂线段的长度,叫做两个平 行平面的距离。 求两平行平面的距离,只要求一个平面上一 点到另一个平面的距离,也就是求点到平面 的距离。
例3 : 如图,已知四边形ABCD是边长1的正方形, 四边形AA' B' B是矩形, 平面AA' B' B ABCD, 若AA' 1,求直线AB面DA'C的距离.
向量法求空间点到平面的距离课件
a•b abcos(为a与b的夹角)
学习交流PPT
2
二、新课
向量法求点到平面的距离
B
n
A
O
1 、剖析 B O : 平 , 如 面垂 图 O ,则 足 , B 到 点 为 平 的面 距离就是
线 B段 的 O 长度。
学习交流PPT
3
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
设平面 PBC 的法向量为 n ( x, y, z) ,
则
n
CB
0
z
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
y,
z)
(0,
1,1)
0
∴
x y
0 z
x
令 y 1, n (0, 1, 1) ,d= 2
向量法求空间点到平面的距离
B
n
A
O
学习交流PPT
1
新课导入: 我们在路上行走时遇到障碍一般会绕过它,在生活中我们知道转弯,那 么在学习上也一样,要想求空间一点到平面距离,就必须找到或间接找 到它,而这样做恰恰是一个比较困难的问题,今天我们就让思维转个弯, 用向量法解决这个难题。
一、复习引入: 1、空间中如何求点到距面离? 方法1、直接做或找距离; 方法2、等体积法; 方法3、空间向量。
2
学习交流PPT
y
7
BE(2,0,0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
学习交流PPT
4
练习1
沪教版(上海)数学高三上册-14.3 直线与平面的位置关系(1) 课件 优质课件PPT
使自己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实
是呈现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好
自己的事业波峰时,要给自己安排休整点。安排出一大段时间让自己隐退一下,即使是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富
变: 点A到面BDD1B1的距离
变 式 : 在 长 方 体ABCD A1B1C1D1中,
已 知AB 4,AD 5,AA1 3
(1) 求 点A和 点C1的 距 离
(2) 求 点A和 棱B1C1的 距 离
(3) 求 棱AB和 平 面A1B1C1D1的 距 离
D
C
AH
D1
B
变式:
点A1到面DAB1C1 C1 的距离
A1
B1
4.如 图 , 已 知 正 三 角 形ABC的 边 长 为6cm, 点O到ABC各 顶 点 距 离 都 是4cm, 求 点O到 这 个 三 角 形 所 在 平 面的 距 离.
解:设H为点O在平面ABC内的射影,
OA OB OC ,
O
HA HB HC ,
即H是△ABC的外心。在Rt △OBH中,
中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都
激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励
院练习棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的
沪教版(上海)数学高三上册-14.4(2) 空间平面与平面的位置关 课件 最新课件PPT
PA , PB , A, B为垂足,
求 : APB的大小
作棱的垂直截面法 解:设平面PAB 平面 OA,
平面PAB 平面 OB
P
PA l
PA l
同理,PB l
B
O
l
l 平面PAB AO
A
AO l
同理,BO l
AOB为二面角 l 的平面角
二面角的平面角的作法:
O1
C1 (2)二面角B-A1C1-B1
B1
的大小.
变式:二面角B-A1C1-D1的大小.
注意:找二面角的平面角必须满足:
(1)角的顶点在棱上。
(2)角的两边分别在两个面内。
(3)角的边都要垂直于二面角的棱。
l
A
o
B
A
o
B
l
例2、已知二面角- l - ,A为面内一点, A到 的距离为 2 ,到 l 的距离为 4。 求二面角 - l - 的大小。
异面直线所成角
直线与平面所成角
“空间角 平面角”
二面角的平面角
• 如何度量空间中二面角的大小?
?
O
A
O
B B
A
α上一条射线 B
棱上一点
A β上一条射线
l
OA l
OB l
二面角的平面角
当二面角 -l- 给定时,它的平面角
的大小与点O在棱l上的位置有关吗?
? AOB = AOB
O
A
注:(1)二面角的平面角与点的 位置无关,只与二面角的张角 大小有关。
l
B
(2)二面角是用它的平面角来
O
B A
度量的,一个二面角的平面角 多大,就 说这个二面角是多少
沪教版(上海)数学高三上册-14.3 空间直线与平面的位置关系(2) 课件 教学课件
A1
可证 BC 平面A1ABB1,
所以 BC B1M ,可证得: B1M 平面A1BCD1 ,
M
所以 MC 就是直线 B1C 在平面 A1BCD1 上的射影,
D
A
所以 MCB1 为直线 B1C 与平面 A1BCD1 所成角,
易求 MCB1 30 ,
所以直线 B1C 与平面 A1BCD1 所成角的大小为 30 ;
l A
α
M
O
一、新课讲授:
2、直线和平面所成角:
(1)平面的斜线与它在平面内的射影所成的锐角,叫这条直线与这个
平面所成的角。
由定义可知:斜线与平面所成角的范围为
0,
2
;
(2)直线与平面垂直时,它们的所成角为 ;
2
(3)直线与平面平行(或直线在平面内)时,它们的所成角为 0。
结论:直线与平面所成角的范围为
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可
沪教版(上海)数学高三上册-14.4 空间点到平面的距离 课件 优秀课件PPT
平面与平面的位置关系
(一)
问题一:空间中两个平面的位置关系?
平行、相交
问题二:如何研究两个相交平面的位置关系?
二面角
α l
α
l
β
二面角的范围
α
l
β
β
问题三:如何度量二面角的大小?
二面角的平面角
定义:以二面角的棱上任意一点为端点, 在
l
P
两个面内分别作垂直于棱的两条射线,
这两条射线所成的角叫做二面角的平 面角
P1
B
A
B1
A1
二面角的平面角必须满足:
1)角的顶点在棱上 2)角的两边分别在两个面内 (与顶点在棱上的选取位置无关) 3)角的两边都要垂直于二面角的棱
二面角的平面角作法:
定义法点P在棱上l来自PAB
D1
A1
O1
C1 B1
D A
C B
二面角的度量:
1、找到或作出二面角的平面角 2、证明 1中的角就是所求的角 3、计算出此角的大小
一“作”二“证”三“计算”
S
A
C
B
小结
1.二面角的定义 2.二面角的度量
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
沪教版(上海)数学高三上册-14.3 空间直线与平面复习 课件 优秀课件PPT
一般用反证法
如何画图? 如何计算?
归纳: 1,将a,b平移到同一平 面 构成三角形。 (找平行线或自己作图)
2,证明作出的角或其补 角即所求角
3,利用解三角形来求角。
P
E A
B
D Cቤተ መጻሕፍቲ ባይዱ
归纳: 1,将异面直线平移到同 一平面 构成三角形。 (找平行线或自己作图)
2,证明作出的角或其补 角即所求角
3,利用解三角形来求角。
空间向量法
1,建系,求点坐 标
2,求两直线的方 向向量
3,利用夹角公式
A
C
B
A1
C1
B1
一般用反证法
归 1,纳问将::a异,两面直b平直线线成移成角到角范同范围一围平面
空间向量法
构成三角形。
1,建系,求点
(找归平纳行:线或自己作图)
2, 一证作明作出的角或其补角 2,求两直线的方
平面基本性质
3公理及3推论
空 间
两条直线的位置关系
直
线
与
平
面
平行 相交 异面
平行公理 异面直线所成角
直线与平面的位置关系
直线在平面内
直线与平面平行
垂 直
直线与平面相交
平面与平面的位置关系
平行 垂直
平行 相交 异面
证明 计算距离 证明垂直
成角计算 证明
成角距离计算
证明 计算
如何画图? 如何证明?
证明 计算
线线平行 线线垂直 异面直线
成角计算 距离计算
向量法
向量法
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
上海教育版高中数学三上14.4《空间平面与平面的位置关系》word教案(一)
14.4(2)空间平面与平面的位置关系一、教学内容分析在空间平面与平面之间的位置关系中,平行是一种非常重要的位置关系.空间中平面与平面平行的定义与性质学生之前已经掌握,本节课使学生掌握两个平面平行的判定(证明).通过两个平面平行的判定定理的证明过程,使学生进一步体会反证法的思想,加强用反证法证明某些简单命题的能力,培养和发展学生的归纳推理论证能力;通过两个平面平行的判定定理应用的教学,使学生体会转化思想(空间向平面;线线、线面、面面平行关系的相互转化)在解决问题中的运用.二、教学目标设计掌握空间两个平面的位置关系,掌握两个平面平行的判定定理及其推导,能用两个平面平行的判定定理判定(证明)两个平面平行.三、教学重点及难点两个平面平行的判定定理的证明及其应用.四、教学流程设计五、教学过程设计一、新课引入问题1:空间两个平面之间的位置关系有哪些? 问题2:空间平面位置关系分类的依据是什么?问题3:对于两个平面平行的位置关系,我们可以根据定义(没有公共点)来判断,但很难操作,除此之外,能否用简便的方法来判断呢?二、学习新课(一)两个平面平行的判定1.平面β内一条直线与平面α平行,能否判断βα//?2.平面β内两条直线与平面α平行,能否判断βα//?3.平面β内无数条直线与平面α平行,能否判断βα//?[说明]通过长方体模型,引导学生观察、动手实验,探索出结论. (二)两个平面平行的判定定理的证明例1设a 、b 是平面α内的两条相交直线,且//a β平面,//b β平面,求证:βα//. [说明]①让学生用文字语言和符号语言描述两个平面平行的判定定理,即如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. ②小结反证法的证题步骤. (三)例题分析例2 如图,在正方体1111D C B A ABCD -中,求证:平面//1BD A 平面C D B 11.[说明]进一步使学生明白运用定理时一定要注意寻求的是两相交直线,而后证明这两条直线分别平行与另一个平面,在论证及书写的过程中要力求规范.例3 已知a 、b 是异面直线,求证:过直线a 且平行CD A1A 1B 1C 1D于b 的平面α与过直线b 且平行于a 的平面β平行. 证明:过a 作平面γ,使'a =⋂βγ ∵a ∥β,a ⊂γ,'a =⋂βγ,∴a ∥'a又∵'a ⊄α,a ⊂α,∴'a ∥α且b ∥α 又a 、b 异面,∴'a 与b 必相交,∴α∥β.[说明]灵活地实现“线线”、“线面”、“面面”平行间的相互转换 (四)问题拓展例4 有一块木料如图,已知棱BC 平行于面A ′C ′.要经过木料表面A ′B ′C ′D ′ 内的一点P 和棱BC 将木料锯开,应怎样画线?所画的线和面AC 有什么关系? 解:(1)∵BC ∥面A ′C ′,面BC ′经过BC 和面A ′C ′交于B ′C ′, ∴BC ∥B ′C ′.经过点P ,在面A ′C ′上画线段EF ∥B ′C ′, 得:EF ∥BC .∴EF ⊂面BF,B ⊂面BF.连结BE 和CF. BE,CF 和EF 就是所要画的线.(2)∵EF ∥BC ,根据判定定理,则EF ∥面AC ;BE 、CF 显然都和面AC 相交.三、巩固练习1.断下列命题是否正确,并说明理由.(1)若平面α内的两条直线分别与平面β平行,则α与β平行.( ) (2)若平面α内有无数条直线与平面β平行,则α与β平行.( ) (3)平行于同一条直线的两个平面平行. ( )(4)过已知平面外一点,有且只有一个平面与已知平面平行.( ) (5)过已知平面外一条直线,必能作出与已知平面平行的平面.( )bβαa1A 12.如图,设E ,F ,E 1, F 1分别是长方体ABCD-A 1B 1C 1D 1的棱AB ,CD ,A 1B 1,C 1D 1的中点.求证:平面ED 1∥平面BF 1.四、课堂小结1.空间两个平面的位置关系.2.两个平行平面的判定定理.五、作业布置1.课本P19练习14.4(2)2.如图,设G 、H 、E 、F 分别是长方体ABCD-A 1B 1C 1D 1的棱A 1D 1A 1B 1、B 1C 1、C 1D 1的中点.求证:平面AGH ∥平面DBEF.七、教学设计说明本节课在教学中引导学生经历从具体实例抽象出数学概念的过程,通过直观感知、操作确认,归纳出两个平面平行的判定方法,并引导学生将文字语言转化为图形语言和符号语言.要求学生能熟练运用判定定理证明两个平面平行,注重数学思想的渗透;注重数学知识与实际的联系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
A
C
B
小结
1.二面角的定义 2.二面角的度量
• 有些烦恼都是自找的,因为怀里揣着过去而放弃了现在的努力。有些痛苦也是自找的,因为无所事事而一直活在未来的 憧憬里。决定一个人成就的,不是靠天,也不是靠运气,而是坚持和付出,是不停地做,重复的做,用心去做,当你真 的努力了付出了,你会发现自己潜力无限!再大的事,到了明天就是小事,再深的痛,过去了就把它忘记,就算全世界 都抛弃了你,——你依然也要坚定前行,因为,你就是自己最大的底气。埋怨只是一种懦弱的表现;努力,才是人生的态 度。不安于现状,不甘于平庸,就可能在勇于进取的奋斗中奏响人生壮美的乐间。原地徘徊一千步,抵不上向前迈出第 一步;心中想过无数次,不如撸起袖子干一次。世界上从不缺少空想家,缺的往往是开拓的勇气和勤勉的实干。不要被 内心的犹疑和怯懦束缚,行动起来,你终将成为更好的自己。人生就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。 无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。不谈以前的艰难,只论现在的坚持。人生就像舞台, 不到谢幕,永远不要认输!努力是一种生活态度,和年龄无关!生活要有激情,只要你有前进的方向和目标,什么时候 开始都不晚,负能量的脑袋不会给你正能量的人生!简简单单,学最好的别人,做最好的自己。路是一步一步的走出来 的 ,只有脚踏实地的往前走。不管遇到多大的风雨,坚持走下去,阳光灿烂的笑容,在风雨后等着你我。笑着走下去, 一定会见到最美的长虹。每个人都是通过自身的努力,去决定生活的样子,每一次付出,都会在以后的日子一点点回报 在你身上。生活不会亏待努力的人,也不会同情假勒奋的人。别让未来的你怨恨今天的自己。耐心点,坚强点;总有一 天,你承受过的疼痛会有助于你。世界不会在意你的自尊,人们看的只是你的成就。在你没有成就以前,切勿过分强调 自尊。喜欢一个人,就是两个人在一起很开心;而爱一个人,即使不开心也想和他在一起。身体最重要,上网不要熬通 宵。时间没有等我,是你忘了带我走,我们就这样迷散在陌生的风雨里,从此天各一方,两两相忘。心有多大,舞台就 有多大。思考的越多,得到的越多。因为思考可以释放能量。福报不够的人,就会常常听到是非;福报够的人,从来就 没听到过是非。因为清楚地明白得不到我想要的,所以就选择了放弃;不知道这样做是对还是错,那么就让时间来裁决 吧。时间没有等我,是你忘了带我走,我左手是过目不忘的萤火,右手里是十年一个漫长的打坐。少年的时候想逃家, 青年的时候想成家,成年的时候想离家,老年的时候想回家。生命中,不断的有人离开或进入,于是,看见的看不见了, 记住的遗忘了;生命中不断的有得到和失落,于是,看不见的看见了,遗忘的记住了。通过云端的道路,只亲吻攀登者 的足迹许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。学会宽恕就是学会顺从自己的心, “恕”字拆开就是“如心”。人生的道路是何其地漫长,在这漫长的人生道路之上,唯有不断地求索才能真正地感悟到 人生的真谛。我爱你时,你说什么就是什么。我不爱你时,你说你是什么。人生是需要用苦难浸泡的,没有了伤痛,生 命就少了炫彩和厚重。没有汽车是郁闷的生活,有了汽车是闷气的生活;没有好车是羡慕的生活,有了好车是提防的生 活。有时候不是不懂,只是不想懂;有时候不是不知道,只是不想说出来;有时候不是不明白,而是明白了也不知道该 怎么做,于是就保持了沉默。真正的放弃是悄无声息的。别想一下造出大海,必须先由小河川开始。还记得你说世界美 好事情真的特别多,只是很容易擦肩而过。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。承认自 己的伟大,就是认同自己的愚疑。每个人都有自己鲜明的主张和个性,不要试图去改变他人,同样,也不要被他人所改 变生活,匀速的是爱,不匀速则变成一种伤害。时间给空想者痛苦,给创造者幸福。遇上什么人是命运的事,但爱上什 么人离开什么人,则是自己的事。生命不是躯体,而是心性;人生不是岁月,而是永恒;云水不是景色,而是襟怀;日 出不是早晨,而是朝气;风雨不是天象,而是锤炼;沧桑不是自然,而是经历;幸福不是状态,而是感受。初恋:就想 一见钟情!热恋:就想以身相许!留恋:就想百依百顺!失恋:就想你东我西!爱情如花,友情如酒,花开一阵,酒香 一生。即使没有风,我也可以飞舞。即使逆着别人的方向,我也可以前进。拿望远镜看别人,拿放大镜看自己。4、我只 能拼,因为我想赢。轻装上阵,不要让太多的昨天占据了你的今天。人需要沉淀,要有足够的时间去反思,才能让自己 变得更完美。当你觉得你可以为之奋斗的时候,别放弃。等待是很难过,但后悔会更难过。佛陀从不勉强别人去做他不 喜欢的事情,佛陀只是告诉众生,何者是善?何者是恶?善恶还是要自己去选择,生命还是要自己去掌握。一个人时, 善待自己。两个人时,善待对方。书是知识的宝库;书是进步的阶梯;书是人类的高级营养品。我们可以通过读书学习 获得大量的知识,从而提高自己的才能,使自己变得聪明起来。当你抓住一件东西总不放时,或许你永远只会拥有这件 东西,如果肯放手,便获得了其它选择机会。旧观念不放弃,新观念难产生!生活不能游戏人生,否则就会一事无成; 生活不能没有游戏,否则就会单调无聊。你永远也看不到我最寂寞时候的样子,因为只有你不在我身边的时候,我才最 寂寞。你怀念的那个地方,而实际是怀念那里的人。人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。 成熟,需要过程,也需要勇气。以后的以后少一些自以为是,多一些自知之明。人生就像愤怒的小鸟,每次你失败的时 候,总有几只猪在笑。美丽是危险的,有些事,不是不在意,而是在意了又能怎样。人生没有如果,只有后果和结果。
Байду номын сангаас 平面与平面的位置关系
(一)
问题一:空间中两个平面的位置关系?
平行、相交
问题二:如何研究两个相交平面的位置关系?
二面角
α l
α
l
β
二面角的范围
α
l
β
β
问题三:如何度量二面角的大小?
二面角的平面角
定义:以二面角的棱上任意一点为端点, 在
l
P
两个面内分别作垂直于棱的两条射线,
这两条射线所成的角叫做二面角的平 面角
P1
B
A
B1
A1
二面角的平面角必须满足:
1)角的顶点在棱上 2)角的两边分别在两个面内 (与顶点在棱上的选取位置无关) 3)角的两边都要垂直于二面角的棱
二面角的平面角作法:
定义法
点P在棱上
l
P
A
B
D1
A1
O1
C1 B1
D A
C B
二面角的度量:
1、找到或作出二面角的平面角 2、证明 1中的角就是所求的角 3、计算出此角的大小