微波合成反应资料讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e) 加热效率高。由于被加热物自身发热,加热没有热传导 过程,因此周围的空气及加热箱没有热损耗。 f) 加热渗透力强。透热深度和波长处于同一数量级,可达 几厘米到十几厘米,而传统加热为表面加热,渗透深度仅 为微米数量级。 g) 安全无害。由于微波能是控制在金属制成的加热室内和 波导管中工作,所以微波泄漏极少,没有放射线危害及有 害气体排放,不产生余热和粉尘污染,既不污染食物,也 不污染环境。
其同事研究了用微波炉来进行化学合成的 “烹饪实验” :以4-氯代苯基氧钠和苄基氯反应
来制备4-氯代苯基苄基醚。传统的方法是将反应物 在甲醇中回流12h,产率为65%;而用微波炉加热方 法,置反应物和溶剂于密闭的聚四氟乙烯容器中, 在560W时,仅35s使能得到相同产率的化合物反应 速率提高1240倍。从此微波有机合成逐渐变得流行 起来。
wenku.baidu.com
3. 微波加热的原理和优点
3.1微波加热的原理
在电磁场的作用下,物质中微观粒子可产生4 种类 型的介电极化:
(a)电子极化(原子核周围电子的重新排布)、 (b)原子极化(分子内原子的重新排布), (c)取向极化(分子永久偶极的重新排布) , (d)空间电荷极化(自由电荷的重新排布)。
前两种极化的驰豫时间在10~12 S 至10~13 s 之 间,比微波频率快得多,后两种极化的驰豫时间 与微波的频率相近,可以产生微波加热,即可通 过微观粒子的这种极化,将微波能转化为热能。
当微波辐照溶液时,溶液中的极性分子受微 波作用会吸收微波能量,同时这些吸收了能 量的极性分子在与周围其他分子的碰撞中把 能量传递给其他分子,从而是液体温度升高。 因液体中每一个极性分子都同时吸收和传递 微波能量。
3.2微波和传统加热
3.21 微波加热的特点:
a) 快速加热。微波能以光速(3×109m/s)在物体中传播, 瞬间(约109秒以内)就能把微波能转换为物质的热能,并 将热能渗透到被加热物质中,无需热传导过程。 b) 快速响应能力。能快速启动、停止及调整输出功率, 操作简单。 c) 加热均匀。里外同时加热。 d) 选择性加热。介质损耗大的,加热后温度高,反之亦 然。
由于微波的热效应,从而使微波作为一种 非通讯的电磁波广泛用于工业、农业、医 疗、科研及家庭等民用加热方面。国际上 规定各种民用微波的频段为915 MHz±50 MHz 和2450 ±50MHz。
原因是:为了防止民用微波对雷达、无线电 通讯、广播、电视的干扰
1.12微波化学的概念
微波化学(Microwave Chemistry,简称MC) 是近几 十年刚刚兴起的一门新交叉学科,经过短短几十 年的发展,微波化学已经渗透到有机合成、无机 合成、分析化学、非均相催化、采油、炼油、冶 金、环境污染治理等众多化学研究领域。随着微 波合成技术的不断提高,微波化学已成为目前化 学领域最活跃的领域之一。由于微波作用机理的 特殊性,微波化学对很多化学领域,特别是有机 合成领域带来了冲击。
1992 年, Kevin 等通过研究微波对2 ,4 ,6-三甲基苯 甲酸与2-丙醇的酯化反应速度的影响, 得出结果表 明最终酯化产率仅与温度因素有关,而与加热方式 无关。
4.2、“非热效应”
极性分子由于分子内电荷分布不平衡,在微波场中 能迅速吸收电磁波的能量,通过分子偶极作用以每 秒4.9×109 次的超高速振动,提高了分子的平均能 量,使反应温度与速度急剧提高。
微波有机合成
12应用化学
主要内容
1.微波和微波化学的概念 2.微波化学的发展 3. 微波加热的原理和优点 4. 微波加速有机反应的原理 5. 微波有机合成装置和技术 6. 微波反应的影响因素 7. 微波有机合成单元反应实例 8. 前景展望
1.微波和微波化学的概念 1.11微波
微波(Mirowave,Mw) 又称超高频电磁波, 波长:1 m~10 cm; 频率:300 MHz~300 GHz;它位于电磁波谱 的红外辐射(光波)和无线电波之间。 微波在400 MHz~10 GHz 的波段专门用于雷达, 其余部分用于电讯传输。
2.微波化学的发展
20 世纪 30 年代,发明产生微波的电子管。开始 微波技术仅用于军事雷达; 1947 年,美国发明了第一台加热食品的机器—微 波炉; 1952 年, Broida等人采用形成微波等离子体的办 法以发射光谱法测定了氢一氘混合气休中氘同位 素的含量---微波等离子体第一次用于光谱分析; 60 年代后,用于无机材料的合成,如表面膜(金 刚石膜、氮化硼膜等)和纳米粉体材料的合成;
4. 微波加速有机反应的原理
微波加速有机反应的机理, 存在着两种观点。
4.1、“内加热”
认为虽然微波是一种内加热,具有加热速度快、 加热均匀无温度梯度、无滞后效应等特点,但 微波应用化学反应仅仅是一种加热方式,与传 统加热反应并无区别。
他们认为微波应用于化学反应的频率属于非电离 辐射,在与分子的化学键共振时不可能引起化学键 断裂,也不能使分子激发到更高的转动或振动能级。 微波对化学反应的加速主要归结为对极性有机物 的选择加热,既微波的致热效应。
在1969 年, 美国科学家Vanderhoff就利 用家用微波炉加热进行了丙烯酸和α-甲 基丙烯酸的乳液聚合, 意外地发现与常 规加热相比, 微波加热会使聚合速度明 显加快, 这是微波用于有机合成化学的 最早记载, 但当时却没引起人们的重视。
微波有机合成化学开始的标志:1986 年,加拿
大Laurentian(劳伦森)大学的Gedye教授及
但是在非极性溶剂(如甲苯、正己烷、乙醚、 四氯化碳等) 中吸收微波能量后,通过分子碰撞而 转移到非极性分子上,使加热速率大为降低,所以 微波不能使这类反应的温度得以显著提高。
3.12微波加热的优点
传统加热是由外部热源通过热辐射由表及里的 传导时加热。能量利用率低,温度分布不均匀。
与传统加热相比, 微波加热的优点: a) 可使反应速率大大加快, 可以提高几倍、
几十倍甚至上千倍。 b) 由于微波为强电磁波, 产生的微波等离子
体中常可存在热力学方法得不到的高能态原子、 分子和离子, 因而可使一些热力学上不可能发生 的反应得以发生。