微波合成反应ppt
合集下载
微波法合成乙酰苯胺
微波法合成乙酰苯胺
01 引言
目录
02 材料与方法
03 一、反应原理
04
二、仪器设备与实验 步骤
05 三、参数设置
06 参考内容
引言
乙酰苯胺是一种重要的有机化合物,具有广泛的应用价值。传统的合成方法 通常采用浓硫酸催化下的苯胺与乙酸反应,但存在反应时间长、产率较低等问题。 近年来,随着微波技术的快速发展,越来越多的研究者开始探索微波法在有机合 成中的应用。本次演示将重点介绍微波法合成乙酰苯胺的原理、方法及未来展望。
5、反应结束后,将反应液转移至分液漏斗中,静置分层; 6、分离出有机层,用少量的水洗涤,以减少有机层的损失;
7、将有机层干燥后,得到乙酰苯胺粗品; 8、对粗品进行重结晶提纯,得到高纯度乙酰苯胺。
8、对粗品进行重结晶提纯,得 到高纯度乙酰苯胺。
1、对照组的收率和纯度分别为65.0%和90.0%,作为对比组,为实验组提供 了参考数据;
2、实验组1的收率和纯度分别为92.0%和95.0%,说明在245W的功率下反应 30min可以得到较好的实验结果;
3、实验组2的收率和纯度分别为85.0%和92.0%,说明在400W的功率下反应 20min也可以得到较好的实验结果;
4、实验组3的收率和纯度分别为75.0%和88.0%,说明在560W的功率下反应 15min得到的实验结果相对较差;
5、用水洗涤有机层,干燥后得到乙酰苯胺粗品; 6、对粗品进行重结晶提纯,得到高纯度乙酰苯胺。
6、对粗品进行重结晶提纯,得 到高纯度乙酰苯胺。
1、将苯胺和乙酰氯按照1:1的摩尔比加入烧杯中,搅拌均匀; 2、将混合物转移至微波反应器中,注意避免残留空气;
3、放入微波炉中,选择合适的功率和时间进行反应; 4、反应过程中要保持磁力搅拌器的搅拌,使反应体系充分混合;
01 引言
目录
02 材料与方法
03 一、反应原理
04
二、仪器设备与实验 步骤
05 三、参数设置
06 参考内容
引言
乙酰苯胺是一种重要的有机化合物,具有广泛的应用价值。传统的合成方法 通常采用浓硫酸催化下的苯胺与乙酸反应,但存在反应时间长、产率较低等问题。 近年来,随着微波技术的快速发展,越来越多的研究者开始探索微波法在有机合 成中的应用。本次演示将重点介绍微波法合成乙酰苯胺的原理、方法及未来展望。
5、反应结束后,将反应液转移至分液漏斗中,静置分层; 6、分离出有机层,用少量的水洗涤,以减少有机层的损失;
7、将有机层干燥后,得到乙酰苯胺粗品; 8、对粗品进行重结晶提纯,得到高纯度乙酰苯胺。
8、对粗品进行重结晶提纯,得 到高纯度乙酰苯胺。
1、对照组的收率和纯度分别为65.0%和90.0%,作为对比组,为实验组提供 了参考数据;
2、实验组1的收率和纯度分别为92.0%和95.0%,说明在245W的功率下反应 30min可以得到较好的实验结果;
3、实验组2的收率和纯度分别为85.0%和92.0%,说明在400W的功率下反应 20min也可以得到较好的实验结果;
4、实验组3的收率和纯度分别为75.0%和88.0%,说明在560W的功率下反应 15min得到的实验结果相对较差;
5、用水洗涤有机层,干燥后得到乙酰苯胺粗品; 6、对粗品进行重结晶提纯,得到高纯度乙酰苯胺。
6、对粗品进行重结晶提纯,得 到高纯度乙酰苯胺。
1、将苯胺和乙酰氯按照1:1的摩尔比加入烧杯中,搅拌均匀; 2、将混合物转移至微波反应器中,注意避免残留空气;
3、放入微波炉中,选择合适的功率和时间进行反应; 4、反应过程中要保持磁力搅拌器的搅拌,使反应体系充分混合;
微波合成反应
成方法。
前景展望:未来, 微波合成反应有望 在更广泛的领域得 到应用,如新能源、 生物医药等,为人 类社会的可持续发 展提供更多可能性。
未来挑战:尽管微 波合成反应具有许 多优点,但仍面临 一些挑战,如反应 条件的优化、安全 性等问题,需要进 一步研究和探索。
研究方向:为了更 好地发挥微波合成 反应的优势,未来 的研究应关注如何 提高合成效率、降 低成本、拓展应用
● 实验设备:微波炉、反应容器、搅拌器、温度计等
● 操作步骤: a. 准备原料和设备,确保干净无水 b. 将原料放入反应容器中,搅拌均匀 c. 将反应容器放入微波炉中,设置 合适的时间和功率 d. 取出反应容器,冷却后取出产物
● a. 准备原料和设备,确保干净无水 ● b. 将原料放入反应容器中,搅拌均匀 ● c. 将反应容器放入微波炉中,设置合适的时间和功率 ● d. 取出反应容器,冷却后取出产物
动力学模型:描述反应速率和 反应进程的数学模型,有助于 理解反应过程和优化反应条件
影响因素:反应物浓度、温度、 压力、微波功率等对反应速率 和产物的影响
应用领域:材料科学、医药、 环保等领域
PART FOUR
组成:微波反应器、磁力搅拌器、温度控制器、微波源等
工作原理:微波反应器中的微波场能够加速反应物分子的运动,提高反应速率;磁力搅拌 器能够保证反应物充分混合;温度控制器能够精确控制反应温度;微波源产生微波能量, 通过微波反应器传递给反应物分子。
原理:微波的电 磁场使反应物分 子产生快速旋转 和振动,从而提 高反应速率。
过程:将反应物 置于微波反应器 中,通过调节微 波的功率和辐射 时间,控制反应 条件,实现高效、 环保的合成。
应用领域:广泛 应用于材料科学、 医药、环保等领 域。
前景展望:未来, 微波合成反应有望 在更广泛的领域得 到应用,如新能源、 生物医药等,为人 类社会的可持续发 展提供更多可能性。
未来挑战:尽管微 波合成反应具有许 多优点,但仍面临 一些挑战,如反应 条件的优化、安全 性等问题,需要进 一步研究和探索。
研究方向:为了更 好地发挥微波合成 反应的优势,未来 的研究应关注如何 提高合成效率、降 低成本、拓展应用
● 实验设备:微波炉、反应容器、搅拌器、温度计等
● 操作步骤: a. 准备原料和设备,确保干净无水 b. 将原料放入反应容器中,搅拌均匀 c. 将反应容器放入微波炉中,设置 合适的时间和功率 d. 取出反应容器,冷却后取出产物
● a. 准备原料和设备,确保干净无水 ● b. 将原料放入反应容器中,搅拌均匀 ● c. 将反应容器放入微波炉中,设置合适的时间和功率 ● d. 取出反应容器,冷却后取出产物
动力学模型:描述反应速率和 反应进程的数学模型,有助于 理解反应过程和优化反应条件
影响因素:反应物浓度、温度、 压力、微波功率等对反应速率 和产物的影响
应用领域:材料科学、医药、 环保等领域
PART FOUR
组成:微波反应器、磁力搅拌器、温度控制器、微波源等
工作原理:微波反应器中的微波场能够加速反应物分子的运动,提高反应速率;磁力搅拌 器能够保证反应物充分混合;温度控制器能够精确控制反应温度;微波源产生微波能量, 通过微波反应器传递给反应物分子。
原理:微波的电 磁场使反应物分 子产生快速旋转 和振动,从而提 高反应速率。
过程:将反应物 置于微波反应器 中,通过调节微 波的功率和辐射 时间,控制反应 条件,实现高效、 环保的合成。
应用领域:广泛 应用于材料科学、 医药、环保等领 域。
材料化学--微波合成
表1 不同材料的tg (3000MHz)
5
微波用于化学合成中有以下优点: (1)条件温和、能耗低、反应速度快; (2)微波能可以直接穿透一定深度的样品,里外同 时加热,不需传热过程,瞬时可达一定温度; (3)通过调节微波的输出功率,可使样品的加热情 况立即无惰性的改变,便于进行自动控制和连续 操作; (4)热能利用率高(50%~70%),可大大节约能 量。
3
微波加热和加速反应机理
微波对化学反应的作用是非常复杂的,一方面是 反应物分子吸收了微波能量,提高了分子运动速 度,致使分子运动杂乱无章,导致熵增加;另一 方面微波对极性分子的作用,迫使其按照电磁场 作用方式运动,每秒变化 2.45×109 次,导致了熵 的减小,因此微波对化学反应的机理是不能仅用 微波致热效应描述的。微波除了具有热效应外, 还存在一种不是由温度引起的非热效应。微波作 用下的化学反应,改变了反应动力学,降低了反 应活化能。认为微波存在非热效应,并在反应中 起作用。
微波固相合成
迅速均匀,易于控制 气相产物逸出方向与燃烧波传播方 向一致,气体被驱赶出来可以获得 致密度较好的产品 动力学因素影响较大 产品的纯度高,粒度小,均一性好
9
I. Ganesh et al., Ceramics International, 31 (2005) 67
微波固相合成的注意事项
添加剂
粒子运动
核内重排
内层电子跃迁
真空紫外 紫外 可见 红外 远红外
微波 无线电波
外层电子跃迁
分子振动
分子转动
偶极子转向极化 界面极化 离子跳跃弛豫
2
微波加热和加速反应机理
在微波加热过程中,处于微波电磁场中的陶瓷制品加热难 易与材料对微波吸收能力大小有关,其吸收功率与微波频 率和介质损耗角正切成正比。 物质的介电损耗因子: tg =2/1 式中 2 为电磁辐射转变为热量的效率的量度, 1 为该物质 的介电常数。
《微波电路》课件
高频段、大带宽
随着信息技术的不断发展,微 波电路的工作频率和传输带宽
也在不断增大。
集成化、小型化
随着微电子技术的发展,微波 电路的集成化程度越来越高, 体积越来越小。
多功能化
微波电路正向着多功能化的方 向发展,如同时处理多种信号 、实现多种功能等。
低成本、低功耗
随着市场竞争的加剧,低成本 、低功耗的微波电路成为研究
测试技术
微波电路的测试包括信号源测试、接 收机测试和系统测试等。信号源测试 主要是测试信号源的频率、功率和调 制等特性;接收机测试主要是测试接 收机的灵敏度、动态范围和抗干扰能 力等特性;系统测试主要是将微波电 路与其他系统进行集成测试,验证整 个系统的性能和功能。
05
微波电路的典型应用案例
微波通信系统中的微波电路
微波电路与生物医学工程 的融合
生物医学工程中的无损检测、生物传感器等 技术需要利用微波电路进行信号传输和处理 ,这种交叉融合有助于推动两个领域的共同
发展。
THANKS
感谢观看
系统误差
系统误差是由测量系统的硬件设备、线路损耗、连接器失 配等因素引起的误差。这些误差可以通过校准和修正来减 小。
方法误差
方法误差是由测量方法本身引起的误差,如信号源的频率 稳定度、测量接收机的动态范围等。这些误差可以通过选 择合适的测量方法和条件来减小。
微波电路的调试与测试技术
调试与测试的重要性
新型微波半导体材料
新型微波半导体材料如宽禁带半导体材料(如硅碳化物和氮 化镓)具有高电子迁移率和化学稳定性,为微波电路的发展 提供了新的可能性。
新型微波器件在微波电路中的应用
新型微波电子器件
随着微电子技术的不断发展,新型微波 电子器件如微波晶体管、微波集成电路 等不断涌现,这些器件具有体积小、重 量轻、可靠性高等优点,在雷达、通信 、导航等领域得到广泛应用。
随着信息技术的不断发展,微 波电路的工作频率和传输带宽
也在不断增大。
集成化、小型化
随着微电子技术的发展,微波 电路的集成化程度越来越高, 体积越来越小。
多功能化
微波电路正向着多功能化的方 向发展,如同时处理多种信号 、实现多种功能等。
低成本、低功耗
随着市场竞争的加剧,低成本 、低功耗的微波电路成为研究
测试技术
微波电路的测试包括信号源测试、接 收机测试和系统测试等。信号源测试 主要是测试信号源的频率、功率和调 制等特性;接收机测试主要是测试接 收机的灵敏度、动态范围和抗干扰能 力等特性;系统测试主要是将微波电 路与其他系统进行集成测试,验证整 个系统的性能和功能。
05
微波电路的典型应用案例
微波通信系统中的微波电路
微波电路与生物医学工程 的融合
生物医学工程中的无损检测、生物传感器等 技术需要利用微波电路进行信号传输和处理 ,这种交叉融合有助于推动两个领域的共同
发展。
THANKS
感谢观看
系统误差
系统误差是由测量系统的硬件设备、线路损耗、连接器失 配等因素引起的误差。这些误差可以通过校准和修正来减 小。
方法误差
方法误差是由测量方法本身引起的误差,如信号源的频率 稳定度、测量接收机的动态范围等。这些误差可以通过选 择合适的测量方法和条件来减小。
微波电路的调试与测试技术
调试与测试的重要性
新型微波半导体材料
新型微波半导体材料如宽禁带半导体材料(如硅碳化物和氮 化镓)具有高电子迁移率和化学稳定性,为微波电路的发展 提供了新的可能性。
新型微波器件在微波电路中的应用
新型微波电子器件
随着微电子技术的不断发展,新型微波 电子器件如微波晶体管、微波集成电路 等不断涌现,这些器件具有体积小、重 量轻、可靠性高等优点,在雷达、通信 、导航等领域得到广泛应用。
微波合成
引子
微波在整个电磁波谱中的位臵如图1所示,通常指 波长为1m到0.1mm范围内的电磁波,其相应的频率 范围是300 MHz~3000 GHz。 1~25cm波长范围用于雷达,其它的波长范围用于 无线电通讯,为了不干扰上述这些用途.国际无线 电通讯协会(CCIP)规定家用或工业用微波加热设备 的微波频率是2450MHz(波长12.2cm)和915MHz(波 长32.8cm)。 家用微波炉使用的频率都是2450MHz。915MHz的 频率主要用于工业加热。
微波烧结的应用
微波烧结不仅可适用于结构陶瓷(如Al2O3、ZrO2、ZTA、Si3N4、AlN和 BC等),电子陶瓷(BaTiO3)和超导材料的制备,而且也可用于金刚石 薄膜沉积和光导纤维棒的气相沉积。微波烧结可降低烧结温度,缩短烧 结时间,在性能上也与传统方法制备的样品相比有很大区别,可以形成 致密均匀的陶瓷制品。此外,导电金属中加入一定量的陶瓷介质颗粒后, 也可用微波加热烧结,也可以对不同性能的陶瓷用微波将其烧结在一起。 继陶瓷烧结及陶瓷结合之后,利用微波合成陶瓷材料粉料的研究也在增 多,利用氧化物加热反应,在微波场中分别合成了SiC、TiC、NbC、 TaC等超硬材料,而只要15min。 材料的合成过程,使用微波加热,可以使化学反应远离平衡态,这就可 以获得许多常用高温固相反应难以得到的反应产物。研究发现,一般加 热的ZrC-TiC的固溶反应,固溶量只在5%左右,而采用微波加热的固相 反应,可以使相互固溶量超过10%,这是微波能够使固溶相快速冷却的 结果。Patil等人用微波合成了尖晶石,研究结果发现,用微波能合成单 相的尖晶石,几乎不含其它相,表明了微波促进合成反应和增加固溶相 的稳定性。
图10-3 传统炉和微波炉中加热模式比较
一、微波加热技术原理
微波合成苯乙胺及苯乙胺的拆分
O
+
NH2 NH3 C OH α— 氨基 醇 — _H O 2
NH H2/Ni C
NH2 C
C 亚胺 胺
如果用甲酸做还原剂来替代H2/Ni,那么这个还 原胺化过程就被称为鲁卡特反应。
2、微波加速化学反应的机理
有两种观点:A、微波是一种内加热方式; 有加热速度快,加热均匀,无滞后效应 等特点;B、微波作用机理复杂,一方面 反应物分子吸收微波能量,提高分子运 动速度,导致熵的增加;另一方面微波 对极性分子的作用,迫使其按电磁场作 用运动(2.45X109次/S),导致熵的减少。
将上述所获(-)-α-苯乙胺-(+)-酒石酸盐溶入 10ml水中,加入1.5ml50%氢氧化钠溶液,充 分振摇后溶液呈强碱性。用乙醚对溶液萃取三 次(3×10ml )合并乙醚萃取液,用无水硫酸 钠干燥,过滤,热水浴蒸除乙醚,即得(-)-α-苯 乙胺粗品。 称重、测旋光度并计算产率和比旋光度,通过 与其纯样品的比旋光度比较,求出实验样品的 光学纯度。 纯(-)-α-苯乙胺mp184~1860C
3、反应方程式
O CCH3 + 2 HCOONH4 NHCHO CHCH3 + 2 H2O + CO2 + NH3
NHCHO CHCH3 + H 2O + HCl NH2 + NaOH CHCH3 α
NH3Cl CHCH3 + HCOOH
NH3Cl CHCH3
+
NaCl +
H 2O
苯乙胺
(二)仪器和试剂
(三)实验方法
1、 微波反应器使用方法 、 (1) 按电源键。 (2) 设温度:按住“模式”键至出现红色 “C 02”字符(约2S),可用增加“∨”或减 少“∧”键来设定T。其中数字的倍率可通过 “位移”键来改变,再按模式至“STOP”出现。 (3) 微波反应器顶部的孔中不得放入金属导 线(包括水银温度计),以免微波泄露。 (4) 运行:关上门;按“启动”键;此时风 扇开始工作。
+
NH2 NH3 C OH α— 氨基 醇 — _H O 2
NH H2/Ni C
NH2 C
C 亚胺 胺
如果用甲酸做还原剂来替代H2/Ni,那么这个还 原胺化过程就被称为鲁卡特反应。
2、微波加速化学反应的机理
有两种观点:A、微波是一种内加热方式; 有加热速度快,加热均匀,无滞后效应 等特点;B、微波作用机理复杂,一方面 反应物分子吸收微波能量,提高分子运 动速度,导致熵的增加;另一方面微波 对极性分子的作用,迫使其按电磁场作 用运动(2.45X109次/S),导致熵的减少。
将上述所获(-)-α-苯乙胺-(+)-酒石酸盐溶入 10ml水中,加入1.5ml50%氢氧化钠溶液,充 分振摇后溶液呈强碱性。用乙醚对溶液萃取三 次(3×10ml )合并乙醚萃取液,用无水硫酸 钠干燥,过滤,热水浴蒸除乙醚,即得(-)-α-苯 乙胺粗品。 称重、测旋光度并计算产率和比旋光度,通过 与其纯样品的比旋光度比较,求出实验样品的 光学纯度。 纯(-)-α-苯乙胺mp184~1860C
3、反应方程式
O CCH3 + 2 HCOONH4 NHCHO CHCH3 + 2 H2O + CO2 + NH3
NHCHO CHCH3 + H 2O + HCl NH2 + NaOH CHCH3 α
NH3Cl CHCH3 + HCOOH
NH3Cl CHCH3
+
NaCl +
H 2O
苯乙胺
(二)仪器和试剂
(三)实验方法
1、 微波反应器使用方法 、 (1) 按电源键。 (2) 设温度:按住“模式”键至出现红色 “C 02”字符(约2S),可用增加“∨”或减 少“∧”键来设定T。其中数字的倍率可通过 “位移”键来改变,再按模式至“STOP”出现。 (3) 微波反应器顶部的孔中不得放入金属导 线(包括水银温度计),以免微波泄露。 (4) 运行:关上门;按“启动”键;此时风 扇开始工作。
毕业设计论文ppt课件
Байду номын сангаас
二,材料和设备
• 材料 玉米淀粉 使用及辽宁省军区宁冠安 农场淀粉厂,十二烯基琥珀酸酐(简称 DDSA) 工业级;无水碳酸钠,无水乙 醇,丙酮等。
• 设备 MAS-I型常压微波辅助合成/萃取 反应仪 上海新仪微波化学科技有限公 司 恒温振荡器 常州国华电器有限公司。
2.碳酸钠用量对取代度的影 响
• 在淀粉用量 10g, 水用量 10g,反应时间 4/min, 酸酐6.0g,丙酮6mL微波功率 400W 条件下, 改变碳酸钠用量, 测定酯 化度, 结果如图 1 所示。(碳酸钠的量 分别为:0.2g, 0.4g, 0.6g , 0.8g, 1.0g ,)
• 确定最佳碳酸钠用量
三,实验操作
• 1 酸单酯的制备 • 将定量淀粉(绝干)(10g)用碳酸钠水溶液调节至一定湿度, 数分钟后再
(4);6-11 • 张红梅 陈玲 李琳 微波在淀粉改性中的应用(J)现代化工 2001(5)
60
THANK YOUR !
一,前言
• 淀粉不仅是令人类食物的主要成分,也是食品工业,饲料工业的重要原 料,随着食品加工技术的不断发展,食品新技术,新工艺对淀粉性质提 出更高的要求,为适应这一需要必须对原淀粉进行变形处理,使之符合 新工艺,新技术的应用要求。十二烯基琥珀酸淀粉脂(简称SSAS)
• 是通过十二烯基琥珀酸酐(简称DDSA)与淀粉进行酯化反应得到的。 DDSA与淀粉进行酯化反应,当酸酐的环被打开,其中一端以脂键与淀 粉分子的自由羧基相结合后,另一端会长生一个羧酸,使反应体系PH下 降,这就需要用碱性试剂去中和产生的羧酸,使反应向酯化反应的方向 进行下去。SSAS的制备方法包括湿法,有机相法和干法等。湿法工艺 的优点是反应很均匀,缺点在于DDSA是不溶于水的,要求采用自卤化 的方法一增加反应速度;有机相法的有点是反应均匀,缺点是产品的取 代度不是很好,并且生产成本高,同时对环境的污染很大,干法工艺的 优点是工艺简单,成本低,反映效率也可以达到很高,对环境的污染也 很小反应也很均匀,但是反应时间很长,要求在搅拌下进行。微波反应 是电磁波作用于极性分子使他发生震动和转动,电磁波转变成热能。当 微波作用于反应物时可加剧分子运动,提高分子的能量,降低分子的活 化能,提高反应速度,且操作简单能耗低,试剂转化率高。所以本实验 采用的是微波干法生产SSAS。
二,材料和设备
• 材料 玉米淀粉 使用及辽宁省军区宁冠安 农场淀粉厂,十二烯基琥珀酸酐(简称 DDSA) 工业级;无水碳酸钠,无水乙 醇,丙酮等。
• 设备 MAS-I型常压微波辅助合成/萃取 反应仪 上海新仪微波化学科技有限公 司 恒温振荡器 常州国华电器有限公司。
2.碳酸钠用量对取代度的影 响
• 在淀粉用量 10g, 水用量 10g,反应时间 4/min, 酸酐6.0g,丙酮6mL微波功率 400W 条件下, 改变碳酸钠用量, 测定酯 化度, 结果如图 1 所示。(碳酸钠的量 分别为:0.2g, 0.4g, 0.6g , 0.8g, 1.0g ,)
• 确定最佳碳酸钠用量
三,实验操作
• 1 酸单酯的制备 • 将定量淀粉(绝干)(10g)用碳酸钠水溶液调节至一定湿度, 数分钟后再
(4);6-11 • 张红梅 陈玲 李琳 微波在淀粉改性中的应用(J)现代化工 2001(5)
60
THANK YOUR !
一,前言
• 淀粉不仅是令人类食物的主要成分,也是食品工业,饲料工业的重要原 料,随着食品加工技术的不断发展,食品新技术,新工艺对淀粉性质提 出更高的要求,为适应这一需要必须对原淀粉进行变形处理,使之符合 新工艺,新技术的应用要求。十二烯基琥珀酸淀粉脂(简称SSAS)
• 是通过十二烯基琥珀酸酐(简称DDSA)与淀粉进行酯化反应得到的。 DDSA与淀粉进行酯化反应,当酸酐的环被打开,其中一端以脂键与淀 粉分子的自由羧基相结合后,另一端会长生一个羧酸,使反应体系PH下 降,这就需要用碱性试剂去中和产生的羧酸,使反应向酯化反应的方向 进行下去。SSAS的制备方法包括湿法,有机相法和干法等。湿法工艺 的优点是反应很均匀,缺点在于DDSA是不溶于水的,要求采用自卤化 的方法一增加反应速度;有机相法的有点是反应均匀,缺点是产品的取 代度不是很好,并且生产成本高,同时对环境的污染很大,干法工艺的 优点是工艺简单,成本低,反映效率也可以达到很高,对环境的污染也 很小反应也很均匀,但是反应时间很长,要求在搅拌下进行。微波反应 是电磁波作用于极性分子使他发生震动和转动,电磁波转变成热能。当 微波作用于反应物时可加剧分子运动,提高分子的能量,降低分子的活 化能,提高反应速度,且操作简单能耗低,试剂转化率高。所以本实验 采用的是微波干法生产SSAS。
微波加速合成法制备双马来酰亚胺.
THANKS!!!
微波加t速t 合成法
主讲人:关丽涛
1
2
3
目
简
tttl
第 三
优
部
介
点
分
内
容
录
1 简介
微波加速合成法是指在 有溶剂或无溶剂的条件 下,利用微波辐射形式 加速反应发生。相对于 传导加热方法 (如水浴、 油浴)而言,微波辐射 的高透射性使其具有加 热速度快、加热温度均 匀的特性。
1 简介
微波用于加速有机合 成反应,这一构想基 于1986年 Ge dye等首次在微波 中进行的苯甲基氯与 4-腈基酚盐的反应。
2 优点
易于操作、副产物少、效率高、环境友好也 是微波加速合成法。 根据GC-MS(质谱与气相色谱联用)和 1HNMR 分析发现,在无溶剂、20W功 率微波辐射下,一经辐射反应立即发生,且 10min后即可达到90%的收率
2ቤተ መጻሕፍቲ ባይዱ优点
运用微波辐射法,在无溶剂条件下,分别以 蒙脱石 KSF和蒙脱石 K-10为催化剂, 以不同结构的二元胺与马来酐为原料,合成 了不同结构的 BMI。实验结果显示,反应 在短短几分钟内完成,并获得了高达80% 左右的产率,且蒙脱石 KSF 的催化效率比 蒙脱石 K-10的高。
《微波合成反应》课件
《微波合成反应》PPT课件
目录
• 引言 • 微波合成反应的基本原理 • 微波合成反应的类型 • 微波合成反应的实验设备与操作 • 微波合成反应的应用实例 • 微波合成反应的前景与展望
01
引言
什么是微波合成反应
01
微波合成反应是一种利用微波能 量来加速化学反应的方法。
02
它利用了微波的特性,使反应物 分子在微波场中快速、均匀地吸 收能量,从而提高了反应速率和 效率。
04
微波合成反应的实验设备与操 作
微波合成反应仪的介绍
微波合成反应仪是一种利用微波 能量来加速化学反应的实验设备
。
它通常由微波源、反应容器、温 度控制系统和辅助设备(如磁力
搅拌器)组成。
微波合成反应仪具有快速、高效 、节能和环保等优点,因此在科 研和工业生产中得到广泛应用。
实验操作步骤与注意事项
化学工业
用于合成高分子材料、精细化 学品等。
农业
用于合成农药、植物生长调节 剂等。
环境科学
用于处理环境污染、废物资源 化利用等。
02
微波合成反应的基本原理
微波与物质的相互作用
微波与物质分子相互作用,使分子振 动幅度增大,相互碰撞频率增加,从 而产生热量。
微波对极性分子和非极性分子的作用 不同,极性分子在微波场中产生偶极 转动,而非极性分子则产生位移。
实验操作步骤与注意事项
01
注意事项
02 1. 在进行实验前,应仔细阅读仪器说明书和实验 指导书,确保正确使用设备。
03 2. 确保所使用的试剂和材料符合实验要求,并注 意其存放和使用期限。
实验操作步骤与注意事项
3. 在实验过程中,应密切关注反应进 程,避免因温度过高或压力过大而引 起意外。
目录
• 引言 • 微波合成反应的基本原理 • 微波合成反应的类型 • 微波合成反应的实验设备与操作 • 微波合成反应的应用实例 • 微波合成反应的前景与展望
01
引言
什么是微波合成反应
01
微波合成反应是一种利用微波能 量来加速化学反应的方法。
02
它利用了微波的特性,使反应物 分子在微波场中快速、均匀地吸 收能量,从而提高了反应速率和 效率。
04
微波合成反应的实验设备与操 作
微波合成反应仪的介绍
微波合成反应仪是一种利用微波 能量来加速化学反应的实验设备
。
它通常由微波源、反应容器、温 度控制系统和辅助设备(如磁力
搅拌器)组成。
微波合成反应仪具有快速、高效 、节能和环保等优点,因此在科 研和工业生产中得到广泛应用。
实验操作步骤与注意事项
化学工业
用于合成高分子材料、精细化 学品等。
农业
用于合成农药、植物生长调节 剂等。
环境科学
用于处理环境污染、废物资源 化利用等。
02
微波合成反应的基本原理
微波与物质的相互作用
微波与物质分子相互作用,使分子振 动幅度增大,相互碰撞频率增加,从 而产生热量。
微波对极性分子和非极性分子的作用 不同,极性分子在微波场中产生偶极 转动,而非极性分子则产生位移。
实验操作步骤与注意事项
01
注意事项
02 1. 在进行实验前,应仔细阅读仪器说明书和实验 指导书,确保正确使用设备。
03 2. 确保所使用的试剂和材料符合实验要求,并注 意其存放和使用期限。
实验操作步骤与注意事项
3. 在实验过程中,应密切关注反应进 程,避免因温度过高或压力过大而引 起意外。
微波辅助合成
2. 微波合成材料原理及工艺
选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。 介质损耗因数大的物质对微波的吸收能力就强,相反,就 弱。由于各物质的损耗因数存在差异,微波加热就表现出 选择性加热的特点。 水分子属极性分子,介电常数较大,其介质损耗因数 也很大,对微波具有强吸收能力。 而蛋白质、碳水化合物等的介电常数相对较小,其对 微波的吸收能力比水小得多。
2.4 微波辅助合成
微波通常是指波长为0.1mm – 1000mm范围内的电磁 波,其相应的频率范围是300MHz ~ 3000GHz。
微波在电磁波谱中的位置
1. 微波加热及加速反应机理
微波位于红外辐射和无线电波之间,但其产生的原理、 传输和应用的方式和后两者明显不同。 在微波中,10 ~ 250mm波长范围用于雷达,其他的波 长范围用于无线电通讯。 国际无线电通讯协会(CCIP)规定:家用微波炉使用频率 为2450 MHz(波长122mm),工业用加热微波炉的使用 频率为915 MHz(波长328mm)。
E
没有电场作用
在有电场作用Leabharlann 1. 微波加热及加速反应机理
E E
交变电场作用
由于微波是一种每秒振荡上百亿次的电磁场,放在这样的电磁场中,
分子的排列方向就要每秒钟随之改变上百亿次,这样,大量分子吸收
了微波的能量而高频率的剧烈的转动,便产生了大量的内能,使物体 的温度升高。
1. 微波加热及加速反应机理
1. 微波加热及加速反应机理
传统的加热: 由外部热源通过热辐射由表及里的传导时加热。能量利 用率低,温度分布不均匀。 微波加热:通过电介质分子将吸收的电磁能转变为热能 的一种加热方式,属于体加热方式,温度升高快,并且 里外温度相同。
共价有机骨架材料COFppt精选文档课件
100
RCOO-
80
Et-
60
40
系列由直接缩合反应难以得到 的孔道多样化的COFs,并且经 过修饰的COFs表现出了明显
20
优化的CO2吸附能力。
0
H P-COF 2
[Et] -H P-COF 25 2
[MeOAc] -H P-COF [AcOH] -H P-COF
50 2
50 2
[EtOH] -H P-COF 50 2
--
--
-- 450-1070
--
14-65
--
MOF-5
C24H12O13Zn4 12,15
--
3800
76
120(300K) 970(40bar)
MOF-177
C54H30O13Zn4 11,17
--
4750
75.2
--
O. M. Yaghi, et al., J. Am. Chem. Soc., 2009, 131, 8875-8883.
2.4 其他合成方法
单层COFs的合成
W. R. Dichtel, et al., Science, 2011, 332, 228-231.
11
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
COF-103的BET 4210m2 /g
① 硼基COFs有高的结晶度和规整的孔道结构,但是对水和质 子性溶剂不稳定;基于亚胺、腙、三嗪等的COFs稳定有所 提升,但是一般具有较差的结晶度以及有限的孔道。
展望:
• 合成:开发高效合成方法,缩短反应时间,增加合成量 • 结构:开发更多新型的COFs材料,得到集高稳定性、高
对乙酰氨基酚的合成ppt课件
Page
14
所取的合成路线以对氨基酚为原料
以对氨基苯酚和乙酸酐为原料,以锌粉为抗氧化剂, 活性炭为脱色剂,以稀乙酸为反应介质,采用微波辐射技术 合成对乙酰氨基酚
Page
15
原因
工业生产中采用的是微波辐射,微波能量能穿过容器直接 进入反应物内部并只对反应物和溶剂加热,且加热均匀, 防止反应物和产物因过热而分解。反应时间短,收率较高 ,操作简单,能耗小,污染少。 在工业生产中,既避免对环境的污染,环保;又有较高地 收率,因此,我们就考虑着是否可以将其大试放小,改为 小试,经过研究,小试以对氨基酚为原料仍有这些优势, 于是我们便选择了此合成方法。
Page
12
5 以苯酚为原料
吕布等[16]以苯酚为原料,经乙酰化、Fries重排、肟 化、Beckmann重排合成对乙酰氨基酚,收率分别为82 %,68.6 %,92.5 %,50.5 %。流程见图5。
Page
13
特点
优点:原料易得,价格低廉,污染较小; 缺点:反应步骤多,原料、试剂品种多,致后处理繁琐,收 率太低 (以苯酚计82 %×68.6 %×92.5 %×50.5 %=26.3 %)
2.亚硫酸氢钠
分子式: NaHSO3 分子量: 104.061 熔点: 150℃ 水溶性: 300 g/L 分子结构: 物化性质: 性状 白色单斜结晶。有二 氧化硫气味。 相对密度 1.48g/cm3 溶解性 易溶于水,微溶于 醇。
Page
19
操作步骤
1.对乙酰氨基酚的制备 于干燥的100ml锥形瓶中加入对氨基酚5.3g,水 15ml,醋酐6ml,轻轻振摇使成均相,再于80摄氏度水浴 中加热反应30分钟,放冷,析晶,过滤,滤饼以10ml冷 水洗2次,抽干,干燥,得白色结晶性对乙酰氨基酚粗品 约6g。 2.精制 于100ml锥形瓶中加入对乙酰氨基酚粗品,每克用 水5ml,加热使溶解,稍冷后加入活性炭0.5g,煮沸5min, 在吸滤瓶中先加入亚硫酸氢钠0.25g,趁热过滤,滤液放 冷析晶,过滤,滤饼以0.5%亚硫酸氢钠溶液5ml分2次洗 涤,抽干,干燥,得白色对乙酰氨基酚纯品约8g, mp.168~170摄氏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
由于微波的热效应,从而使微波作为一种 非通讯的电磁波广泛用于工业、农业、医 疗、科研及家庭等民用加热方面。国际上 规定各种民用微波的频段为915 MHz±50 MHz 和2450 ±50MHz。 原因是:为了防止民用微波对雷达、无线电 通讯、广播、电视的干扰
-
1.12微波化学的概念
微波化学(Microwave Chemistry,简称MC) 是近几 十年刚刚兴起的一门新交叉学科,经过短短几十 年的发展,微波化学已经渗透到有机合成、无机 合成、分析化学、非均相催化、采油、炼油、冶 金、环境污染治理等众多化学研究领域。随着微 波合成技术的不断提高,微波化学已成为目前化 学领域最活跃的领域之一。由于微波作用机理的 特殊性,微波化学对很多化学领域,特别是有机 合成领域带来了冲击。
-
2.微波化学的发展
20 世纪 30 年代,发明产生微波的电子管。开始 微波技术仅用于军事雷达; 1947 年,美国发明了第一台加热食品的机器—微 波炉; 1952 年, Broida等人采用形成微波等离子体的办 法以发射光谱法测定了氢一氘混合气休中氘同位 素的含量---微波等离子体第一次用于光谱分析; 60 年代后,用于无机材料的合成,如表面膜(金 刚石膜、氮化硼膜等)和纳米粉体材料的合成;
-
当微波辐照溶液时,溶液中的极性分子受微 波作用会吸收微波能量,同时这些吸收了能 量的极性分子在与周围其他分子的碰撞中把 能量传递给其他分子,从而是液体温度升高。 因液体中每一个极性分子都同时吸收和传递 微波能量。
-
3.2微波和传统加热
3.21 微波加热的特点:
a) 快速加热。微波能以光速(3×109m/s)在物体中传播, 瞬间(约109秒以内)就能把微波能转换为物质的热能,并 将热能渗透到被加热物质中,无需热传导过程。 b) 快速响应能力。能快速启动、停止及调整输出功率, 操作简单。 c) 加热均匀。里外同时加热。 d) 选择性加热。介质损耗大的,加热后温度高,反之亦 然。
1992 年, Kevin 等通过研究微波对2 ,4 ,6-三甲基苯 甲酸与2-丙醇的酯化反应速度的影响, 得出结果表 明最终酯化产率仅与温度因素有关,而与加热方式 无关。
-
4.2、“非热效应” 极性分子由于分子内电荷分布不平衡,在微波场中 能迅速吸收电磁波的能量,通过分子偶极作用以每 秒4.9×109 次的超高速振动,提高了分子的平均能 量,使反应温度与速度急剧提高。
-
3.12微波加热的优点
传统加热是由外部热源通过热辐射由表及里的 传导时加热。能量利用率低,温度分布不均匀。
与传统加热相比, 微波加热的优点: a) 可使反应速率大大加快, 可以提高几倍、
几十倍甚至上千倍。 b) 由于微波为强电磁波, 产生的微波等离子
体中常可存在热力学方法得不到的高能态原子、 分子和离子, 因而可使一些热力学上不可能发生 的反应得以发生。
-
e) 加热效率高。由于被加热物自身发热,加热没有热传导 过程,因此周围的空气及加热箱没有热损耗。 f) 加热渗透力强。透热深度和波长处于同一数量级,可达 几厘米到十几厘米,而传统加热为表面加热,渗透深度仅 为微米数量级。 g) 安全无害。由于微波能是控制在金属制成的加热室内和 波导管中工作,所以微波泄漏极少,没有放射线危害及有 害气体排放,不产生余热和粉尘污染,既不污染食物,也 不污染环境。
-
在1969 年, 美国科学家Vanderhoff就利 用家用微波炉加热进行了丙烯酸和α-甲 基丙烯酸的乳液聚合, 意外地发现与常 规加热相比, 微波加热会使聚合速度明 显加快, 这是微波用于有机合成化学的 最早记载, 但当时却没引起人们的重视。
-
微波有机合成化学开始的标志:1986 年,加拿 大Laurentian(劳伦森)大学的Gedye教授及 其同事研究了用微波炉来进行化学合成的 “烹饪实验” :以4-氯代苯基氧钠和苄基氯反应
-
4. 微波加速有机反应的原理
微波加速有机反应的机理, 存在着两种观点。 4.1、“内加热” 认为虽然微波是一种内加热,具有加热速度快、 加热均匀无温度梯度、无滞后效应等特点,但 微波应用化学反应仅仅是一种加热方式,与传 统加热反应并无区别。
-
他们认为微波应用于化学反应的频率属于非电离 辐射,在与分子的化学键共振时不可能引起化学键 断裂,也不能使分子激发到更高的转动或振动能级。 微波对化学反应的加速主要归结为对极性有机物 的选择加热,既微波的致热效应。
但是在非极性溶剂(如甲苯、正己烷、乙醚、 四氯化碳等) 中吸收微波能量后,通过分子碰撞而 转移到非极性分子上,使加热速率大为降低,所以 微波不能使这类反应的温度得以显著提高。
微波有机合成
12应用化学
-
主要内容
1.微波和微波化学的概念 2.微波化学的发展 3. 微波加热的原理和优点 4. 微波加速有机反应的原理 5. 微波有机合成装置和技术 6. 微波反应的影响因素 7. 微波有机合成单元反应实例 8. 前景展望
-
1.微波和微波化学的概念 1.11微波
微波(Mirowave,Mw) 又称超高频电磁波, 波长:1 m~10 cm; 频率:300 MHz~300 GHz;它位于电磁波谱 的红外辐射(光波)和无线电波之间。 微波在400 MHz~10 GHz 的波段专门用于雷达, 其余部分用于电讯传输。
在电磁场的作用下,物质中微观粒子可产生4 种类 型的介电极化:
(a)电子极化(原子核周围电子的重新排布)、 (b)原子极化(分子内原子的重新排布), (c)取向极化(分子永久偶极的重新排布) , (d)空间电荷极化(自由电荷的重新排布)。
前两种极化的驰豫时间在10~12 S 至10~13 s 之 间,比微波频率快得多,后两种极化的驰豫时间 与微波的频率相近,可以产生微波加热,即可通 过微观粒子的这种极化,将微波能转化为热能。
来制备4-氯代苯基苄基醚。传统的方法是将反应物 在甲醇中回流12h,产率为65%;而用微波炉加热方 法,置反应物和溶剂于密闭的聚四氟乙烯容器中, 在560W时,仅35s使能得到相同产率的化合物反应 速率提高1240倍。从此微波有机合成逐渐变得流行 起来。
-3. 微波加热的原理和优点3.1微波加热的原理
由于微波的热效应,从而使微波作为一种 非通讯的电磁波广泛用于工业、农业、医 疗、科研及家庭等民用加热方面。国际上 规定各种民用微波的频段为915 MHz±50 MHz 和2450 ±50MHz。 原因是:为了防止民用微波对雷达、无线电 通讯、广播、电视的干扰
-
1.12微波化学的概念
微波化学(Microwave Chemistry,简称MC) 是近几 十年刚刚兴起的一门新交叉学科,经过短短几十 年的发展,微波化学已经渗透到有机合成、无机 合成、分析化学、非均相催化、采油、炼油、冶 金、环境污染治理等众多化学研究领域。随着微 波合成技术的不断提高,微波化学已成为目前化 学领域最活跃的领域之一。由于微波作用机理的 特殊性,微波化学对很多化学领域,特别是有机 合成领域带来了冲击。
-
2.微波化学的发展
20 世纪 30 年代,发明产生微波的电子管。开始 微波技术仅用于军事雷达; 1947 年,美国发明了第一台加热食品的机器—微 波炉; 1952 年, Broida等人采用形成微波等离子体的办 法以发射光谱法测定了氢一氘混合气休中氘同位 素的含量---微波等离子体第一次用于光谱分析; 60 年代后,用于无机材料的合成,如表面膜(金 刚石膜、氮化硼膜等)和纳米粉体材料的合成;
-
当微波辐照溶液时,溶液中的极性分子受微 波作用会吸收微波能量,同时这些吸收了能 量的极性分子在与周围其他分子的碰撞中把 能量传递给其他分子,从而是液体温度升高。 因液体中每一个极性分子都同时吸收和传递 微波能量。
-
3.2微波和传统加热
3.21 微波加热的特点:
a) 快速加热。微波能以光速(3×109m/s)在物体中传播, 瞬间(约109秒以内)就能把微波能转换为物质的热能,并 将热能渗透到被加热物质中,无需热传导过程。 b) 快速响应能力。能快速启动、停止及调整输出功率, 操作简单。 c) 加热均匀。里外同时加热。 d) 选择性加热。介质损耗大的,加热后温度高,反之亦 然。
1992 年, Kevin 等通过研究微波对2 ,4 ,6-三甲基苯 甲酸与2-丙醇的酯化反应速度的影响, 得出结果表 明最终酯化产率仅与温度因素有关,而与加热方式 无关。
-
4.2、“非热效应” 极性分子由于分子内电荷分布不平衡,在微波场中 能迅速吸收电磁波的能量,通过分子偶极作用以每 秒4.9×109 次的超高速振动,提高了分子的平均能 量,使反应温度与速度急剧提高。
-
3.12微波加热的优点
传统加热是由外部热源通过热辐射由表及里的 传导时加热。能量利用率低,温度分布不均匀。
与传统加热相比, 微波加热的优点: a) 可使反应速率大大加快, 可以提高几倍、
几十倍甚至上千倍。 b) 由于微波为强电磁波, 产生的微波等离子
体中常可存在热力学方法得不到的高能态原子、 分子和离子, 因而可使一些热力学上不可能发生 的反应得以发生。
-
e) 加热效率高。由于被加热物自身发热,加热没有热传导 过程,因此周围的空气及加热箱没有热损耗。 f) 加热渗透力强。透热深度和波长处于同一数量级,可达 几厘米到十几厘米,而传统加热为表面加热,渗透深度仅 为微米数量级。 g) 安全无害。由于微波能是控制在金属制成的加热室内和 波导管中工作,所以微波泄漏极少,没有放射线危害及有 害气体排放,不产生余热和粉尘污染,既不污染食物,也 不污染环境。
-
在1969 年, 美国科学家Vanderhoff就利 用家用微波炉加热进行了丙烯酸和α-甲 基丙烯酸的乳液聚合, 意外地发现与常 规加热相比, 微波加热会使聚合速度明 显加快, 这是微波用于有机合成化学的 最早记载, 但当时却没引起人们的重视。
-
微波有机合成化学开始的标志:1986 年,加拿 大Laurentian(劳伦森)大学的Gedye教授及 其同事研究了用微波炉来进行化学合成的 “烹饪实验” :以4-氯代苯基氧钠和苄基氯反应
-
4. 微波加速有机反应的原理
微波加速有机反应的机理, 存在着两种观点。 4.1、“内加热” 认为虽然微波是一种内加热,具有加热速度快、 加热均匀无温度梯度、无滞后效应等特点,但 微波应用化学反应仅仅是一种加热方式,与传 统加热反应并无区别。
-
他们认为微波应用于化学反应的频率属于非电离 辐射,在与分子的化学键共振时不可能引起化学键 断裂,也不能使分子激发到更高的转动或振动能级。 微波对化学反应的加速主要归结为对极性有机物 的选择加热,既微波的致热效应。
但是在非极性溶剂(如甲苯、正己烷、乙醚、 四氯化碳等) 中吸收微波能量后,通过分子碰撞而 转移到非极性分子上,使加热速率大为降低,所以 微波不能使这类反应的温度得以显著提高。
微波有机合成
12应用化学
-
主要内容
1.微波和微波化学的概念 2.微波化学的发展 3. 微波加热的原理和优点 4. 微波加速有机反应的原理 5. 微波有机合成装置和技术 6. 微波反应的影响因素 7. 微波有机合成单元反应实例 8. 前景展望
-
1.微波和微波化学的概念 1.11微波
微波(Mirowave,Mw) 又称超高频电磁波, 波长:1 m~10 cm; 频率:300 MHz~300 GHz;它位于电磁波谱 的红外辐射(光波)和无线电波之间。 微波在400 MHz~10 GHz 的波段专门用于雷达, 其余部分用于电讯传输。
在电磁场的作用下,物质中微观粒子可产生4 种类 型的介电极化:
(a)电子极化(原子核周围电子的重新排布)、 (b)原子极化(分子内原子的重新排布), (c)取向极化(分子永久偶极的重新排布) , (d)空间电荷极化(自由电荷的重新排布)。
前两种极化的驰豫时间在10~12 S 至10~13 s 之 间,比微波频率快得多,后两种极化的驰豫时间 与微波的频率相近,可以产生微波加热,即可通 过微观粒子的这种极化,将微波能转化为热能。
来制备4-氯代苯基苄基醚。传统的方法是将反应物 在甲醇中回流12h,产率为65%;而用微波炉加热方 法,置反应物和溶剂于密闭的聚四氟乙烯容器中, 在560W时,仅35s使能得到相同产率的化合物反应 速率提高1240倍。从此微波有机合成逐渐变得流行 起来。
-3. 微波加热的原理和优点3.1微波加热的原理