巧算和速算方法

合集下载

第1讲 速算与巧算

第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。

1.加法巧算。

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。

字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。

如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。

字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。

(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。

字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。

字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变。

字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。

字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。

如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。

(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。

小学数学速算与巧算方法例解-小升初

小学数学速算与巧算方法例解-小升初

小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

24点巧算速算方法和技巧心得

24点巧算速算方法和技巧心得

24点巧算速算方法和技巧心得计算24点,这个学习方法对于我们用四则运算有很大的帮助,下面是在计算过程中得到的心得:一、乘法解决(4×6=24、3×8=24、2*12=24)1.利用3×8=24、4×6=24 求解。

见6想4。

习题:2、1、7、6可用7-2-1=4,4乘6得24。

3、3、6、10 可组成(10—6÷3)×3=24 等见8想3习题:5、9、7、8、可用5+7-9=3,3乘8得24。

2、3、3、7 可组成(7+3—2)×3=24实践证明,这种方法是利用率最大、命中率最高的一种方法。

2.利用2×7=14、14+10=24 求解。

见7想2习题:10、5、10、7可用10除以5的商乘7再+10得243.利用3×9=27、27-3=24 求解。

从1到9机会多如8、3、1、3可用8+1的和乘3减3可得24。

4.利用5×6=30、30-6=24 求解。

见6多想18和30如1、6、4、6可用4+1的和乘6减6得24或4-1的差乘6再+6。

5.利用5×5=25、25-7+6=24 求解。

见5想5。

如5、5、6、7可用5乘5减7 + 6得24。

二、利用加减法解决:(25-1=24、27-3=24、28-4=24、30-6=24)最有趣的是两组相同的数字,如3、3、4、4。

可以3乘4得12后两组数字相加得24。

10、10、4、4,难度就要大一点了。

先10乘10的积减4的差除以4得24。

三张10,只有碰到6时才得24。

三张8,在碰到7、8、9时是得不到24点的。

三张9和三张7时只有碰到3才能得24。

三张6碰到5、7是不能算到24点的。

三张5只有碰到4、5、6才能得24。

三张4和3是什么数都可以的。

最有意思的是碰到10也可以算。

三张2只有碰到1、2、6、9是不能算24的。

三张1只有碰到8才能算到24。

小学数学速算巧算

小学数学速算巧算

小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

三年级速算与巧算

三年级速算与巧算

学科培优数学速算与巧算知识定位本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。

重点难点:找出题目中可以进行“凑整”的数。

利用运算律或者公式调整运算顺序。

考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。

适当调整运算顺序。

知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。

2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a +c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

速算巧算公式大全

速算巧算公式大全

速算巧算公式大全一、加法速算。

1. 凑整加法。

- 公式:如果两个数相加,其中一个数接近整十、整百、整千等,就把这个数看作整十、整百、整千等与一个较小数的和或差,然后再进行计算。

- 例如:计算28 + 97。

- 把97看作100 - 3。

- 则28+97 = 28+(100 - 3)=28 + 100-3 = 128 - 3 = 125。

2. 互补数加法。

- 定义:两个数相加,若能恰好凑成整十、整百、整千等,就称这两个数互为互补数。

- 公式:如果a和b是互补数(a + b = c,c为整十、整百、整千等),在加法算式中有a + b + d=(a + b)+d = c + d。

- 例如:13+87+56。

- 因为13和87是互补数,13+87 = 100。

- 所以13+87+56 = 100+56 = 156。

二、减法速算。

1. 凑整减法。

- 公式:当减数接近整十、整百、整千等时,把减数看作整十、整百、整千等与一个较小数的和或差,然后进行计算。

- 例如:计算132 - 98。

- 把98看作100 - 2。

- 则132−98 = 132-(100 - 2)=132 - 100+2 = 32 + 2 = 34。

2. 同尾相减。

- 公式:被减数与减数的尾数相同,先把被减数和减数同时减去这个相同的尾数,再进行计算。

- 例如:计算234 - 134。

- 先同时减去134的尾数4,得到230 - 130。

- 230 - 130 = 100。

三、乘法速算。

1. 乘法分配律。

- 公式:a×(b + c)=a× b+a× c,a×(b - c)=a× b - a× c。

- 例如:计算12×(10 + 5)。

- 根据乘法分配律,12×(10 + 5)=12×10+12×5 = 120+60 = 180。

- 再如:计算15×(20 - 3)。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法【顺逆相加】用"顺逆相加〞算式可求出假设干个连续数的和。

例如著名的大数学家高斯〔德国〕小时候就做过的"百数求和〞题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。

"3+5+7+………+97+99=?3+5+7+……+97+99=〔99+3〕×49÷2= 2499。

这种算法的思路,见于书籍中最早的是我国古代的"张丘建算经"。

张丘建利用这一思路巧妙地解答了"有女不善织〞这一名题:"今有女子不善织,日减功,迟。

初日织五尺,末日织一尺,今三十日织讫。

问织几何?〞题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。

她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。

问她一共织了多少布?张丘建在"算经"上给出的解法是:"并初末日织尺数,半之,余以乘织讫日数,即得。

〞"答曰:二匹一丈〞。

这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。

〔答略〕张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个一样的数,而这一递减的数不会是个整数。

假设把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个一样的数。

同样,这一递增的一样的数,也不是一个整数。

假假设把上面这两个式子相加,并在相加时,利用"对应的数相加和会相等〞这一特点,则,就会出现下面的式子:所以,加得的结果是6×30=180〔尺〕但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。

常用的巧算和速算方法

常用的巧算和速算方法

巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。

平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。

除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。

11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。

规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。

四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。

近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。

连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。

小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。

分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。

凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。

差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。

近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。

最后,再将结果还原为原数的近似值。

线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。

平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。

速算与巧算大全

速算与巧算大全

一、速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300二、速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

【解答】原式=464+836-545-455=1300-(545+455)=300思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?三、速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例:73.15×9.9【分析】把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185四、速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。

数学巧算速算方法

数学巧算速算方法

数学巧算速算方法
以下是一些常见的数学巧算速算方法:
1. 乘法速算:
- 相邻两位数相乘:如72 × 74 = 5376,先计算7 × 7 = 49,再计算2 × 4 = 8,最后将结果连接起来,得到5376。

- 一位数乘以11的倍数:如4 × 44 = 176,将原数首尾加起来得到第一位数(4 + 4 = 8),再将原数的个位数放在中间,得到结果176。

2. 除法速算:
- 除以10的倍数:如240 ÷ 30 = 8,将被除数末尾的0去掉,再将结果与被除数的个位数相乘,得到最终结果8。

- 除以2的倍数:如468 ÷ 12 = 39,将被除数每一位数相加得到和(4 + 6 + 8 = 18),再判断和是否能被12整除,如果可以,则商为和除以12,否则商加1。

3. 平方速算:
- 以5为基准的平方:如65² = 4225,将原数去掉个位数后乘以(原数加1),再在末尾加上25,得到结果4225。

- 以50为基准的平方:如57² = 3249,将原数去掉个位数后乘以(原数加1),再在末尾加上49,得到结果3249。

这些巧算速算方法可以帮助简化数学运算,提高计算速度。

但需要注意的是,速算方法适用于简单的计算,对于复杂的计算仍然需要使用正常的计算方法。

二年级奥数速算、巧算方法及习题

二年级奥数速算、巧算方法及习题

二年级奥数速算、巧算方法及习题速算与巧算在日常生活中,我们经常需要进行简单的数学计算,如加减乘除等。

但是,有些计算可能会让我们感到困惑和繁琐。

为了解决这个问题,我们可以使用速算和巧算的方法。

1.凑整法例如,对于43+88+57这个计算,我们可以将88和57凑成100,然后再加上43,就可以得到188.2.带符号搬家法对于43+88-33这个计算,我们可以将88和33相加,然后再加上43,就可以得到98.这个方法也适用于更复杂的计算。

3.变加为乘法对于8+8+8+8+8+8+8+7这个计算,我们可以将,然后再加上7,就可以得到71.4.加减抵消法对于92-16+23-23+16这个计算,我们可以将16和-16抵消掉,然后再加上23和-23,就可以得到76.5.减法巧算法对于100-36-24和88-(28+15)这两个计算,我们可以直接计算出结果,分别为40和45.6.找基准数法对于52+50+49+46这个计算,我们可以将50和50相加,然后再加上49和51,就可以得到200.7.分组法对于90-89+88-87+86-85+84-83这个计算,我们可以将相邻的数分成一组,然后将每组相加,最后将所有组的结果相加,就可以得到8.8.等差数列法对于1+2+3+……+998+999+1000这个计算,我们可以使用高斯公式,即n×(n+1)÷2,其中n为1000,就可以得到.9.金字塔数列法对于1+2+3+……+98+99+100+99+98+……+3+2+1这个计算,我们可以将它分成两个部分,即1+2+3+……+98+99+100和99+98+……+3+2+1,然后将两部分相加,就可以得到.在使用速算和巧算的方法时,我们需要注意以下几点:1.观察数字和符号的特点,是否能用公式或其他简便方法进行计算。

2.整数比散数好算,小数比大数好算。

3.掌握加法的交换律和结合律,以及带符号搬家、加减括号、减括号等基本理论。

四年级速算、巧算方法

四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。

运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整” 运算数据,能使计算比较简便。

1 、加法“凑整”。

利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+( 27689+2231 1)= 10000+50000= 600002、减法“凑整”。

利用减法的性质“凑整”,例如:50-13-7= 50 -( 13+7)= 303、乘法“凑整”。

利用乘法交换律、结合律、分配律“凑整”,例如:125 X 4X 8X 25X 78=(125X 8)X( 4X 25)X 78= 1000X100X 78= 78000004、补充数“凑整”。

末尾是一个或几个0 的数,运算起来比较简便。

若数末尾不是0,而是98、51 等,我们可以用( 100-2)、(50+1)等来代替,使运算变得比较简便、快速。

一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51 的“大约弱数”,1 叫作51 的“补充数”。

把一个数先写成它的大约强(弱)数与补充数的差(和) ,然后再进行运算,例如:( 1 ) 387+99=387+( 100-1 )=387+100-1=486( 2) 1680-89=1680-( 100-11 )=1680-100+11=1580+11=1591(3) 69x 101=69X(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割” 、“补”,采用“以乘代加”的方法速算。

速算与巧算大全

速算与巧算大全
以上这些就是小学数学中的提取公因式的方法,掌握这些重要的内容,我们的小学数学成绩才能不断提升。因此,希望大家能够多多理解小学数学中的这些最为关键的重点内容。
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
例: 8.1+8.2+8.3+7.9+7.8+7.7
【分析】:例题中6个加数都在8的附近,可用8作为基准数,先求出6个8的和,再加上比8大的数中少加的那部分,减去比8小的数中多加的那部分。
【解答】原式=8×6+0.1+0.2+0.3-0.1-0.2-0.3=48+0=48
例题讲解
(1)计算:23+20+19+22+18+21
速算与巧算之凑整先算
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502
【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
(3)积不变规律(主要是小数点的变化)
例6.3×2.57+25.7×0.37
【分析】可根据“乘法积不变性质,一个因数扩大,一个因数缩小相同的倍数,积不变”把25.7×0.37转化成2.57×3.7,两部分就有了相同的因数2.57,创造出了可以用乘法分配律的条件。
【解答】原式=6.3×2.57+2.57×3.7=2.57×(6.3+3.7)=25.7
例:2356-159-256

小学常用的巧算和速算方法

小学常用的巧算和速算方法

小学常用的巧算和速算方法一、巧算方法:1.凑整法:将一个数调整到一个更容易处理的数。

例如:17+4,可以将4拆分成2+2,然后17+2+2=19+2=212.倍数法:将一个数按照倍数进行运算。

例如:23×5,可以将23拆分成20+3,然后20×5=100,3×5=15,最后100+15=1153.分解法:将一个数分解成更容易计算的数。

例如:36+28,可以将28拆分成20+8,然后36+20+8=56+8=644.倒算法:将一个数转化为与其相加减的数。

例如:80-27,可以将27转化为73,然后80-73=75.移项法:将一个式子中的数移动到另一边进行运算。

例如:8+5=15,可以转化为15-8=76.换位运算法:将两个数的位置进行调换再运算。

例如:78-35,可以调换顺序为35-78,然后将结果取负数得到-43二、速算方法:1.竖式计算法:将两个数竖直排列后进行运算。

例如:27×13,将27和13竖直排列,然后分别计算个位和十位,最后将结果相加得到3512.快速乘法:使用乘法表以及对称性进行快速计算。

例如:78×6,可以先计算78×3,然后将结果翻倍得到234×2=468,最后78×6=468+468=9363.快速除法:使用除法表以及对称性进行快速计算。

例如:56÷7,可以先计算56÷2,然后将结果翻倍得到28×2=56,最后56÷7=284.快速减法:使用对称性和调整变形进行快速计算。

例如:245-97,可以先计算245-100,然后将结果加上3,最后245-97=1455.快速加法:使用进位和调整变形进行快速计算。

例如:789+143,可以先计算700+100=800,然后分别计算80+40=120和9+3=12,最后800+120+12=932三、其他常用的巧算和速算方法:1.快速平方:使用平方公式或对称性进行快速计算。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地学握计算法则和运算顺序,根据题目本身的待点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56二24+ (44+56)=24+100=124这样想:因为44+56二100是个整百的数,所以先把它们的和算出来(2) 53+36+47=53+47+36 二(53+47 ) +36二100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算岀来.2.计算:(1 ) 96+15(2) 52+69解:(1 ) 96+15二96+ ( 4+11 )二(96+4 ) +11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2) 52+69= ( 21+31 ) +69 二21+ (31+69 ) =21+100=121这样想:因为69+3仁100,所以把52分拆成21与31之和,再把31+69二100凑整先算.3.计算:(1 ) 63+18+19(2) 28+28+28解:(1) 63+18+19=60+2+1+18+19=60+ (2+18 ) + (1+19 )=60+20+20=100这样想:将63分拆成63二60+2+1就是因为2+18和1+19可以凑整先算.(2) 28+28+28= (28+2 ) + (28+2 ) + (28+2 ) -6二30+30+30-6二90-6二84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、-’”号的混合算式中,运算顺序可改变计算:(1) 45-18+19(2) 45+18-19解:(1 ) 45-18+19=45+19-18 =45+ (19-18 ) =45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,乂叫等差数列,如:1,2, 3, 4, 5, 6, 7, 8, 91,3, 5, 7, 92,4, 6, 8, 103,6, 9, 12, 154,& 12 ,16 , 20等等都是等差连续数.1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1 )计算:1+2+3+4+5+6+7+8+9=5X9中间数是5=45共9个数(2)计算:1+3+5+7+9=5X5中间数是5=25共有5个数(3)计算:2+4+6+8+10=6X5中间数是6=30共有5个数(4)计算:3+6+9+12+15=9X5中间数是9=45共有5个数(5)计算:4+8+12+16+20=12X5中间数是12=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1 )计算:1+2+3+4+5+6+7+8+9+10=(1+10 ) X5=l1X5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17 ) X4二20X4二80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20 ) X5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1 )计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上, 把多算的减去.23+20+19+22+18+21=20X6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和二20X6二120. 23按20计算就少加了“3”所以再加上“3” 19按20计算多加了“1”所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1 :仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100X 5+2+0-1+1-2二500方法2 :仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100X 5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫补数” ?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的补数”。

一二年级数学100以内加法巧算与速算方法

一二年级数学100以内加法巧算与速算方法

一二年级100以内加法巧算与速算方法一、一位数加一位数或两位数加一位数的的进位加法巧算。

例:8+7=常规方法:1、凑十法第一步:7分成2和5第二步:8和2凑十第三步:最后10加5等于15这种方法是我们最常用的一种方法,也是在学校里讲授最多的一种方法。

2、五五凑十法第一步:8可以分成5和3第二步:7可以分成5和2第三步:5和5凑成10,再加2和3,最终的结果是15.3、加相同法第一步:7+7=14第二步:14+1=15以上这些方法是我们最常用的一种方法,也是在学校里讲授最多的一种方法,两位加一位数的进位加也是如此,大家可以根据孩子的喜好,自由选择哦。

带着孩子练一练①7+6= ②9+8=③9+5= ④7+9=⑤8+6= ⑥7+7=接下来我们介绍一种成倍提升计算速度的方法:例:8+6=口诀:第一个加数的十位加一,减去第二个加数的补数。

补数定义:两个数相加等于10、100、1000......的两个数互为补数。

即:8+6=18-4=14练习:9+7=19-3=1626+9=36-1=35大家不妨用这样的方法计算一下,这个方法最大的优点在于规避了进位,能够很好的减少孩子在计算中的错误,提升计算速度。

二、个位进位不过百的两位数加法计算。

口诀:十位和加1,个位和减10例:24+37=十位:2+3+1=6个位:4+7-10=1得数:61通过口诀的记忆,来提升计算的速度练习:① 54+29=解:十位:5+2+1=8个位:4+9-10=3得数:83②39+48=解:十位:3+4+1=8个位:9+8-10=7得数:87三、个位进位,十位也进位的过百两位数加法计算口诀:较小数的百位加1,减去较大数的补数。

例:49+89=第一步:较小数的百位加1,即149第二步:较大数的补数,即11第三步:149-11=138练习:①69+97=169-3②88+76=176-12四、十位数和个位数互换位置的两个两位数的加法算式1、相加和不超过100口诀:个位数字加十位数字,把和写两遍。

速算与巧算大全

速算与巧算大全

速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464 减545 根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

【解答】原式=464+836-545-455=1300- (545+455)=300思考:4.75 - 0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413 分成1400、2 与11 三个数的和。

【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例: 73.15 X 9.9【分析】把9.9 看作10减0.1 的差,然后用乘法分配率可简化运算。

【解答】原式=73.15 X (10-0.1 )=73.15 X 10-73.15 X 0.1=731.5-7.315=724.185速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。

1.速算与巧算

1.速算与巧算

第一讲速算与巧算一、运用加法运算定律巧算加法1.直接利用补数巧算加法如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。

如:28+52=80,49+51=100,936+64=1000。

其中,28和52互为补数;49和51互为补数;936和64互为补数。

在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。

例1巧算下面各题:(1)42+39+58;(2)274+135+326+265。

解:(1)原式=(42+58)+39=100+39=139(2)原式=(274+326)+(135+265)=600+400=10002.间接利用补数巧算加法如果两个加数没有互补关系,可以间接利用补数进行加法巧算。

例2计算986+238。

解法1:原式=1000-14+238=1000+238-14=1238-14=1224解法2:原式=986+300-62=1286-62=1224以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。

解法3:原式=(62+924)+238=924+(238+62)=924+300=1224解法4:原式=986+(14+224)=(986+14)+224=1224以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。

所以可称为“拆分凑补法”。

3.相接近的若干数求和下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。

例3计算71+73+69+74+68+70+69。

解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。

我们把这7个数都看作70,则变为7个70。

如果多加了,就减去,少加了再加上,这样计算比较简便。

小学数学巧算和速算方法

小学数学巧算和速算方法

小学数学巧算和速算方法
常见的小学数学速算方法与技巧有这些:1.补数凑整法,可以通过补数使其变成整十、整百、整千;2.分解法,在某些乘、除法算式中,可以把其中的某个数分解进行恒等变形,使计算简便。

1、补数凑整法
对于算式中吻合整十、整百、整千......的数,可以通过补数并使其变为整十、整百、整千.....的数再加之或乘以所补的数的形式,并使排序方便快捷。

2、分解法
在某些乘坐、乘法算式中,可以把其中的某个数水解展开并集变形,并使排序方便快捷。

3、基准数法
将若干个都吻合某数的数相乘,可以把该数做为基准数,然后把基准数与相乘数的个
数相加,再加之或乘以各数与基准数的差,就可以获得计算结果。

4、分组法
对算式的运算分组展开再次资源整合,并使之能够利用运算定律、运算性质以及和、高、内积、商的一些性质展开简算。

5、公式法
谋等差数列的各数之和,可以用公式“(首项+末项)×项数÷2=和”去排序。

6、拆分法
根据数的特点对原题中的数展开分拆,再运用运算定律和运算性质展开方便快捷排序。

二、培养速算能力的方法
1、练速算基本功—口算
口算是速算的基本,是速算正确率的保证。

练习口算时,不能单一地追求速度,要弄
清算理,这样才能有效地掌握口算基本方法,为速算打下深厚的基本功。

2、熟练掌握速算定律
速算定律是速算的理论依据,学好速算,就要掌握速算相关的公式、法则、规律等等。

在记忆这些定律时,还要弄明白定律的特点。

常用的巧算和速算方法

常用的巧算和速算方法

常用的巧算和速算方法一、加法巧算和速算方法凑整法 凑整法是加法巧算和速算中最常用的方法之一。

它的基本思想是将加数凑成整十、整百、整千等,然后再进行计算。

例如,计算 23+45+55 时,可以将 45 和55 凑成 100,然后再加上 23,得到 123。

交换律和结合律 交换律和结合律是加法运算中的基本定律,它们可以帮助我们简化计算。

例如,计算 23+45+55 时,可以先将 45 和 55 相加,得到 100,然后再加上23,得到 123。

基准数法 基准数法是一种将加数都近似地看作某个基准数的方法。

例如,计算23+22+24+21 时,可以将 23 看作基准数,然后将其他加数都近似地看作 23,得到23×4=92。

二、减法巧算和速算方法凑整法 凑整法同样适用于减法巧算和速算。

例如,计算 100-45 时,可以将 45 凑成50,然后再用 100 减去 50,得到 50。

交换律和结合律 交换律和结合律在减法运算中同样适用。

例如,计算 100-45-55时,可以先将 45 和 55 相加,得到 100,然后再用 100 减去 100,得到 0。

基准数法 基准数法在减法运算中也可以使用。

例如,计算 100-45-55 时,可以将100 看作基准数,然后将其他减数都近似地看作 100,得到 100-100=0。

三、乘法巧算和速算方法乘法分配律 乘法分配律是乘法运算中的基本定律,它可以帮助我们简化计算。

例如,计算 25×(40+4)时,可以先将 40 和 4 分别乘以 25,然后将结果相加,得到25×40+25×4=1000+100=1100。

乘法结合律 乘法结合律是乘法运算中的另一个基本定律,它可以帮助我们简化计算。

例如,计算 25×4×25 时,可以先将 25 和 4 相乘,得到 100,然后再将 100 乘以 25,得到 2500。

乘法交换律 乘法交换律是乘法运算中的基本定律之一,它可以帮助我们简化计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法 .................. -2 -第二讲常用巧算速算中的思维与方法(1) .............. - 4 -第三讲常用巧算速算中的思维与方法(2) .............. - 5 -第四讲常用巧算速算中的思维与方法(3) .............. - 8 -第五讲常用巧算速算中的思维与方法(4) ............... -10 -第六讲常用巧算速算中的思维与方法(5) ............... -13 -第七讲常用巧算速算中的思维与方法(6) ............... -15 -第八讲小数的速算与巧算 .. (17)第九讲乘法速算 1 ................................. - 18 -第十讲乘法速算2 ................................... - 20 -第十一讲乘法速算3 ..................................... - 22 -第十二讲乘法速算 4 ................................. - 23 -第十三讲乘法速算 5 ................................. - 23 -第十四讲乘法速算6 ..................................... - 25 -第十五讲乘法速算 7 .................................... - 27 -第十六讲乘法速算 8 .................................... - 29 -注:《速算技巧》................................... -32 -第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12X 14=?解:1 X 1 = 12+ 4 = 62X4 = 812X 14=168注:个位相乘,不够两位数要用0占位2 .头相同,尾互补(尾相加等于10): 口诀:一个头加1后,头乘头,尾乘尾。

例:23 X 27=?解:2 + 1 = 32X3 = 63X7= 2123X27=621注:个位相乘,不够两位数要用0占位3.第一个乘数互补,另一个乘数数字相同: 口诀:一个头加1后,头乘头,尾乘尾。

例:37 X 44=?解:3+仁44X 4=167X 4=2837X 44=1628注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21 X 4仁?解:2X4=82+4=61X仁121X41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11 X 23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11X23125=254375注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13X 326=?解:13个位是33X 3+2=113X 2+6=123X 6=1813X326=4238注:和满十要进一。

第二讲常用巧算速算中的思维与方法(1)【顺逆相加】用顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的百数求和”题,可以计算为1+2 + .. +99+10014 2+ 3 + ....... + 99+100+ )100+ 99+98+ ....... . 十2 +1| 101 + 101+101+ .......... 4-101+101所以,1 + 2+ 3+ 4+……+ 99+ 100=101X100 吃=5050“ 3+5+7+ ... +97+99=?3* 5 卡7 +....... +97 + 99+) 99 卡97 + 95 +..... +5 3102+102+W2+".......... +102 + 10249个3+5+ 7+……+ 97+99= (99+ 3) X49^2= 2499。

这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。

张丘建利用这一思路巧妙地解答了有女不善织”这一名题:今有女子不善织,日减功,迟。

初日织五尺,末日织一尺,今三十日织讫。

问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。

她第一天织了5尺布,最后一天织了1尺,一共织了30天。

问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。

”“答曰:二匹一丈”。

这一解法,用现代的算式表达,就是1匹=4丈,1丈=10尺,90尺=9丈=2匹1丈。

张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是:5+ .............. + 1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。

若把这个式子反过来,则算式便是:1+ .......... + 5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。

同样,这一递增的相同的数,也不是一个整数。

假若把上面这两个式子相加,并在相加时,利用对应的数相加和会相等”这一特点,那么,就会出现下面的式子:5 + .................... + 1+ ) H-..................... 十5却个6所以,加得的结果是6X30=180 (尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。

所以,这妇女30天织的布是180 吃=90 (尺)可见,这种解法的确是简单、巧妙和饶有趣味的。

第三讲常用巧算速算中的思维与方法(2)方法一:分组计算一些看似很难计算的题目,采用分组计算”的方法,往往可以使它很快地解答出来。

例如:求1到10亿这10亿个自然数的数字之和。

这道题是求“ 10亿个自然数的数字之和”,而不是“ 10亿个自然数之和”。

什么是数字之和”?例如,求1到12这12个自然数的数字之和,算式是1+ 2+ 3+ 4+ 5+6+7+ 8+9+1 + 0+1+1+1 + 2=51。

显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。

怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”改变数字的个数,但不会改变计算的结果。

然后,将它们分组:0 和999,999,999; 1 和999, 999,998;2和999,999,997; 3 和999, 999,996;4 和999,999,995;5 和999, 999,994;依次类推,可知除最后一个数,1, 000, 000, 000以外,其他的自然数与添上的0共10亿个数,共可以分为5亿组,各组数字之和都是81,如0+9+9+9+9 + 9+ 9+ 9+ 9+ 9=811+9+9 + 9+ 9+ 9+9+9+9+ 8=812+9+9 + 9+ 9+ 9+9+9+9+ 7=81最后的一个数1, 000, 000, 000不成对,它的数字之和是1。

所以,此题的计算结果是(81X500, 000, 000)+ 1=40, 500, 000, 000+ 1=40, 500, 000, 001方法二:由小推大计算复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。

例如:(1)计算下面方阵中所有的数的和。

这是个“ 100X 10的大方阵,数目很多,关系较为复杂。

不妨先化大为小,再由小推大。

先观察“5X 的方阵,如下图(图4.1)所示。

Ski 甌 2容易看到,对角线上五个“5之和为25。

这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2那样拼接,那么将会发现,这五个斜行,每行数之和都是25。

所以,“5X方阵的所有数之和为25>5=125,即卩53=125。

于是,很容易推出大的数阵“ 100X10的方阵所有数之和为1003=1,000,000。

(2)把自然数中的偶数,像图4.3那样排成五列。

最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。

那么2002出现在哪一列:图4.3因为从2到2002,共有偶数2002- 2=1001 (个)。

从前到后,是每8个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。

所以,由1001-8=125 .............. 1,可知这1001 个偶数可以分为125组,还余1个。

故2002应排在第二列。

方法三:凑整巧算用凑整方法”巧算,常常能使计算变得比较简便、快速。

例如(1) 99.9+11.1= (90 + 10) + (9+1) + ( 0.9+0.1) =111(2)9+ 97+ 998+ 6= (9+1) + ( 97+ 3) + ( 998+ 2)=10+ 100+ 1000=1110(3)125+ 125+ 125+ 125+ 120+ 125+ 125+ 125=155+ 125+ 125+ 125+( 120+5)+ 125+ 125+125-5=125X8-5=1000-5=995第四讲常用巧算速算中的思维与方法(3)方法一:巧妙试商除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。

(1)用商五法”试商。

当除数(两位数)的10倍的一半,与被除数相等(或相近)时,可以直接试商“ 5。

如70-14=5,125吃5=5。

当除数一次不能除尽被除数的时候,有些可以用无除半商五” 无除”指被除数前两位不够除,半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5。

” 例如1248吃4=52, 2385^45=53(2)同头无除商八、九。

同头”指被除数和除数最高位上的数字相同。

无除”仍指被除数前两位不够除。

这时,商定在被除数高位数起的第三位上面,再直接商8或商9。

5742—8=99,4176—8=87。

(3)用商九法”试商。

当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10倍时,可以一次定商为“9”一般地说,假如被除数为m,除数为n,只有当9n Wmv10n时,n除m的商才是9。

同样地,10n Wm+n v11n。

这就是我们上述做法的根据。

例如4508詔9=92, 6480^72=900(4)用差数试商。

当除数是11、12、13 ........ 18和19,被除数前两位又不够除的时候,可以用差数试商法”即根据被除数前两位临时组成的数与除数的差来试商的方法。

相关文档
最新文档