无刷直流电机的无位置传感器控制_0813
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。
在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。由此,就出现了无位置传感器的无刷直流电动机。
尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。
无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。
无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。
以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。
转子位置间接检测法
目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在:
1、位置传感器可使电机系统的体积增大;
2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响;
3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行
可靠性降低
4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机
的运行性能。
无位置传感器控制技术越来越受到重视,并得到了迅速发展。依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。
反电势法
反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。该方法将检测获得的反电势过零点信号延迟30o电角度,得到6个离散的转子位
置信号,为逻辑开关电路提供正确的换相信息,进而实现无刷直流电机的无位置传感器控制。
无刷直流电机反电势过零点与换相时刻的对应关系如图所示,图中e A、e B、e C为相位互差120o电角度的三相梯形波反电势,Q1~Q6为一个周期内的6个换相点,分别滞后相应反电势过零点30o电角度。
e e 目前,反电势法的关键是如何准确检测反电势过零点,国内外研究者对反电势法进行了深入的研究,已经提出了端电压检测法、反电势积分法、反电势三次谐波法、续流二极管法及线反电势法等多种检测方式。
在转速比较低的情况下,感应电动势不容易测量,所以感应电动势过零点检测法不能用于低速场合。
1、端电压检测法(反电动势过零法)
端电压检测法通过检测断电相(非导通相)绕组的端电压,经过软件计算或利用硬件电路获得反电势过零点,从而控制无刷直流电机正确换相。由端电压信号经过软件计算得到反电势过零点的推导过程如下所述。
无刷直流电机的数学模型为
()
()()A
AG A A N B BG B B N
C CG
C C N
di u Ri L M e U dt di
u Ri L M e U dt di
u Ri L M e U dt
=+-++=+-++=+-++式中:——端电压;
AG BG CG u u u 、、
——中性点电压;
N U ——绕组等效电感。
L M -以AB 相导通、C 相悬空为例说明端电压检测法原理,如图所示。
e
AB 相导通电流回路图
此时,AB 相反电势处于梯形波平顶处,方向相反;C 相反电势处于梯形波斜坡处,随转子位置而变化。无刷直流电机绕组A 相和B 相反电势及电流的关系为
0A B A B e e i i +=+=将AB 相端电压相加,得
()()(
()2A B
AG BG A B A B N di di u u R i i L M e e U dt dt
+=++-++++得
2
AG BG
N u u U +=
C 相悬空无导通电流,存在,得0,
0C
C di i dt
==(1)2
AG
BG
C CG N CG u u e u U u +=-=-同理,AC 相导通,B 相悬空时,有
(2)2AG CG
B BG u u e u +=-
BC 相导通、A 相悬空时,有
(3)2
CG BG
A AG u u e u +=-
根据(1)~(3)式,将端电压信号经过软件计算,在每个周期内就能得到6个相差60o 电角度的反电势过零点,从而为电机正常运行提供换相信息。
换相时刻由反电势过零点延迟30o 电角度获得,延迟30o 可以根据前两次过零点时间间隔计算得到(忽略该时间间隔内转速变化),即
1
(1)(1)2
(1)(2)
T k Z k T
T Z k Z k -=-+∆∆=---式中:——第k-1次换相时刻;
(1)T k -——第k-1次反电势过零点时刻;
(1)Z k -
——第k-2次反电势过零点时刻。
(2)Z k -值得注意的是,每组绕组在一个周期内有两个反电势过零点,因此需要根据反电势过零点前后的正负变化或绕组的导通状态进行区别。此外,端电压检测电路中需要加入电容进行稳压滤波,导致端电压产生相移,在软件算法中需要根据硬件电路的实际参数进行适当的相移补偿。
2.反电势积分法
反电势积分法将悬空相反电势的积分量与门限值进行比较,当反电势积分量达到门限值时,即为该相绕组的换相时刻。
out U U 反电势积分信号与换相时刻关系图
反电势电压接近线性变化,其斜坡部分函数可以写为
0()e t E t
=±当非导通相反电势过零点时反电势积分器开始工作,有
200()
||||2t
out
E t e t U dt k k
==⎰式中:——反电势斜坡部分斜率;
0E ——积分器输出电压;
out U ——积分器增益常数。
k 积分器输出电压达到门限值时,停止工作,并输出换相信号。在下一个反电
out U th U 势过零点时,积分器重新工作。控制系统换相时刻滞后反电势过零点30o 电角度,因而在换相时刻有
2111|
|||||2226
e out e e th K w U t K wt K U k t k k π====A A 式中:——门限值;
th U ——反电势系数。
e K 采用反电势积分法进行控制时,应首先根据上式计算,控制系统将与进行
th U out U th U