风机的失速和喘振

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.4 风机的失速和喘振

5.4.1 失速

由流体力学知,当速度为v 的直线平行流以某一冲角(翼弦与来流方向的夹角)绕流二元孤立翼

型(机翼)时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小。因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼型上形成一个向上的作用力。如果绕流体是理想流体,则这个力和来流方向垂直,称为升力,其大小由儒可夫斯基升力公式确定:

FL=ρυ∞Γ

Γ-速度环量ρ-绕流流体的密度

其方向是在来流速度方向沿速度环量的反方向转90°来确定。

轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头、

和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。

轴流风机叶片前后的压差,在其它都不变的情况下,其压差的大小决定于动叶冲角的大小,在临

界冲角值以内,上述压差大致与叶片的冲角成比例,不同的叶片叶型有不同的临界冲角值。翼型的冲角不超过临界值,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”,如图5-15。

泵与风机进入不稳定工况区,其叶片上将产生旋转脱流,可能使叶片发生共振,造成叶片疲劳断

裂。现以轴流式风机为例说明旋转脱流及其引起的振动。当风机处于正常工况工作时,冲角等于零,

而绕翼型的气流保持其流线形状,如图示:当气流与叶片进口形成正冲角时,随着冲角的增大,在叶

片后缘点附近产生涡流,而且气流开始从上表面分离。当正冲角超过某一临界值时,气流在叶片背部

的流动遭到破坏,升力减小,阻力却急剧增加,这种现象称为“旋转脱流”或“失速”。如果脱流现象发生在风机的叶道内,则脱流将对叶道造成堵塞,使叶道内的阻力增大,同时风压也随之而迅速降低。风机的叶片由于加工及安装等原因不可能有完全相同的形状和安装角,同时流体的来流流向也不

完全均匀。因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同,如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生脱流,而不会所有叶片都同时发生

脱流。如下图示:假设在叶道2 首先由于脱流而出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是原来进入叶道2 的气流只能分流进入叶道1 和3。这两股分流来的气

流又与原来进入叶道1 和3 的气流汇合,从而改变了原来的气流方向,使流入叶道1 的气流冲角减小,而流入叶道3 的冲角增大,由此可知,分流的结果将使叶道1 内的绕流情况有所改善,脱流的可能性

减小,甚至消失,而叶道3 内部却因冲角增大而促使发生脱流,叶道3 内发生脱流后又形成堵塞,使

叶道3 前的气流发生分流,其结果又促使叶道4 内发生脱流和堵塞,这种现象继续下去,使脱流现象

所造成的堵塞区沿着与叶轮旋转相反的方向移动。试验表明,脱流的传播相对速度W1 远小于叶轮本

身旋转角速度W 因此,在绝对运动中,可以观察到脱流区以W-W1 的速度旋转,方向与叶轮转向相同,此种现象称为“旋转脱流”或“旋转失速”。

风机进入不稳定工况区运行,叶轮内将产生一个到数个旋转脱流区,叶片依次经过脱流区要受到

交变应力的作用,这种交变应力会使叶片产生疲劳。叶片每经过一次脱流区将受到一次激振力的作用,此激振力的作用频率与旋转脱流的速度成正比,当脱流区的数目2、3、、、、时,则作用于每个叶片的激振力频率也作2 倍、3 倍、、、、的变化。如果这一激振力的作用频率与叶片的固有频率成整数倍关系,

或者等于、接近于叶片的固有频率时,叶片将发生共振。此时,叶片的动应力显著增加,甚至可达数十倍以上,使叶片产生断裂。一旦有一个叶片疲劳断裂,将会将全部叶片打断,因此,应尽量避免泵与风机在不稳定工况区运行。

如图5-18 在轴流风机Q-H 性能曲线中,全压的峰值点左侧为不稳定区,是旋转脱流区。从峰

值点开始向小流量方向移动,旋转脱流从此开始,到流量等于零的整个区间,始终存在着脱流。

旋转脱流对风机性能的影响不一定很显著,虽然脱流区的气流是不稳定的,但风机中流过的流量

基本稳定,压力和功率亦基本稳定,风机在发生旋转脱流的情况下尚可维持运行,因此,风机的工作点如落在脱流区内,运行人员较难从感觉上进行判断。

因为旋转脱流不易被操作人员觉察,同时风机进入脱流区工作对风机的安全终究是个威胁,所以

一般大容量轴流风机都装有失速探头。如图所示:失速探头由两根相隔约3mm 的测压管所组成,将它置于叶轮叶片的进口前。测压管中间用厚3mm 高(突出机壳的距离)3mm 镉片分开,风机在正常工作区域内运行时,叶轮进口的气流较均匀地从进气室沿轴向流入,那么失速探头之间的压力差几乎等

于零或略大于零,如图示中的AB 曲线图中△P 为两测压管的压力差。

当风机的工作点落在旋转脱流区,叶轮前的气流除了轴向流动之外,还有脱流区流道阻塞成气流

所形成的圆周方向分量。于是,叶轮旋转时先遇到的测压孔,即镉片前的测压孔压力高,而镉片后的测压孔的气流压力低,产生了压力差,一般失速探头产生的压力差达245~392Pa,即报警,风机的流量越小,失速探头的压差越大,如图中的BCD.由失速探头产生的压差发出信号,然后由测压管接通一个压力差开关(继电器),压力差开关将报警电路系统接通发出报警,操作人员及时采取排除旋转脱流的措施。

失速探头装好以后,应予以标定,调整探头中心线的角度,使测压管在风机正常运转的差压为最

小。

5.4.2 喘振

轴流风机在不稳定工况区运行时,还可能发生流量、全压和电流的大幅度的波动,气流会发生往

复流动,风机及管道会产生强烈的振动,噪声显著增高,这种不稳定工况称为喘振。喘振的发生会破坏风机与管道的设备,威胁风机及整个系统的安全性。

如图所示:轴流风机Q-H 性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K 点

右侧,则风机工作是稳定的。当风机的流量Q < Q K 时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为H K,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K 点迅速移至C 点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD 线迅速下降至流量Q=0 时的D 点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低到相应的D 点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D 跳至相应工况点F。只要外界所

需的流量保持小于Q K,上述过程又重复出现。如果风机的工作状态按FKCDF 周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。

风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而

且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件:

(1) 风机的工作点落在具有驼峰形Q-H 性能曲线的不稳定区域内;

(2) 风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;

(3) 整个循环的频率与系统的气流振荡频率合拍时,产生共振。

相关文档
最新文档