最小二乘法的多项式拟合(matlab实现)
matlab最小二乘法数据拟合函数详解

matlab最⼩⼆乘法数据拟合函数详解定义:最⼩⼆乘法(⼜称最⼩平⽅法)是⼀种数学优化技术。
它通过最⼩化误差的平⽅和寻找数据的最佳函数匹配。
利⽤最⼩⼆乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平⽅和为最⼩。
最⼩⼆乘法还可⽤于曲线拟合。
其他⼀些优化问题也可通过最⼩化能量或最⼤化熵⽤最⼩⼆乘法来表达。
最⼩⼆乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到⼀系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直⾓坐标系中,若发现这些点在⼀条直线附近,可以令这条直线⽅程如(式1-1)。
Yj= a0 + a1 X (式1-1),其中:a0、a1 是任意实数。
matlab中⽤最⼩⼆乘拟合的常⽤函数有polyfit(多项式拟合)、nlinfit(⾮线性拟合)以及regress(多元线性回归)。
⾃变量有2个或以上时,应变量⼀个,可以使⽤的有nlinfit和regress,线性时⽤regress,⾮线性时⽤nlinfit。
对于进阶matlab使⽤者还有更多的选择,如拟合⼯具箱、fit函数、interp系列插值拟合等等。
MATLAB中关于最⼩⼆乘法的函数主要有:help polyfit -- POLYFIT Fit polynomial to data.help lsqcurvefit -- LSQCURVEFIT solves non-linear least squares problems.help lsqnonlin -- LSQNONLIN solves non-linear least squares problems.help nlinfit -- NLINFIT Nonlinear least-squares regression.help regress -- REGRESS Multiple linear regression using least squares.help meshgrid -- MESHGRID X and Y arrays for 3-D plots.本⽂主要讲解的函数:polyfit,lsqcurvefit,lsqnonlin,regress1.多项式曲线拟合:polyfit1.1 常见拟合曲线直线: y=a0X+a1多项式:,⼀般次数不易过⾼2,3双曲线: y=a0/x+a1指数曲线: y=a*e^b1.2 matlab中函数P=polyfit(x,y,n)[P S mu]=polyfit(x,y,n)polyval(P,t):返回n次多项式在t处的值注:其中x y已知数据点向量分别表⽰横纵坐标,n为拟合多项式的次数,结果返回:P-返回n次拟合多项式系数从⾼到低依次存放于向量P中,S-包含三个值其中normr是残差平⽅和,mu-包含两个值 mean(x)均值,std(x)标准差。
最小二乘法的基本原理和多项式拟合matlab实现_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法的基本原理和多项式拟合matlab实现最小二乘法的基本原理和多项式拟合 matlab 实现最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数 p(x) 同所给数据点(xi, yi) (i=0, 1, , m) 误差 ri p(xi) yi(i=0, 1, , m) 的大小,常用的方法有以下三种:一是误差 riri p(xi) yi(i=0, 1, , m) 绝对值的最大值max0 i m,即误差向量 r (r0, r1, rm) T 的范数;二是误差绝对值的和i 0mri,即误差向量 r 的 1范数;三是误差平方和 i 0 rm2i 的算术平方根,即误差向量 r 的 2范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2范数的平方,因此在曲线拟合中常采用误差平方和 i 0 体大小。
rm2i 来度量误差 ri(i=0, 1,, m) 的整数据拟合的具体作法是:对给定数据 (xi, yi) (i=0, 1, , m) ,在取定的函数类中,求 p(x) , 使误差 ri p(xi) yi(i=0, 1, , m)的平方和最小,即 i 0 rm2i i 0 p(x) y iim2 min 从几何意义上讲,就是寻求与给定点(xi, yi) (i=0, 1, , m) 的距离平方和为最小的曲线y p(x) (图 6-1)。
函数 p(x) 称为拟合函数或最小二乘解,求拟合函数 p(x) 的1 / 15方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类可有不同的选取方法 .61 二多项式拟合为所有次数不超过 n(n m) 的多项式构假设给定数据点(xi, yi) (i=0, 1, , m) , pn(x) akxkk 0n 成的函数类,现求一 m , 使得 2 I pn(xi) yi i 0 2 n akxik yi mini 0 k0 (1) m 当拟合函数为多项式时,称为多项式拟合,满足式(1)的 pn(x) 称为最小二乘拟合多项式。
最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。
x 必须是单调的。
矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
最小二乘法matlab多项式拟合

最小二乘法拟合探究吴春晖(中国海洋大学海洋环境学院山东青岛 266100)摘要:本文的拟合对象为含多个变量的待定系数的多项式。
通过最小二乘法对多项式作出拟合,以向量矩阵的形式来解出待定的系数。
在matlab中,通过算法,写出具体的解法。
之后,先对最小二乘法的准确性作出检验,分析该方法在应对复杂情况的误差。
在检验该方法的可行性之后,对给定的变量值进行拟合与解题。
同时,本文将对基于Laguerre多项式的最小二乘法进行分析检验,关键词:最小二乘法拟合多变量 Laguerre多项式引言:在之前的计算方法中,在给出已知节点后,如果需要根据给出的节点来确定未知节点的值,我们需要运用插值。
在对插值的精准性进行分析后,我们发现不同插值方式的误差都极大,而且插值所得出的函数的特征由插值方式所决定,并不能反映具体的节点原来可能的规律与分布。
所以,拟合的方法相比插值而言,并不要求函数值在原节点处的值相等,却能在一定程度上反映原函数的规律。
在该文中,我们主要运用最小二乘法进行拟合。
目录第一章matlab最小二乘法拟合程序 (3)1.1 最小二乘法拟合的数学方法 (3)1.2 编写最小二乘法的matlab拟合程序 (3)1.2.1程序算法 (3)1.2.2 最小二乘法拟合的程序 (4)1.3程序的分析说明 (4)第二章最小二乘拟合法的检验及应用 (5)2.1 最小二乘法拟合的检验 (5)2.2最小二乘法拟合的实际应用 (7)第三章Laguerre多项式的最小二乘拟合 (8)3.1 算法与程序 (8)3.2检验与分析 (9)第四章最小二乘法拟合的分析总结 (11)第一章matlab 最小二乘法拟合程序1.1 最小二乘法拟合的数学方法最小二乘法拟合的算法如下:对于给定的一组数据(,)i i x y ,1,2,,i N =求t ()t N 次多项式jti j y a x ==∑使总误差21()j N ti i i j Q y a x ===-∑∑最小.由于Q 可以视作关于i a (0,1,2,,)i t =的多元函数,故上述拟合多项式的构造可归结为多元函数的极值问题.令0,0,1,2,,kQk ta ∂==∂得到1()0,0,1,2,,Ntjk ij ii i j y a xx k t==-==∑∑即有方程组0121011201t i t i it i i t i i i t t t t i i t i i i a N a x a x y a x a x a x x y a x a x a x x y++⎧+∑++∑=∑⎪∑+∑++∑=∑⎪⎨⎪⎪∑+∑++∑=∑⎩求解该正规方程组,即可得到最小二乘法的拟合系数。
最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
x 必须是单调的。
矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
加权最小二乘法 拟合多项式 matlab

加权最小二乘法(Weighted Least Squares, WLS)是一种经典的拟合方法,用于处理数据中的噪声和异常值。
在拟合多项式的过程中,加权最小二乘法能够更好地适应不同的数据权重,从而得到更准确、更可靠的拟合结果。
结合Matlab强大的数学计算和可视化工具,我们可以更方便、更高效地实现加权最小二乘法拟合多项式。
一、加权最小二乘法的基本原理1. 加权最小二乘法的概念在拟合多项式过程中,常常会遇到数据噪声较大或者部分数据异常值较大的情况。
此时,普通的最小二乘法可能无法有效地拟合数据,因此需要引入加权最小二乘法。
加权最小二乘法通过为每个数据点赋予不同的权重,对异常值和噪声进行更有效的处理。
2. 加权最小二乘法的数学原理加权最小二乘法的数学原理主要是在最小化误差的基础上,引入权重矩阵来调整不同数据点的重要性。
通过优化残差的加权和,可以得到适应不同权重的拟合结果。
二、Matlab中的加权最小二乘法1. Matlab工具Matlab提供了丰富的数学计算和拟合工具,通过内置的polyfit函数和curve fitting工具箱,可以方便地实现加权最小二乘法拟合多项式。
Matlab还提供了丰富的可视化工具,可以直观展示加权最小二乘法的拟合效果。
2. 加权最小二乘法的实现在Matlab中,可以通过指定权重向量来调用polyfit函数,实现加权最小二乘法拟合多项式。
利用Matlab内置的拟合评估工具,可以对拟合效果进行全面评估和优化。
三、实例分析以实际数据为例,我们可以在Matlab环境下进行加权最小二乘法的拟合多项式实例分析。
通过构建数据模型、指定权重、调用polyfit函数并结合可视化工具,可以全面了解加权最小二乘法在拟合多项式中的应用效果。
四、个人观点和总结在实际工程和科学研究中,加权最小二乘法拟合多项式是一种非常有效和重要的数据处理方法。
结合Matlab强大的数学计算和可视化工具,可以更方便、更高效地实现加权最小二乘法拟合多项式。
Matlab最小二乘法曲线拟合

之杨若古兰创作最小二乘法在曲线拟合中比较普遍.拟合的模型次要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......普通对于LS成绩,通常利用反斜杠运算“\”、fminsearch 或优化工具箱提供的极小化函数求解.在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操纵.在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型.“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2]; 履行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这类方法对于系数是线性的模型也适应.2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是猜测变量,y是呼应变量.设计矩阵为X=[ones(size(x)) x t] %留意x,t大小相等!para=X\ypolyfit函数polyfit函数不须要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵.1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2)然后可以使用polyval在t处猜测:y_hat=polyval(p,t)polyfit函数可以给出相信区间. [p S]=polyfit(x,y,2) %S中包含了尺度差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处猜测在每个t处的95%CI为:(y_fit1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数.LS成绩的基本思想就是残差的平方和(一种范数,由此,LS发生了很多利用)最小,是以可以利用fminsearch函数进行曲线拟合. 假设要拟合:y = a+b*exp(x)+c*exp(x.?2) 首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %留意向量化:p(1)=a;p(2)=b;p(3)=c; %可以根据须要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (yf(p,x)).^2,p0) %可以输出Hessian矩阵res=yf(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较无效!非线性拟合nlinfit函数clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x)2.350176*p(1)*(11/p(2))*(1(1x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(1 /p(2))1).^(p(2)).*x(:,1).^(1/p(2)0.5).*x(:,2);p0=[8 0.5]'; opt=optimset('TolFun',1e3,'TolX',1e3);%[p R]=nlinfit(x,y,f,p0,opt)例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子直线型例子2.多项式型的一个例子19002000年的总人口情况的曲线拟合clear all;close all; %cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]'; y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]'; %t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依.变换为[1 1]上s=(t1950)/50;%plot(s,y,'ro');%回归线:y=a+bx mx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=myb*mx;rline=a+b.*s;figure;subplot(3,2,[1 2]) plot(s,y,'ro',s,rline,'k');%title('多项式拟合'); set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on; n=4;PreYear=[ ];%猜测年份tPreYear=(PreYear1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y [PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%猜测res(:,i)=yY(:,i);%残差end% plot(s,Y);%a主动添加分歧色彩% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2)% plot(tPreYear,PrePo,'>'); % hold off % plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2 %拟合误差估计CI YearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'}; for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%猜测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%猜测95% CIplot(tPreYear,PrePo(:,col)2*Predelta(:,col));axis([1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));title(CFtit{col});hold off; endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o'); end一个非线性的利用例子(多元情况)在百度晓得中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为利用,模型纷歧定准确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]'; x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]'; x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x=[x1 x2 x3]; f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6); p0=ones(6,1);p=fminsearch(@(p)sum(yf(p,x)).^2,p0)res=yf(p,x);res2=res.^2 %失败的模型。
Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程最小二乘法曲线拟合的应用实例班级:姓名:学号:指导教师:一,实验目的通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法二,实验内容1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。
要求:对该数据进行合理的最小二乘法数据拟合得下列数据。
x=[10000 11000 12000 13000 14000 15000 16000 170 00 18000 19000 20000 21000 22000 23000];y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 6 5.8 87.5 137.8 174.2]三,程序如下X=10000:1000:23000;Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,6 5.8,87.5,137.8,174.2]dy=1.5; %拟合数据y的步长for n=1:6[a,S]=polyfit(x,y,n);A{n}=a;da=dy*sqrt(diag(inv(S.R´*S.R)));Da{n}=da´;freedom(n)=S.df;[ye,delta]=polyval(a,x,S);YE{n}=ye;D{n}=delta;chi2(n)=sum((y-ye).^2)/dy/dy;endQ=1-chi2cdf(chi2,freedom); %判断拟合良好度clf,shgsubplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’)subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’)nod=input(‘根据图形选择适当的阶次(请输入数值)’);elf,shg,plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’);axis([8000,23000,20.0,174.2]);hold onerrorbar(x,YE{nod},D{nod},‘r’);hold offtitle(‘较适当阶次的拟合’)text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])text(10000,140.0,[‘freedom=’int2str(freedom(nod))]) text(20000,40.0,[‘Q=’num2str(Q(nod))‘~0.5’])disp(‘’)disp(‘拟合多项式系数’),disp(A{nod})disp(‘拟合系数的离差’),disp(DA{nod})运行结果分为两个阶段,第一阶段先判断拟合度,第二阶段根据拟合度,选择合适的拟合阶次,再绘出拟合结果。
最小二乘法求二次拟合多项式 matlab

最小二乘法求二次拟合多项式 matlab最小二乘法求二次拟合多项式 Matlab1. 介绍最小二乘法是一种常用的数学优化方法,用于寻找一组参数,使得模型预测值与实际观测值之间的平方误差和最小。
在拟合多项式曲线时,最小二乘法能够帮助我们找到最佳的拟合曲线,从而更好地描述数据之间的关系。
2. 理论基础在进行二次拟合时,我们希望找到一个二次多项式曲线,使得该曲线能够最好地拟合给定的数据点。
二次多项式的一般形式为:y = ax^2 + bx + c。
其中,a、b、c为待定系数,需要通过最小二乘法来求解。
3. Matlab实现步骤我们需要将实际观测数据以矩阵的形式输入到Matlab中。
假设我们已经将x轴与y轴的观测数值分别存储在矩阵X和Y中。
接下来,我们可以使用Matlab中的polyfit函数来进行最小二乘法拟合。
该函数的语法为:p = polyfit(X, Y, n),其中n为多项式的次数。
对于二次拟合,我们将n设为2。
函数将返回多项式系数p,其中p(1)对应于二次项的系数a,p(2)对应于一次项的系数b,p(3)对应于常数项c。
我们可以使用polyval函数来计算拟合的二次多项式在给定x轴数值下的y轴预测值。
语法为:Y_fit = polyval(p, X)。
4. 个人观点和理解最小二乘法求二次拟合多项式在实际工程和科学研究中具有非常重要的应用价值。
通过这种方法,我们能够利用已知数据点来构建一个更加准确的模型,从而能够更好地理解数据之间的关系。
在使用Matlab进行二次拟合时,我们不仅可以得到拟合的二次多项式曲线,还能够通过拟合结果进行后续的数据预测和分析。
这种方法不仅简单高效,而且在处理实际问题时非常有用。
总结通过最小二乘法求解二次拟合多项式,我们能够通过Matlab快速、准确地得到拟合曲线的系数,从而更好地理解数据之间的关系。
这种方法也为我们提供了一种有效的工程应用解决方案。
最小二乘法求二次拟合多项式 Matlab的方法对于分析实验数据和建立数据模型有着重要的意义,值得我们深入学习和应用。
最小二乘法的基本原理和多项式拟合matlab实现

最小二乘法的基本原理和多项式拟合一、最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir2的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir2[]∑==-mi iiy x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。
函数)(x p 称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
合中,函数类Φ可有不同的选取方法.6—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
最小二乘法拟合和优化常用的 matlab 命令及其适用范围

最小二乘法拟合和优化常用的 matlab 命令及其适用范围
最小二乘法拟合和优化常用的Matlab 命令及其适用范围如下:
1. polyfit:用于多项式拟合的函数,可以通过最小二乘法拟合
一组数据点的多项式曲线。
适用范围:适合进行多项式拟合的情况。
2. lsqcurvefit:用于非线性最小二乘法拟合的函数,可以通过
最小二乘法拟合一组数据点的非线性函数曲线。
适用范围:适合进行非线性函数拟合的情况。
3. fminsearch:用于寻找函数的最小值的函数,可以通过优化
算法寻找最适合数据点的参数值。
适用范围:适合进行简单的参数优化的情况。
4. fmincon:用于带约束条件的优化问题的函数,可以通过优
化算法寻找最适合数据点的参数值,并满足约束条件。
适用范围:适合进行带约束条件的参数优化的情况。
5. lsqlin:用于带等式约束的线性最小二乘法拟合的函数,可
以通过最小二乘法拟合一组数据点的线性函数曲线,并满足等式约束。
适用范围:适合进行带等式约束的线性函数拟合的情况。
通过这些 Matlab 命令,可以进行最小二乘法拟合和优化,并
得到最适合数据的拟合曲线或参数值。
具体使用哪个命令取决于数据的特点和问题的需求。
最小二乘法原理及其MATLAB实现

最小二乘法原理及其MATLAB实现一、本文概述最小二乘法是一种广泛应用于数学、统计学、工程学、物理学等众多领域的数学优化技术。
其核心原理在于通过最小化误差的平方和来寻找最佳函数匹配,从而实现对数据的最佳逼近。
本文将对最小二乘法的原理进行详细阐述,并通过MATLAB编程实现,帮助读者深入理解并掌握这一强大的数据分析工具。
文章将首先介绍最小二乘法的基本原理,包括其历史背景、基本概念以及数学模型的构建。
然后,通过实例分析,展示如何应用最小二乘法进行线性回归模型的拟合,以及如何处理过拟合和欠拟合等问题。
接着,文章将详细介绍如何在MATLAB中实现最小二乘法,包括数据准备、模型构建、参数估计以及结果可视化等步骤。
文章还将对最小二乘法的优缺点进行讨论,并探讨其在不同领域的应用前景。
通过本文的学习,读者将能够全面理解最小二乘法的原理和应用,掌握其在MATLAB中的实现方法,为实际工作中的数据处理和分析提供有力支持。
二、最小二乘法原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。
这种方法起源于19世纪的统计学,由数学家阿德里安-马里·勒让德(Adrien-Marie Legendre)和卡尔·弗里德里希·高斯(Carl Friedrich Gauss)分别独立发展。
建立模型:我们需要建立一个描述数据关系的数学模型。
这通常是一个线性方程,如 y = ax + b,其中 a和b是待求解的参数。
误差计算:对于给定的数据集,我们可以将每个数据点代入模型中进行计算,得到预测值。
预测值与真实值之间的差异就是误差。
平方误差和:为了衡量模型的拟合程度,我们需要计算所有误差的平方和。
这是因为平方误差和能够更好地反映误差的大小,尤其是在误差较大时。
最小化平方误差和:最小二乘法的核心思想是找到一组参数,使得平方误差和达到最小。
这通常通过求导和令导数等于零来实现,从而找到使平方误差和最小的参数值。
最小二乘法求二次拟合多项式 matlab

最小二乘法求二次拟合多项式 Matlab一、介绍最小二乘法是一种常见的数学优化技术,用于寻找一组参数,使得某种给定的数学模型和观测到的数据之间的误差平方和最小。
在 Matlab 中,最小二乘法常常用于拟合曲线或者多项式,其中二次拟合多项式是一种常见的应用。
本文将探讨如何使用 Matlab 来利用最小二乘法进行二次拟合多项式的求解。
二、理论基础在进行二次拟合多项式求解之前,首先需要了解最小二乘法的理论基础。
最小二乘法的核心思想是通过调整模型的参数,使得模型的预测值与实际观测值之间的误差最小化。
对于二次拟合多项式而言,其模型可以表示为:y = ax^2 + bx + c其中 a、b、c 分别为二次、一次和常数项的系数。
最小二乘法的目标是通过对观测数据的拟合,来确定最优的参数值。
三、使用 Matlab 进行二次拟合多项式求解在 Matlab 中,可以利用 polyfit 函数来进行二次拟合多项式的求解。
该函数的使用格式为:p = polyfit(x, y, n)其中 x 和 y 分别为观测数据的自变量和因变量,n 表示要拟合的多项式次数。
对于二次拟合多项式而言,n 应设置为 2。
polyfit 函数将返回拟合多项式的系数 p。
四、示例代码下面是一个利用最小二乘法进行二次拟合多项式的示例代码:```matlab生成观测数据x = 1:10;y = [3.2, 5.1, 9.5, 17.3, 28.4, 39.7, 52.3, 66.1, 80.2, 94.5];使用 polyfit 进行二次拟合多项式求解p = polyfit(x, y, 2);绘制拟合曲线xx = 1:0.1:10;yy = polyval(p, xx);plot(x, y, 'o', xx, yy, '-');legend('观测数据', '拟合曲线');xlabel('x');ylabel('y');```在示例代码中,首先生成了一组观测数据 x 和 y,然后利用 polyfit 函数进行二次拟合多项式的求解,最后利用 polyval 函数绘制了拟合曲线。
matlab最小二乘拟合并计算r

主题:如何使用Matlab进行最小二乘拟合并计算r内容:一、介绍最小二乘拟合的概念1. 最小二乘拟合是一种常见的数据拟合方法,通过最小化实际观测值与拟合值之间的误差平方和来找到最优拟合函数。
2. 在Matlab中,可以利用内置的polyfit函数来进行最小二乘拟合,该函数可以拟合出任意阶的多项式。
二、Matlab中的polyfit函数介绍1. polyfit函数的基本语法为:p = polyfit(x, y, n),其中x和y分别为数据点的横纵坐标,n为拟合的多项式阶数。
2. polyfit函数返回一个包含拟合系数的向量p,该向量可以用来构建拟合多项式。
三、如何使用polyfit进行最小二乘拟合1. 需要准备实验或观测数据,并将其存储在Matlab的变量中。
2. 接下来,利用polyfit函数对数据进行拟合,得到拟合系数向量p。
3. 利用polyval函数结合拟合系数p,可以得到拟合的函数值,进而绘制拟合曲线。
四、如何计算拟合优度r1. 在进行最小二乘拟合之后,我们希望了解拟合曲线与实际数据的拟合程度,这时就需要计算拟合优度r。
2. 在Matlab中,可以利用相关系数来评估拟合优度,相关系数r的取值范围在-1到1之间,一般来说,r越接近1,拟合效果越好。
3. 使用相关系数函数corrcoef可以方便地计算拟合优度r。
五、示例演示1. 为了更直观地理解如何使用Matlab进行最小二乘拟合以及计算r,我们将给出一个具体的示例演示。
2. 在示例中,我们将使用polyfit函数对一组人口增长数据进行拟合,并利用相关系数函数corrcoef计算拟合优度r。
六、总结1. 最小二乘拟合是一种常见的数据拟合方法,Matlab提供了丰富的函数库来支持最小二乘拟合的实现。
2. 在进行最小二乘拟合之后,计算拟合优度r可以帮助我们评估拟合效果,为数据分析和实际应用提供参考。
文章结尾从以上内容我们可以看出,Matlab作为一款功能强大的数据分析工具,对于最小二乘拟合和相关系数的计算都提供了便捷的函数支持。
最小二乘法 matlab

最小二乘法(附MATLAB代码)今天我主要是从如何使用MATLAB实现最小二乘法,首先给出今天重点使用的两个函数。
比如我想拟合下面这组数据x=[9,13,15,17,18.6,20,23,29,31.7,35];y=[-8,-6.45,-5.1,-4,-3,-1.95,-1.5,-0.4,0.2,-0.75];我先用matlab将这组离散点画出来,plot(x,y,'o')嗯,大概这个样子,这时我们想使用一次函数拟合上述曲线,可使用以下代码clearclcx=[9,13,15,17,18.6,20,23,29,31.7,35];y=[-8,-6.45,-5.1,-4,-3,-1.95,-1.5,-0.4,0.2,-0.75];coeff icient=polyfit(x,y,1); %用一次函数拟合曲线,想用几次函数拟合,就把n设成那个数y1=polyval(coefficient,x);%plot(x,y,'-',x,y1,'o'),这个地方原来'-'和'o'写反了,现已更正,可以得到正确的图形。
plot(x,y,'o',x,y1,'-')得到的结果是coefficient=[0.2989,-9.4107]所以得到的一次函数为y=0.2989*x-9.4107同理如果用二次函数拟合该曲线,得到的各项系数为coefficient=[-0.0157 1.0037 -16.2817]所以得到的二次函数为y=-0.0157*x^2+1.0037*x-16.2817其他阶数依此类推。
但是使用polyfit(x,y,n)函数有一个注意事项:举个例子,比如说我们想用9阶多项式拟合上述曲线时,我们发现拟合的曲线是正常的,得到的各项系数也是正常的但是当我们用10阶多项式拟合曲线时,此时各项系数如下,得到的曲线如下很明显出现了问题,所以使用polyfit(x,y,n)函数时要严格遵守上述事项。
最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
MATLAB上机实验实验报告

MATLAB上机实验实验报告实验名称:用MATLAB实现多项式拟合及插值一、实验目的:通过使用MATLAB实现多项式拟合及插值的方法,掌握MATLAB软件的基本操作和函数应用,进一步了解多项式拟合及插值的原理和实现过程。
二、实验原理:多项式拟合及插值是一种常见的数值分析方法,通过对已知数据点集合的拟合或插值,构造出一个多项式函数,用于近似表示原始数据。
1.多项式拟合:通过最小二乘法原理,选择一个合适的多项式函数,使得拟合出的多项式与已知数据点之间的误差最小。
拟合函数可以是一次、二次或高阶多项式。
2.多项式插值:通过已知数据点的横纵坐标值,构造一个满足这些点的多项式函数。
插值函数可以是一次、二次或高阶多项式。
插值函数经过每个已知数据点。
三、实验步骤:1.数据准备:选择一组已知数据,包含横纵坐标值。
数据点的个数可以根据具体情况自行确定。
2.多项式拟合:使用MATLAB中的polyfit函数,根据已知数据点进行多项式拟合。
根据拟合结果,获取拟合的多项式系数。
3.多项式插值:使用MATLAB中的polyfit函数,根据已知数据点进行多项式插值。
通过plot函数绘制原始数据点的散点图和插值多项式的曲线图。
可以尝试不同阶数的多项式插值。
4.结果分析:根据实验结果,分析拟合与插值的效果。
对比拟合结果与原始数据的误差大小,评估拟合的准确性。
对比插值结果与原始数据的差异,评估插值的精确度。
五、实验总结:通过这次实验,我熟练掌握了使用MATLAB实现多项式拟合及插值的方法。
在实验中,我了解了多项式拟合的原理,以及如何利用最小二乘法求取多项式拟合的系数。
同时,我也学会了如何使用MATLAB中的polyfit函数实现多项式拟合和插值。
通过实验结果的分析,我对拟合和插值的实际应用和效果有了更加深入的认识。
[1]MATLAB官方文档[2]高等数值分析教程以上为MATLAB上机实验实验报告,共计1200字。
最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。
x 必须是单调的。
矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
matlab拟合多项式后计算在某一点的数值

在MATLAB中,拟合多项式是一种常见的数据分析方法,它可以通过一组数据点来构建一个多项式模型,以便对未知数据点进行预测或计算。
本文将从深度和广度的角度探讨MATLAB中拟合多项式的原理、方法和实际应用,以便读者能更深入地了解和掌握这一重要的数据分析技术。
1. 原理拟合多项式在MATLAB中的实现基于最小二乘法原理,即通过最小化数据点与拟合曲线之间的误差来确定多项式系数,使得拟合曲线能够最好地描述数据点的分布特征。
在MATLAB中,可以使用polyfit函数来进行多项式拟合,该函数需要输入数据点的横纵坐标以及拟合的多项式阶数,然后返回拟合多项式的系数。
2. 方法在实际使用中,可以通过以下步骤来进行多项式拟合并计算在某一点的数值:- 准备好需要拟合的数据点,通常以向量或矩阵的形式输入到MATLAB中。
- 使用polyfit函数对数据点进行多项式拟合,确定拟合多项式的系数。
- 接下来,可以利用polyval函数根据拟合多项式的系数来计算在某一点的数值,以进行预测或计算。
3. 应用多项式拟合在MATLAB中有着广泛的应用,例如在科学研究、工程技术、金融分析等领域都有着重要的作用。
通过多项式拟合,可以利用已知的数据点来构建模型并进行预测,使得数据分析和决策更加准确和可靠。
总结回顾通过本文的介绍,读者对MATLAB中拟合多项式的原理、方法和应用有了更深入的了解。
多项式拟合是一种重要的数据分析技术,通过在MATLAB中的实现,可以对多种实际问题进行建模和预测,为决策提供重要的数据支持。
个人观点在实际应用中,多项式拟合可以帮助我们更好地理解和分析数据,预测趋势和走势,对于科学研究和工程技术有着重要的意义。
也需要注意拟合结果的准确性和可靠性,以及合理选择拟合的多项式阶数,避免过拟合或欠拟合的情况发生。
经过以上分析和总结,相信读者对MATLAB中拟合多项式后计算在某一点的数值有了更深入的理解。
希望本文能为读者在数据分析领域提供一些帮助和启发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用最小二乘法进行多项式拟合(matlab
实现)
西安交通大学
徐彬华
算法分析:
对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使
函数P(x)称为拟合函数或最小二乘解,令似的 使得
其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求
的极值问题。
由多元函数求极值的必要条件:
j=0,1,…,n
得到:
j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:
因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an )
试验题1
编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i -1.0
-0.5
0.0
0.5
1.0
1.5
2.0
y i
-4.447 -0.452 0.551 0.048 -0.447 0.549 4.552
总共有7个数据点,令m=6
第一步:画出已知数据的的散点图,确定拟合参数n;
x=-1.0:0.5:2.0;y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on
{}
n
k k x 0=
因此将拟合参数n设为3.
第二步:计算矩阵
A= 注意到该矩阵为(n+1)*(n+1)矩阵,
多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下:
m=6;n=3;
A=zeros(n+1);
for j=1:n+1
for i=1:n+1
for k=1:m+1
A(j,i)=A(j,i)+x(k)^(j+i-2)
end
end
end;
再来求矩阵
B=
for j=1:n+1
for i=1:m+1
B(j)=B(j)+y(i)*x(i)^(j-1)
end
end
第三步:写出正规方程,求出a0,,a1…,an.
B=B';
a=inv(A)*B;
第四步:画出拟合曲线
x=[-1.0:0.0001:2.0];
z=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3;
plot(x,z)
legend('离散点','y=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3')
title('拟合图')
总程序附下:
x=-1.0:0.5:2.0;y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552];
plot(x,y,'*')
xlabel 'x轴'
ylabel 'y轴'
title '散点图'
hold on
m=6;n=3;
A=zeros(n+1);
for j=1:n+1
for i=1:n+1
for k=1:m+1
A(j,i)=A(j,i)+x(k)^(j+i-2)
end。