自动控制系统的分类

合集下载

自动控制原理与系统

自动控制原理与系统

二、系统的稳态性能: 系统从一个稳定状态过渡到新的稳定状态后,会 出现偏差,称为稳态误差ess。ess=0,系统称为无静差 系统。否则称为有静差系统。稳态误差的大小反映了 系统的稳态精度,表征系统的准确程度。
t
0
1
输入r(t)
t
0
1
输入c(t)
1
2
理想的
实际
ess
01
任何实际系统从原平衡状态到达新的平衡状
03
入端,以增强或减弱输入信号的效应。
04
闭环控制系统:
例2.引入闭环控制后的直流电机转速控制系统










负载
△u
k
u
a
u
n
+
M
R
Us
uf
G
方框图
电位器
电压 放大器
可控硅 放大器
直流 电动机
测速机
us
uf
uk
-
n
扰动
ua
转速负反馈的作用:引入测速发电机后,当外来 的电网电压波动使电机的转速发生变化时,测速发电 机会将变化的情况反馈到比较环节,系统作出相应调 节,最终控制转速稳定。
振荡次数 N:指在调整时间内,输出量在稳
性能指标是衡量自动控制系统技术品质的客
01
观标准,也是定货、验收的基本依据。对性能指
02
标的要求,在同一系统中往往相互矛盾;性能指
03
标要求过高,成本会大幅增加;因此要统筹兼顾。
04
建立数学模型
定性分析:弄清工作原理
1-6 研究自动控制系统的方法
定量分析:静、动态指标

1.4 自动控制系统的分类

1.4 自动控制系统的分类

输入 + A/D
--
计算 机
输出
D/A
放大器
执行器
被控对象
反馈装置
采样数字控制系统结构图
广东交通职业技术学院机电工程系
18:18
4. 按输入量变化的规律分类
1) 恒值控制系统(Fixed Set-Point Control System) 特点是:系统的输入量是恒量,并且要求系统 的输出量相应地保持恒定。例如电机速度控制、水 位控制等。
且要求输出量随之变化。例如数控伺服系统以及一些 自动化生产线等。
广东交通职业技术学院机电工程系
18:18
广东交通职业技术学院机电工程系
18:18
2) 非线性系统(Non Liner System)
特点是:系统中含有非线性元件,如具有死区、 出现饱和等非线性特性的元件,它的输出量与输入 量间的关系要用非线性微分方程来描述。
广东交通职业技术学院机电工程系
18:18
2. 按系统中的参数对时间的变化情况 1) 定常系统(Time-Invariant System) (又称时
1.4 自动控制系统的分类
自动控制系统可以从不同的角度来进行分类, 常见的有以下几种。
1. 按系统的输出量和输入量间的关系分类 1) 线性系统(Liner System) 特点是:系统全部由线性元件组成,它的输出
量与输入量间的关系用线性微分方程来描述。
线性系统的主要特点是具有叠加性和齐次性,即 当c1(系t)和统c的2(t输),入则分当别输为入r1为(t)r和(t)r=2a(t1)r时1(t,)+对a2r应2(t的)时输,出输分出别量为 为c(t)=a1c1(t)+a2c2(t),其中为a1、a2为常系数。

自动控制系统的分类和品质指标

自动控制系统的分类和品质指标

自动控制系统的分类和品质指标1.根据控制对象的性质分类:连续控制系统和离散控制系统。

连续控制系统是指被控对象和控制器的输入和输出都是连续的,如电机的转速控制系统;离散控制系统是指被控对象和控制器的输入和输出是离散的,如数字逻辑控制系统。

2.根据控制方式分类:开环控制系统和闭环控制系统。

开环控制系统是指控制器的输出不受被控对象状态的反馈影响,控制结果只依赖于被控对象的输入,如电视遥控器控制电视机的开关和音量;闭环控制系统是指控制器的输出通过传感器获得被控对象的状态反馈信息,根据反馈信息进行调整,如汽车上的自动驾驶系统。

3.根据控制器的性质分类:线性控制系统和非线性控制系统。

线性控制系统是指被控对象和控制器之间的关系可以用线性方程或线性差分方程描述,如传统的PID控制系统;非线性控制系统是指被控对象和控制器之间的关系不可用线性方程或线性差分方程描述,需要使用非线性控制算法进行设计,如模糊控制和神经网络控制。

品质指标是用来评价自动控制系统性能好坏的指标,常见的有以下几个方面:1.稳定性:指系统的输出能够在有限时间内收敛到一个稳定的状态,不会产生震荡或发散。

稳定性是评价自动控制系统最基本且最重要的性能指标。

2.快速性:指系统的输出能够在规定的时间内快速达到稳定状态。

快速性越高,系统的响应速度就越快。

3.精确性:指系统的输出与期望值之间的偏差程度。

精确性越高,系统的控制效果越好。

4.鲁棒性:指系统对于参数变化、干扰和噪声的鲁棒性能。

鲁棒性越好,系统对外界干扰的抵抗能力越强。

5.动态性:指系统响应时间的快慢和输出过程中的波动程度。

动态性越好,系统越能够适应复杂的工况需求。

6.经济性:指系统的设计成本、运行成本和维护成本。

经济性越好,系统的运营费用越低。

以上是自动控制系统的分类和品质指标的基本介绍,不同的自动控制系统根据其应用领域、控制目标和技术要求的不同,可能会使用不同的分类标准,并要求不同的品质指标。

在实际应用中,需要根据具体的需求和情况进行系统设计和性能评估,以确保自动控制系统的性能和品质达到预期的要求。

自动控制系统名词

自动控制系统名词

自动控制系统名词
自动控制系统是一种能够自动调节和控制设备、过程或系统的机制。

它使用各种传感器、控制器和执行器来实现对被控对象的监测、分析和操作。

在自动控制系统中,传感器用于检测被控对象的状态或参数,如温度、压力、流量等,并将其转换为电信号或数字信号。

控制器接收这些信号,并使用预定的控制算法进行处理,以确定所需的控制动作。

执行器则根据控制器的指令,对被控对象进行实际的操作,如调节阀门开度、改变电机转速等。

自动控制系统的目标是实现被控对象的稳定运行、精确控制和优化性能。

它可以应用于各种领域,如工业生产、航空航天、交通运输、能源管理、环境保护等。

常见的自动控制系统包括反馈控制系统、前馈控制系统、比例积分微分(PID)控制系统等。

它们的设计和实现需要考虑到被控对象的特性、控制要求、传感器和执行器的性能以及控制算法的选择。

自动控制系统的优点包括提高生产效率、降低劳动强度、提高产品质量、增强安全性和可靠性等。

它的发展和应用对于现代工业和社会的进步起到了重要的推动作用。

自动控制知识

自动控制知识

自动控制知识一、自动控制原理的基本概念1、什么是自动控制。

自动控制就是在没有人直接参与的情况下,利用控制装置控制被控对象,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。

2、自动控制系统的分类按控制方式分:开环控制、闭环控制(反馈控制)和复合控制。

3、什么是开环控制系统?有何特点?定义:在控制系统中,系统的输出量不被引回到输入端来对系统的控制部分产生影响。

(即开环系统无反馈)特性:在保证系统动态特性的前提条件下,放大倍数越大越好;不能自动补偿控制过程中受到的各种扰动因素的影响(即结构简单,调试方便,但精度低、无抗扰能力。

)4、什么是闭环控制系统?有何特点?定义:在控制系统中,系统的输出量通过反馈环节返回到输入端来对系统的控制部分产生影响。

(即闭环系统有反馈)特性:能自动补偿控制过程中受到的各种扰动因素的影响,但系统稳定性变差。

(即偏差控制,可以抑制内、外扰动对被控制量产生的影响。

精度高、结构复杂,设计、分析麻烦。

)5、对自动控制系统的基本要求对自动控制系统的基本要求:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。

(一)、稳定性:1)对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。

2)对随动系统,被控制量始终跟踪参据量的变化。

稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

稳定性,通常由系统的结构决定与外界因素无关。

(二)、快速性:对过渡过程的形式和快慢提出要求,一般称为动态性能。

稳定高射炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓,仍然抓不住目标。

(三)、准确性:用稳态误差来表示。

在参考输入信号作用下,当系统达到稳态后,其稳态输出与参考输入所要求的期望输出之差叫做给定稳态误差。

显然,这种误差越小,表示系统的输出跟随参考输入的精度越高。

二、直流调速系统1、调速范围与静差率调速范围:是指在额定负载(及一定的静差率要求)下,电动机所能达到的最高转速与最低转速之比。

自动化控制

自动化控制

自动化控制一、引言随着科技的进步和工业的发展,自动化控制在现代社会中的作用越来越重要。

它广泛应用于各种行业,如制造业、能源、交通、航空航天等,不仅提高了生产效率,还大大增强了系统的稳定性和安全性。

本文将详细介绍自动化控制的基本组成、分类、优点、发展趋势以及应用领域。

二、自动化控制系统的基本组成控制器:它是自动化控制系统的核心,负责接收输入信号,并根据预设的算法处理这些信号,产生相应的输出信号,以控制被控对象的运行。

传感器:传感器是用于检测被控对象的状态和变化,并将检测到的信号转换为可处理的电信号的设备。

执行器:执行器根据控制器的输出信号,驱动被控对象执行相应的动作,以实现系统的控制目标。

人机界面(HMI):人机界面是人与自动化控制系统交互的界面,用于显示系统的运行状态、接收人的操作指令等。

通信网络:通信网络用于连接自动化控制系统的各个组成部分,实现信息的传递和共享。

三、自动化控制系统的分类开环控制系统:开环控制系统是指系统中没有反馈环节的控制系统,输出只受输入的控制。

闭环控制系统:闭环控制系统是指系统中包含反馈环节的控制系统,系统可以根据反馈信号调整控制器的输出,以实现对被控对象的精确控制。

随动系统与伺服系统:随动系统是指系统的输出能够跟踪输入的变化的系统,而伺服系统则是指能够实现快速、准确跟踪输入变化的系统。

四、自动化控制系统的主要优点高效性:自动化控制系统可以连续24小时工作,大大提高了生产效率。

精确性:自动化控制系统采用高精度传感器和算法,可以实现精确控制,减少人为误差。

可靠性:自动化控制系统具有较高的稳定性和可靠性,可以减少故障发生的概率。

灵活性:自动化控制系统可以通过软件编程实现不同的控制逻辑,具有较高的灵活性。

降低成本:自动化控制系统可以降低人力成本,提高生产效益。

五、自动化控制系统的发展趋势智能化:随着人工智能技术的发展,未来的自动化控制系统将更加智能化,能够自适应地处理复杂的控制任务。

简述自动控制系统的基本分类

简述自动控制系统的基本分类

简述自动控制系统的基本分类自动控制系统是现代工业生产中不可或缺的一部分,它可以实现对生产过程的自动化控制,提高生产效率和质量。

自动控制系统的基本分类主要有以下几种。

一、按照控制对象分类1.连续控制系统:主要用于对连续生产过程进行控制,如化工、石油、纺织等行业的生产过程。

2.离散控制系统:主要用于对离散生产过程进行控制,如自动包装、自动装配等行业的生产过程。

3.混合控制系统:是连续控制系统和离散控制系统的结合,主要用于对同时具有连续和离散生产过程的系统进行控制。

二、按照控制方式分类1.开环控制系统:是指控制器不对被控对象的输出进行反馈调节,而是直接根据预定的控制规律进行控制。

2.闭环控制系统:是指控制器对被控对象的输出进行反馈调节,根据输出与预定值之间的误差进行控制。

3.开闭环控制系统:是指同时采用开环和闭环控制方式的控制系统,主要用于对复杂系统进行控制。

三、按照控制器分类1.单变量控制器:是指控制单个变量的控制器,如PID控制器、比例控制器等。

2.多变量控制器:是指控制多个变量的控制器,如模型预测控制器、自适应控制器等。

3.分散控制器:是指控制系统中各个部分各自独立进行控制的控制器。

4.集中控制器:是指控制系统中各个部分通过中央控制器进行集中控制的控制器。

四、按照控制对象的数量分类1.单变量控制系统:是指控制系统中只有一个被控对象的控制系统。

2.多变量控制系统:是指控制系统中有多个被控对象的控制系统。

3.分布式控制系统:是指控制系统中各个被控对象通过分布式控制器进行控制的控制系统。

四、按照控制系统的层次分类1.基层控制系统:是指控制系统中最底层的控制系统,主要用于对现场设备进行控制。

2.中层控制系统:是指控制系统中处于中间层次的控制系统,主要用于对生产过程进行控制。

3.高层控制系统:是指控制系统中处于最高层次的控制系统,主要用于对整个生产过程进行规划和管理。

以上是自动控制系统的基本分类,不同的控制系统具有不同的特点和应用范围,选择合适的控制系统能够提高生产效率和质量,降低成本,提高企业的竞争力。

自动控制系统的分类

自动控制系统的分类
上述三种分析方法虽然不同,但都围绕着系统 稳定性、稳态特性和动态特性的分析这条主线来迚行 的,各种分析方法之间具有内在的联系。
掌握上述基本分析方法后,将迚行系统校正与 综合的讨论,这是比系统分析更深层次的内容,主要 介绍根轨迹法和频率特性法校正与系统综合的原理与 思路。
此外,还要介绍针对非线性系统的描述函数法 和相平面分析法。
1-3 自动控制系统的分类
1.按信号流向划分
(1)开环控制系统 信号流动由输入端到输出端单向流动。
(2)闭环控制系统
若控制系统中信号除从输入端到输出端外, 还有输出到输入的反馈信号,则构成闭环控制系 统,也称反馈控制系统,如图所示。
2.按系统输入信号划分
(1)恒值调节系统(自动调节系统) 这种系统的特征是输入量为一恒值,通常称为系
是与时间无关的常数,则称为定常系统。该类系统 只要输入信号的形式不变,在不同时间输入下的输 出响应形式是相同的。
(2)时变系统 如果描述系统特性的微分方程中只要有一
项系数是时间的函数,此系统称为时变系统。
5.连续系统和离散系统
(1)连续系统 系统中所有元件的信号都是随时间连续变化
的,信号的大小均是可任意取值的模拟量,称为连 续系统。 (2)离散系统
A=1的函数称为单位阶跃函数,记作1(t)。因此, 幅值为A的阶跃函数也可表示为:
r(t) A 1(t)
出现在 t t0 时刻的阶跃函数,表示为:
0
r(t

t0
)


A
t t0 t t0
2.斜坡函数(等速度函数)
它的数学表达式为:
0 t0
r (t
)


At
t0

自动控制系统分类方法

自动控制系统分类方法
既能得到高精度控制,又能提高抗干扰能力。
3 复合调节系统(前馈-反馈调节系统)
内容小结
反馈 调节系统
前馈 调节系统
复合 调节系统
感谢观看
根据扰动信号进行调节,系统的输出端与输入端之间不存 在反馈通道,输出量对系统的控制作用没有影响。
传感器
调节器
执行器
干扰 被调量
被调对象
2 前• 扰动:蒸汽流量 • 在水位发生变化之前就启动调
节系统进行调节,使水位基本 上不变。
• 及时有效的抑制被调量的变化 • 系统不会出现震荡 • 调节作用及时 • 不能保证被调量等于给定值 • 对与不能测量的干扰,无法及时
调节,最后达到减小和消除偏差的目的。
1 反馈调节系统(闭环调节系统)
以汽包水位调节为例
特点:
• 在水位发生变化以后进行调节, 最终水位恢复正常。
• 在此过程中,水位有一定波动。
• 保证在稳态时被调量等于给定值。 • 调节时间长 • 容易出现震荡 • 调节作用不及时
2 前馈调节系统(开环调节系统)
热工控制与保护
自动控制系统 分类
一、反馈调节系统 二、前馈调节系统 三、复合调节系统
按系统的结构特点(工作原理)分类
反馈调节系统(闭环调节系统) 前馈调节系统(开环调节系统) 复合调节系统(前馈-反馈调节系统)
1 反馈调节系统(闭环调节系统)
分为正反馈和负反馈
负反馈基本工作原理: 根据被调量与给定值之间的偏差进行
调节。 • 一般不会单独使用,而是与反馈
调节配合使用。
3 复合调节系统(前馈-反馈调节系统)
复合调节就是前馈调节和反馈调节相结合的一种调节系统
• 前馈调节——及时调节,克服主要扰动对被调量的影响。 为粗调。

自动控制系统的分类

自动控制系统的分类

自动控制系统的分类常用的自动控制系统分类方法如下。

1.按控制原理的不同自动控制系统分为开环控制系统和闭环控制系统。

1)开环控制系统在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。

开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统,由顺序控制装置、检测元件、执行机构和被控工业对象所组成。

主要应用于机械、化工、物料装卸运输等过程的控制及机械手和生产自动线。

2)闭环控制系统闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。

闭环控制系统又称反馈控制系统。

2.按给定信号(输入量)的变化规律分类自动控制系统可分为恒值控制系统、随动控制系统和程序控制系统。

1)恒值控制系统若系统输入量为一定值,要求系统的输出量也保持恒定,此类系统称为恒值控制系统。

这类控制系统的任务是保证在扰动作用下被控量始终保持在给定值上,在生产过程中的恒转速控制、恒温控制、恒压控制、恒流量控制、恒液位高度控制等大量的控制系统都属于这一类系统。

对于恒值控制系统,着重研究各种扰动对输出量的影响,以及如何抑制扰动对输出量的影响,使输出量保持在预期值上。

恒值控制系统又称为自动调节系统,其主要特征是给定量不变。

2)随动控制系统给定值按未知时间函数变化,要求输出跟随给定值的变化而变化,如跟踪卫星的雷达天线系统。

随动系统的输入信号是一个随时间任意变化的函数(事先无法预测其变化规律),系统的任务是在存在扰动的情况下,保证输出量以一定的精度跟随输入信号的变化而变化。

在这种系统中,输出量通常是机械位移、速度或加速度。

随动系统中,若给定量变化是任意的,则称为自动跟踪系统或伺服系统,研究的重点是系统输出量跟随输入量的准确性和快速性。

随动系统在工业、交通和国防等部门有着极为广泛的应用,如机床的自动控制、舰船的操舵系统、火炮控制系统及雷达导航系统等。

3)程序控制系统若系统的输入量按一定的时间函数变化,但其变化规律是预先知道和确定的,给定值按一定时间函数变化,要求输出量与给定量的变化规律相同,此类系统称为程序控制系统。

自动控制系统的组成及分类

自动控制系统的组成及分类

自动控制系统的组成及分类
一、系统组成
自动控制系统主要由控制器、受控对象、执行机构和反馈通路组成。

1. 控制器:控制器的功能是接受操作人员的指令,以及对由检测装置得到的被控量进行一定的处理,以控制受控对象的控制量的大小,以满足系统的性能要求。

控制器有多种分类,按能量关系可分为电动、气动、液压、机械和混合型等;按信息传递方式可分为开环和闭环等。

2. 受控对象:受控对象又称被控对象,是指在自动化系统中需要控制的设备或装置。

受控对象根据不同的要求和控制方案,可以是一个单台设备、一条生产线或一个系统。

3. 执行机构:执行机构是自动控制系统中的重要组成部分,它的作用是根据控制器的输出信号,产生相应的动作,驱动被控对象,以改变受控量的状态。

常见的执行机构有伺服电动机、步进电机等。

4. 反馈通路:反馈通路是指把被控量的变化通过传感器和转换装置变成电信号,再传输给控制器,以实现系统的闭环控制。

反馈通路由传感器、转换装置和控制器等组成。

二、分类方式
自动控制系统有多种分类方式,以下列举几种常见的分类方式:
1. 按控制系统类型分类:可分为开环控制系统和闭环控制系统。

开环控制系统是指系统的输出只受输入的控制,与系统的过去状态无关;而闭环控制系统是指系统的输出不仅受输入的控制,还与系统的过去状态有关。

2. 按控制方式分类:可分为程序控制和随动控制。

程序控制是指系统按照预定的程序进行控制;随动控制是指系统根据被控量的变化实时调整控制参数。

3. 按控制变量的数量分类:可分为单变量控制系统和多变量控制系统。

单变量控制系统是指系统只有一个被控量;多变量控制系统是指系统有多个被控量。

自动控制系统的分类

自动控制系统的分类

加。
1-4 自动控制系统的基本要求
自动控制系统是否能很好地工作,是否能精确 地保持被控量按照预定的要求规律变化这取决于被 控对象和控制器及各功能元器件的特性参数是否设 计得当。 在理想情况下 , 控制系统的输出量和输入量 , 在任何时候均相等 , 系统完全无误差 , 且不受干扰 的影响。实际系统中 , 由于各种各样原因 , 系统在 受到输入信号(也包括扰动信号)的激励时,被控量 将偏离输入信号作用前的初始值 ,经历一段动态过 程(过渡过程),则系统控制性能的优劣,可以从动 态过程中较充分地表现出来。
1-3 自动控制系统的分类
1.按信号流向划分
(1)开环控制系统
信号流动由输入端到输出端单向流动。
(2)闭环控制系统 若控制系统中信号除从输入端到输出端外, 还有输出到输入的反馈信号,则构成闭环控制系 统,也称反馈控制系统,如图所示。
2.按系统输入信号划分 (1)恒值调节系统(自动调节系统) 这种系统的特征是输入量为一恒值,通常称为系 统的给定值。控制系统的任务是尽量排除各种干扰 因素的影响,使输出量维持在给定值(期望值)。如工 业过程中恒温、恒压、恒速等控制系统。
MATLAB分析与设计
1-6 本课程的内容和特点
一、自动控制理论的内容 自动控制理论的内容与自动控制系统需要研究的问题密切相关。 要研究的问题有两个方面,即控制系统的分析;控制系统设计与 综合。 (-)自动控制系统的分析 控制系统分析主要包括三个方面内容:①稳定性分析;②稳态 特性分析(准确性,精度);③动态特性分析(暂态特性或瞬态 特性)。(稳、准、快) 1.系统的稳定性分析 1、稳定性分析; 给出判断系统稳定性的基本方法,并阐述 系统的稳定性与系统结构(或称控制规律)及系统参数间的关系。 2、稳态特性分析:系统稳态特性表征了系统实际稳态值与希 望稳态值之间的差值,即稳态误差,表征了控制系统的控制精度。 给出计算系统稳态误差的方法,指出系统结构和参数对稳态特性 的影响。

自动控制系统是按照什么分类

自动控制系统是按照什么分类

自动控制系统是按照什么分类,怎么分?自动控制系统的形式是多种多样的,用不同的标准划分,就有不同的分类方法。

常见的有下述几种.1。

6。

1恒值控制系统、随动控制系统和程序控制系统按给定信号的形式不同,可将系统划分为恒值控制系统和随动控制系统.(1)恒值控制系统恒值控制系统(也称为定值系统或调节系统)的控制输入是恒定值,要求被控量保持给定值不变。

例如前面提到的液位控制系统,直流电动机调速系统等。

(2) 随动控制系统随动控制系统(也称为伺服系统)的控制输入是变化规律未知的时间函数,系统的任务是使被控量按同样的规律变化并与输入信号的误差保持在规定范围内。

例如函数记录仪,自动火炮系统和飞机—自动驾驶仪系统等。

(访问ask。

)(3)程序控制系统程序控制系统的给定信号按预先编制的程序确定,要求被控量按相应的规律随控制信号变化。

机械加工中的数控机床就是典型的例子.1。

6.2定常系统和时变系统按系统参数是否随时间变化,可以将系统分为定常系统和时变系统。

如果控制系统的参数在系统运行过程中不随时间变化,则称之为定常系统或者时不变系统,否则,称其为时变系统。

实际系统中的温漂、元件老化等影响均属时变因素。

(访问ask。

ieplat。

com)严格的定常系统是不存在的,在所考察的时间间隔内,若系统参数的变化相对于系统的运动缓慢得多, 则可近似将其作为定常系统来处理。

1.6。

3线性系统和非线性系统按系统是否满足叠加原理,可以将系统分为线性系统和非线性系统.由线性元部件组成的系统,称为线性系统,系统的运动方程能用线性微分方程描述.线性系统的主要特点是具有齐次性和叠加性。

系统的稳定性与初始状态及外作用无关。

如果控制系统中含有一个或一个以上非线性元件,这样的系统就属于非线性控制系统。

非线性系统不满足叠加原理,系统响应与初始状态和外作用都有关。

非线性控制系统的有关内容在第七章中介绍。

实际物理系统都具有某种程度的非线性,但在一定范围内通过合理简化,大量物理系统都可以足够准确地用线性系统来描述.本书主要研究线性定常系统.1.6。

自动控制系统的概念及分类

自动控制系统的概念及分类

自动控制系统是指能够对某一系统的运行状态进行监测、比较和修正,以维持系统在某种期望状态或性能指标下运行的系统。

它主要包括感知部分、决策部分和执行部分。

感知部分负责获取系统的状态信息,决策部分进行状态比较和决策,执行部分则执行相应的控制操作。

自动控制系统可以分为开环控制系统和闭环控制系统两大类。

开环控制系统(Open-Loop Control System):开环控制系统是指控制器输出不受系统当前状态影响,只由输入信号决定的控制系统。

在开环系统中,控制器向执行器发送命令,执行器按照命令执行动作,但系统的实际状态变化不会反馈给控制器。

这种系统不具备自我调整的能力,对外界扰动和系统参数变化不敏感。

闭环控制系统(Closed-Loop Control System):闭环控制系统是指控制器的输出受系统当前状态的反馈影响,通过不断调整输出来维持系统在期望状态。

在闭环系统中,感知部分负责获取系统状态信息,并将反馈信息传递给控制器,控制器根据反馈信息调整输出,实现对系统的动态调节。

这种系统能够更好地应对外界扰动和系统参数变化,具有自我调整的能力。

在闭环控制系统中,可以进一步根据控制器的结构和工作原理进行分类:比例-积分-微分(PID)控制系统:使用比例项、积分项和微分项来调节系统,以实现对系统的稳定性、精度和速度的控制。

状态空间控制系统:使用状态空间法描述系统,通过状态反馈或输出反馈来实现对系统的控制。

模糊控制系统:基于模糊逻辑的控制系统,适用于复杂、模糊和不确定的系统。

神经网络控制系统:利用神经网络模型进行控制,适用于非线性和复杂系统。

自适应控制系统:具有自适应性能,能够根据系统的变化实时调整控制策略。

总体而言,自动控制系统在工业、交通、航空航天、生活等领域有着广泛的应用,能够提高系统的稳定性、精度和鲁棒性。

化工仪表与自动化知识点

化工仪表与自动化知识点

知识点1自动化系统的分类:自动检测系统,自动信号和联锁保护系统,自动操纵及自动开停车系统,自动控制系统知识点2开环系统:自动机在操作时,一旦开机,就只能是按照预先规定好的程序周而复始地运转。

这时被控变量如果发生了变化,自动机不会自动地根据被控变量的实际工况来改变自己的操作。

闭环系统:有针对性地根据被控变量的变化情况而改变控制作用的大小和方向,从而使系统的工作状态始终等于或接近于所希望的状态。

知识点3自动控制系统的分类:定值控制系统,随动控制系统,程序控制系统知识点4静态——被控变量不随时间而变化的平衡状态(变化率为0,不是静止)。

动态——被控变量随时间变化的不平衡状态。

知识点5控制系统的品质指标假定自动控制系统在阶跃输入作用下,被控变量的变化曲线如下图所示,这是属于衰减振荡的过渡过程知识点6研究对象的特性,就是用数学的方法来描述出对象输入量与输出量之间的关系。

这种对象特性的数学描述就称为对象的数学模型。

分为静态数学模型和动态数学模型知识点7数学建模有机理建模,实验建模和混合建模知识点8放大系数:在稳定状态时,对象一定的输入就对应着一定的输出,这种特性称为对象的静态特性。

K 在数值上等于对象重新稳定后的输出变化量与输入变化量之比。

K 越大,就表示对象的输入量有一定变化时,对输出量的影响越大,即被控变量对这个量的变化越灵敏。

时间常数越大,表示对象受到干扰作用后,被控变量变化得越慢,到达新的稳定值所需的时间越长。

当对象受到阶跃输入后,被控变量达到新的稳态值的63.2%所需的时间,就是时间常数T ,实际工作中,常用这种方法求取时间常数。

显然,时间常数越大,被控变量的变化也越慢,达到新的稳定值所需的时间也越大。

知识点9大气压力绝对压力表压p p p -=绝对压力大气压力真空度p p p -=知识点10弹性式压力计:弹性式压力计是利用各种形式的弹性元件,在被测介质压力的作用下,使弹性元件受压后产生弹性变形的原理而制成的测压仪表。

自动控制系统的分类方法

自动控制系统的分类方法

自动控制系统的分类方法
自动控制系统可以按照不同的角度进行分类,例如按照控制动作的特点、控制系统的结构、控制器的类型等。

以下是一些常见的分类方法:
1. 按照控制系统的结构:根据控制系统的结构,可以将自动控制系统分为开环控制系统和闭环控制系统。

开环控制系统是指没有反馈链路的控制系统,控制器的输出只受到输入信号的影响;闭环控制系统是指带有反馈链路的控制系统,控制器的输出会根据反馈信号进行调整。

2. 按照控制器的类型:根据控制器的类型,可以将自动控制系统分为比例控制系统、积分控制系统和微分控制系统,以及它们的组合。

比例控制系统是根据控制偏差的大小进行调节的;积分控制系统是根据控制偏差的累积进行调节的;微分控制系统是根据控制偏差的变化率进行调节的。

3. 按照控制对象的特点:根据控制对象的特点,可以将自动控制系统分为线性控制系统和非线性控制系统。

线性控制系统的控制对象可以被线性模型描述,非线性控制系统的控制对象不满足线性性质。

4. 按照控制动作的特点:根据控制动作的特点,可以将自动控制系统分为比例控制系统、偏差比例控制系统、微分控制系统和其他类型的控制系统。

比例控制系统是根据控制偏差的大小进行调节的;偏差比例控制系统是根据偏差与其变化率的乘积进行调节的;微分控制系统是根据控制偏差的变化率进行调节
的;其他类型的控制系统可能采用多种控制动作进行调节,如比例积分控制系统、误差比例积分控制系统等。

这些分类方法并不是相互独立的,一种自动控制系统可能同时属于多个分类方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、恒值控制系统(或称自动调节系统) 这类系统的特点是输入信号是一个恒定的数
值。恒值控制系统主要研究各种干扰对系统输出 的影响以及如何克服这些干扰,把输入、输出量 尽量保持在希望数值上。 2、过程控制系统(或称程序控制系统)
这类系统的特点是输入信号是一个已知的时间 函数,系统的控制过程按预定的程序进行,要求 被控量能迅速准确地复现。
齐次性表明,当外作用的数值增大若干倍时, 其响应也相应增大同样的倍数。
8
(2)非线性系统 在构成系统的环节中有一个或一个以上的非线
性环节时,则称此系统为非线性系统。典型的非 线性特性有饱和特性、死区特性、间隙特性、继 电特性、磁滞特性等。如图:
9
三、按系统参数是否随时间变化
(1)定常系统 如果系统中参数不随时间变化,则这类系
12
五、典型外界干扰作用
(1)阶跃信号 阶跃信号的表达式为:
A t 0
r(t) 0 t 0
(1-1)
当A=1时,则称为单位阶跃信号,常用1(t)表示,如图111所示。
13
(2)斜坡信号 斜坡信号在t =0时为零,并随时间线性增加,所以也叫等
速度信号。它等于阶跃信号对时间的积分,而它对时间的导数 就是阶跃信号。斜坡信号的表达式为:
6
则当 原方程式的解为
时容易验证, ,这就是叠加性。
叠加性表明,两个不同的外作用同时作用于系统
所产生的总响应,等于两个外作用单独作用时分 别产生的响应之和。
7
(b)齐次性
当输入量增大或缩小k (k为实数)倍时,
系统输出量也按同一倍数增大或缩小。
即当
时,式中a为常数,
则方程式的解为

这就是齐次性。
统称为定常系统。在实践中遇到的系统, 大多数属于这一类。
(2)时变系统 如果系统中的参数是时间t的函数,则这 类系统称为时变系统。
10
如果一个线性系统微分方程的系数为常数, 那么系统称为线性定常系统。例如:
d 2 x(t) dt 2
2
dx(t) dt
x(t)
y(t)
如果一个线性系统微分方程的系数为时间的函数, 那么系统称为线性时变系统。例如:
19
准确性
对于控制系统的准确性要求是控制系统设 计中需要考虑的指标之一,要求系统准确 性(稳态精度)高,一般采用稳态误差来 表示。系统在输入信号的作用下,其响应 经过暂态过程进入稳态后,系统的输出量 与希望值之间的误差,称为稳态误差。
第三节 自动控制系统的分类
1. 按给定信号的形式 恒值系统/程序系统/ 随动系统
2. 按系统是否满足叠加原理 线性系统 / 非线性系统
3. 按系统参数是否随时间变化 定常系统 / 时变系统
4. 按信号传递的形式
连续系统 / 离散系统
5. 按输入输出变量的多少
单变量系统 / 多变量系统
1
一、按输入信号形式
工业自动化仪表中的显示记录仪,跟踪卫星 的雷达天线控制系统(如图所示)等均属于随动控 制系统。
3
4
二、按系统是否满足叠加原理
(1)线性系统 当系统的运动规律用线性微分方程或者线 性差分方程描述时,则这类系统称为线性 系 统。线性系统有两个重要特性:叠加性 和齐次性。
(a)叠加性 当系统同时存在几个输入量时,其输出量 等于各输入量单独作用时所引起的输出量 的和。如果用箭头表示输入量x和输出量y 的对应关系,上述性质可表示如下:
At t 0 r(t) 0 t 0
14
(3)抛物线信号
抛物线信号也叫等加速度信号,它可以通过对斜坡信号 的积分而得。抛物线信号的表达式为:
r(t)
1 2
At2
t 0
0
t0
(3.3)
当A =1时,则称为单位抛物线信号,如图3-3所示
15
(4)脉冲信号
单位脉冲信号的表达式为:
1
r(t) e
0t e
(1-3)
0 t 0及t e
其图形如图1-13所示。是一宽度为e ,高度为1/e 的矩形 脉冲,当e 趋于零时就得理想的单位脉冲信号(亦称d(t) 函数)。
d (t)dt 1
(3.5)
16
(5)正弦信号 正弦信号的表达式为 :
Asinwt t 0
r(t) 0
t 0
其中A为幅值,w =2p/T为角频率。
(1-4)
图1-14 正弦信号
17
工程上对控制系统的基本要求
1.稳:(基本要求) 要求系统要稳定
2.准:(稳态要求) 系统响应达到稳态时, 输出跟踪精度要高
3.快:(动态要求) 系统阶跃响应的过渡过程 要平稳,快速
18
稳定性
一个控制系统能正常工作的首要条件是系统必须是稳定的,由于控 制系统是具有反馈作用的闭环系统,因此,系统有可能趋向振荡或 不稳定,不稳定的系统是无法工作的。 稳定的控制系统在阶跃信号或扰动信号的作用下,其响应的暂态过 程应该是收敛的。如果系统设计不当,则在阶跃信号下或扰动信号 的作用下,相应的幅值振荡可能成为等幅振荡,甚至成为振幅逐渐 增大的发散振荡,发生这种情况的系统称为不稳定系统。 系统稳定性包括两个方面的含义。 (1)系统稳定,称为绝对稳定,即通常所说的稳定性。 (2)输出响应振荡的强烈程度,称为相对稳定性。 例如系统是绝对稳定的,但是在阶跃信号作用下,响应振荡很强烈, 而且振荡的衰减很慢,则该系统虽然属于稳定系统,但相对稳定性 差。
恒值控制系统也认为是过程控制系统的特例。
2
3、随动控制系统(或称伺服系统) 这类系统的特点是输入信号是一个未知函数,
要求输出量跟随给定量变化。如雷达天线跟踪系 统,当被跟踪目标位置未知时属于这类系统。随 动系统是指参考输入量随时间任意变化的系统。 其任务是要求输出量以一定的精度和速度跟踪参 考输入量,跟踪的速度和精度是随动系统的两项 主要性能指标。
d 2x(t) 2t dx(t) x(t) y(t)
dt 2
dtBiblioteka 11四、按信号传递的形式
2.连续系统和离散系统
连续系统是指系统内各处的信号都是以连续的模拟量 传递的系统。即系统中各元件的输入量和输出量均为时 间的连续函数。连续系统的运动规律可以用微分方程来 描述。系统内某处或数处信号是以脉冲序列或数码形式 传递的系统则称为离散系统,如图1-10所示,其运动方 程只能用差分方程描述。
5
例如:设有线性系统的微分方程式为:
d 2x(t) dx(t) dt2 dt x(t) y(t)

时,方程式的解为 ;

时,方程式的解为 :即有:
d
2 x1(t) dt 2
dx1 (t ) dt
x1 (t )
y1 (t )
d
2 x2 (t) dt 2
dx2 (t) dt
x2 (t)
y2 (t)
相关文档
最新文档