换热器任务书

合集下载

U形管换热器设计任务书

U形管换热器设计任务书

U型管换热器设计任务书
1、 设计题目:U型管换热器结构设计
2、 设计任务及条件:
表2-1冷却流体参数
被冷却流体水蒸气
进气温度180℃
出气温度130℃
设计温度180℃
设计压力 2.0Mpa
表2-2冷却介质参数
冷却介质类型自来水
进口温度常温 4℃
出口温度95℃
设计温度95℃
设计压力 1.0Mpa
以下为参考数据
换热面积 90
换热管规格及管束级别252 长6m Ⅰ类
程数22
标准规范GB150-1999;GB151-1999
三、设计内容:
1、 根据两种介质的流量、进出口温度、操作压力等计算出换热器所需的传递热

2、 根据介质性质选择合适的材料。

3、 选择换热器的结构形式。

4、 计算所需要的换热面积。

5、 管字数的计算。

6、 管子的排列方式,管间距的确定。

7、 换热器壳体直径、壁厚的确定;
8、 换热器封头的选择。

9、 管板尺寸的确定。

10、 管子拉脱力的计算。

11、 计算是否安装膨胀节。

12、 折流板,开孔补强和支座的设计。

3、 设计成果:
(1) 设计说明书一份;
(2) 换热器装配图一张;。

列管式换热器课程设计任务书

列管式换热器课程设计任务书

化工原理课程设计任务书一系部名称:应用化学与环境工程系专业:应用化工技术年级:级一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将3000kg/h旳某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水旳压力为0.4MPa,循环水旳入口温度为35℃,出口温度为45℃。

设计一列管式换热器满足上述生产需要。

三、具体规定本设计规定完毕如下设计及计算:1、换热器工艺设计及计算:涉及物料衡算、能量衡算、工艺参数选定及其计算;2、换热器构造设计:涉及换热设备旳重要构造设计及其尺寸旳拟定等;3、绘制换热器装配图:涉及设备旳各类尺寸、技术特性表等,用1号图纸绘制;4、编写设计阐明书:作为整个设计工作旳书面总结,阐明书应简洁、整洁、文字精确。

内容应涉及:封面、目录、设计任务书、概述或引言、设计方案旳阐明和论证、设计计算与阐明、对设计中有关问题旳分析讨论、设计成果汇总(重要设备尺寸、各物料量和状态、能耗、重要操作参数以及附属设备旳规格、型号等)、参照文献目录、总结及感想等。

四、重要技术路线提示1、查阅文献资料,理解换热设备旳有关知识,熟悉换热器设计旳措施和环节;2、根据设计任务书给定旳生产任务和操作条件,进行换热器工艺设计及计算;3、根据换热器工艺设计及计算旳成果,进行换热器构造设计;4、以换热器工艺设计及计算为基本,结合换热器构造设计旳成果,绘制换热器装配图;5、编写设计阐明书对整个设计工作旳进行书面总结,设计阐明书应当用简洁旳文字和清晰旳图表体现设计思想、计算过程和设计成果。

五、进度安排1、收集资料、阅读教材,拟定设计方案0.3周2、换热器工艺设计及计算0.5周3、换热器构造设计0.4周4、绘制换热器装配图0.4周5、编写设计阐明书0.4周六、完毕后应上交旳材料1、设计阐明书1份2、换热器装配图1张七、推荐参照资料1、《化工原理》上册天津大学出版社2、《化工原理》化学工业出版社3、《化工设备机械基本》高等教育出版社4、《换热器设计》上海科技出版社5、《压力容器手册》劳动人事出版社6、《钢制石油化工压力容器手册》化学工业出版社7、《化工管路手册》化学工业出版社指引教师签名日期年月日教研室主任签名日期年月日系主任审核日期年月日化工原理课程设计任务书二系部名称:应用化学与环境工程系专业:应用化工技术年级:级一、设计题目列管式换热器设计二、设计任务与操作条件在生产过程中需将5000kg/h旳某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水旳压力为0.4MPa,循环水旳入口温度为35℃,出口温度为45℃。

换热器设计任务书

换热器设计任务书

课程设计任务书设计题目:煤油换热器的设计一、设计条件1、处理能力 (1.584, 1.98,2.2176,2.4552,2.6928)×104吨/年煤油2、设备型式列管式换热器3、操作条件a.煤油:入口温度100℃,出口温度40℃b.冷却介质:自来水,入口温度30℃,出口温度50℃c.允许压强降:不大于5×105Pad.每年按330天计,每天24小时连续运行4、设计项目a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

b.换热器的工艺计算:确定换热器的传热面积。

c.换热器的主要结构尺寸设计。

d.主要辅助设备选型。

e.绘制换热器总装配图。

二、设计说明书的内容1、目录;2、设计题目及原始数据(任务书);3、论述换热器总体结构(换热器型式、主要结构)的选择;4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);5、设计结果概要(主要设备尺寸、衡算结果等);6、主体设备设计计算及说明;7、主要零件的强度计算(选做);8、附属设备的选择(选做);9、参考文献;10、后记及其它。

三、设计图要求用594×841图纸绘制换热器一张:一主视图,一俯视图,一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

四、参考书1)Perry化学工程手册。

2)天津大学,《化工原理》,天津,天津科学技术出版社,1990年。

3)华南理工大学,《化工过程及设备设计》,广州,华南理工大学出版社,1986年。

4)魏崇关,郑晓梅,《化工工程制图》,北京,化学工业出版社,1992年。

5)刁玉玮,王立业编,《化工设备机械基础》,大连,大连理工大学出版社,1989年。

6)《化工设备结构图册》编写组,《化工设备结构图册》,上海,上海科学技术出版社,1978年。

7)柴诚敬,刘国维,李阿娜,《化工原理课程设计》,天津,天津科学技术出版社,1994年。

换热器设计任务书

换热器设计任务书

过程装备与控制工程专业综合课程设计任务书课程设计名称:换热设备设计学院专业班级姓名指导教师2014年2月换热设备设计设计者姓名:班级:学号:指导教师:日期:年月日一、设计内容管壳式换热设备设计的内容包括工艺设计和机械设计两方面。

本课程设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对换热设备进行强度、刚度及稳定性计算,并从制造、安装、检修、使用等方面出发进行结构设计。

二、设计参数和技术特性指标(见后表)三、设计要求在阅读了设计任务书后,按以下步骤进行换热设备的机械设计。

1了解设计条件;2选材;3按设计压力计算壳体和管箱壁厚;4管子与管板连接结构设计;5壳体与管板连接结构设计;6管板厚度计算;7折流板、支持板等零部件的结构设计;8换热管与壳体在温差和流体压力联合作用下的应力计算;9管子拉脱离和稳定性校核;10判断是否需要膨胀节,如需要,则选择膨胀节结构型式并进行有关的计算;11接管、接管法兰、支座等的选择及开孔补强设计等。

换热设备设计任务书简图与说明设计参数及要求接管表过程装备与控制工程专业综合课程设计指导书换热设备设计中国石油大学(北京)化学科学与工程学院过程装备与控制工程系2014年2月修订1 专业综合课程设计的目的专业综合课程设计是专业教学计划中的重要组成部分。

课程设计所涉及到的课程主要有化工原理、工程材料、金属焊接、过程设备设计、过程装备控制技术、过程装备成套技术等。

在课程设计过程中通过综合运用所学到的专业知识独立完成典型化工设备的全部机械设计,包括设计参数的确定、标准和通用零部件的选用、主要零部件的材料选择、结构设计、强度设计及稳定性校核、施工图的绘制和技术要求的编写等,获得一次工程设计的实践训练,了解石油化工设备工程专业设计的一般方法,熟悉有关的设计标准和规范,了解设备的主要结构,熟练掌握化工设备图的基本绘图特点和技巧。

本课程设计以石油炼制过程中主要的工艺设备换热器为设计对象,进行工艺设计和机械设计的全面训练。

毕业设计换热器设计任务书

毕业设计换热器设计任务书
3.绘制换热器整体结构图、各结构尺寸图等。
4.按学院规定的统一规范化要求撰写设计说明书。




第1~2周:阅读相关资料,外文文献翻译,;
第3~6周:撰写开题报告,开题报告修改及开题答辩;毕业实习,撰写实习报告;
第7~8周:形成设计思路方案,设计工况确定,设计方案选择与比较,中期答辩;
第9~10周:设计方案的完善及确定,总体结构设计布置及校核;
[19]刘殿宇.双管程液体分布器的设计. [J].化工设备与管道,2011.
[20]尹斌,丁国良.R134a冷水机组干式蒸发器两种模型比较[J].建筑热能通风空调,2006.
院长签字:指导教师签字:
[7]王志远.制冷原理与应用[M].北京:机械工业出版社,2009:190-210.
[8]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:459-509.
[9]彦启森.制冷技术及其应用[M] .北京:中国建筑工业出版社,2006.
[10]陈沛霖.空调与制冷技术[M] .上海:同济大学出版社,1999.
[15]刘斌.干式蒸发器的应用和优化设计[J].亚洲特灵研发中心,2005.
[16]宋宝.防止干式蒸发器换热管泄漏的优化设计[J].低温与特气.2011.
[17]司少娟,陈亚标.双回路紧凑型干式蒸发器的设计[J].低温与超导,2011.
[18]潘丽君.满液式蒸发器与干式蒸发器的区别[J].制冷技术,2011.
第11~12周:撰写设计说明书,绘制换热器二维、三维图纸;
第13周:修改设计图纸、设计说明书;
第14周:上交设计图纸及设计说明书,指导老师评阅,准备毕业答辩;
第15周:毕业答辩,毕业设计修改。

列管式换热器设计任务书

列管式换热器设计任务书

列管式换热器设计任务书列管式换热器设计任务书一、设计题目: 1,换热器设计二、设计任务及操作条件 1、设计任务:生产能力〔进料量〕 (110000+学号后三位×1000) Kg/h 2、操作条件甲苯的压力: 6.9MPa,进口110℃,出口60℃循环冷却水的压力:0.4MPa 进口?℃,出口?℃ 3、设备型式自选4.物性参数按任务书要求自查三、设计内容:1、设计方案的选择及流程说明选择什么样的换热器,以流程等作必要交代 2、工艺计算确定物性数据,传热面积的估算 3、主要设备工艺尺寸设计〔1〕冷凝器结构尺寸确实定〔2〕传热面积、两侧流体压降校核〔3〕接管尺寸确实定等 6、换热器设备图〔A3〕和说明书四、参考设计计算程序:1.根据条件确定管程和壳程的物体流速,进出口的温度条件;根据两侧流体的温度条件,确定两流体在该换热器中定性温度的物性值。

物性值包括密度、比热、粘度,并计算该换热器的传热量。

2.确定换热器的平均温度差?t,?tm及温差修正系数。

3.假定总传热系数K或壳程的传热系数?04.计算传热面积5.根据工艺选择管径的尺寸,选择管程数和壳程数,确定管程和壳程数,校正 1温度差系数〔必须大于 >0.8〕,否那么返回第二步〔修改良出水温度〕。

如果满足那么计算换热器所需的管数。

按排列等计算壳径。

6.分别计算管程和壳程的传热系数,根据两物体的污垢系数计算K计,如果小于第三步假设值,按K计返回第三部〔重新假设K值〕,如果满足那么进行下一步。

也可算出实际传热面积,实际面积/理论面积应的允许范围内〔范围自查〕 7.计算管程和壳程两侧的压力降,如果满足工艺条件那么结束。

如管程压降偏大可减少管数,壳程压降偏大,可调整折流板的距离,返回第五重新计算。

参考书:1.中国石化集团上海工程.化学工艺设计手册,上,第三版.北京:化学工业出版社,20032.化工机械手册编辑委员会.化工机械手册.天津:天津大学出版社,19923.王静康.化工过程设计,第二版.北京:化学工业出版社,20224.柴诚敬等.化工原理课程设计. 天津:天津大学出版社,20225.杨祖荣等.化工原理.北京:化学工业出版社,2022换热器主要结构尺寸和计算结果见下表:参数管程流率进/出口温度/℃压力/MPa 物定性温度/℃性密度/〔kg/m3〕定压比热容/[kj/〔kg?k〕] 粘度/〔Pa?s〕热导率〔W/m?k〕普朗特数设形式备壳体内径/㎜结管径/㎜构参管长/㎜数管数目/根传热面积/㎡管程数主要计算结果流速/〔m/s〕外表传热系数/[W/〔㎡?k〕] 污垢热阻/〔㎡?k/W〕管程壳程壳程数台数管心距/㎜管子排列折流板数/个折流板间距/㎜材质壳程碳钢 23。

浮头式换热器设计任务书

浮头式换热器设计任务书

武汉工程大学2014年3月设计任务书一.设计条件二.设计任务与内容1.工艺设计计算①确定设计方案选择换热器类型,确定物料流程,确定物性参数②估算传热面积确定换热量、平均温差、传热面积、冷却水流量③工艺结构参数确定根据工艺计算,合理确定介质流向与换热管的结构尺寸,如管壳程数、壳体及进出口接管直径,换热管规格尺寸与数量,折流板排列形式与间距,管板直径及管子排列方式等。

④换热流量核算⑤换热器内流动的流体阻力核算2.结构设计①筒体、管箱、法兰、浮头盖、管板、开口补强、支座等主要受压部件与元件的选材,结构选型与设计,强度计算与校核;②编制法兰计算程序,并按指定要求进行探讨性计算;③管束的振动计算及防震设计部分3.绘制全部施工图,包括装配图、部件图、零件图等总计约1号图幅6张。

4.编制管箱、法兰、管束、管板、浮头盖、外头盖等主要零部件的加工制造工艺及其装配程序,并制订管、壳程的试压方案及程序。

5.主要受压元件的材料选择及其可焊性评价与焊接材料选择说明。

6.编写设计说明书。

三.设计说明书的基本内容与要求设计说明书的作用是对自己所作的设计作出书面计算与论证,其基本内容依次为:题目、目录、前言、设计条件及所依据的主要设计标准、设计计算、加工工艺及试验等的说明,以及专题论证、电算程序与结果、造价概算和主要参考资料等。

前言中应概述设计作品在工艺装配中的功用、操作、维护要求和结构特点,主要设计内容简介,设计中的结构改进或创新,设计所遵循的标准规范等。

设计条件是指自己具体设计设备的操作条件,如介质性质、操作温度和压力等。

计算与论证为说明书的主体,包括除前言和设计条件外的全部上述内容。

设计说明书要求格式规范统一,条理清楚,图文并茂,文理通顺,书写整洁。

参考资料书写格式为:序号作者书刊名称出版社年月设计指导书一. 毕业设计的目的1.运用所学基础与专业理论知识进行实际设备设计的全面训练,以掌握设备设计的基础思路、方法与内容。

2.综合训练和提高设计调研、文献查阅、方案论证、计(电)算、绘图及设计文件编制等基本技能。

换热器设计任务书

换热器设计任务书

化工原理课程设计任务书设计题目:列管式换热器学生姓名:专业班级:学号:指导教师:宜宾学院化学与化工学院2011年12月13 日目录第一章概述 (1)1.1换热器的简单介绍 (1)1.2本设计的目的和意义 (1)第二章设计计算 (2)2.1确定设计方案 (2)2.2确定物性数据 (3)2.3计算总传热系数 (4)2.4计算传热面积 (7)2.5换热器核算 (7)设计图纸(附图纸) (8)参考文献 (8)评语及成绩 (9)第一章概述1.1换热器的简单介绍1.2本设计的目的和意义通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题的能力。

主要体现在以下几个方面:(1)资料、文献、数据的查阅、收集、整理和分析能力。

要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料。

因此,资料、文献和数据的查找、收集是工程设计必不可少的基础工作。

(2)工程的设计计算能力和综合评价的能力。

为了使设计合理要进行大量的工艺计算和设备设计计算。

本设计包括热工计算和冷却器设备的结构计算。

(3)工程设计表达能力。

工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格的形式表达出来。

只有完整、流畅、正确地表达出来的工程设计的内容,才可能被他人理解、接受,顺利付诸实施。

通过本设计不仅可以进一步巩固学生所学的相关啊知识,提高学生学以致用的综合能力,尤其对传热学、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实的品格。

第二章 设计计算2.1确定设计方案1.试算并初步选取设备规格(1)确定流体在换热器中流动途径 (2)根据传热任务计算热负荷Q(3)确定流体在换热器两端的温度,选取列管换热器的型式;计算定性温度,查取有关物性数据。

(4)计算平均传热温差。

(5)凭经验选取总传热系数0K ,或从有关资料给出的K 经验值范围来初选0K 值。

换热器课程设计任务书09(1)-烟道式

换热器课程设计任务书09(1)-烟道式

烟道式光管钢管换热器设计计算(1)一、设计任务:设计某一有色熔炼炉烟气余热加热助燃空气的烟道式钢管换热器。

二、设计条件如下:1) 地下水平烟道的断面尺寸:mm 1700mm 1392⨯=⨯H W 2) 烟气成分(V/V , %)3) 入换热器的平均烟气标况流量:V h =2.15m 3/s; 4) 入换热器烟气温度:t h,i =700℃; 5) 入换热器空气标况流量:V c =1.55 m 3/s; 6) 入换热器空气温度:t c,i =20℃; 7) 出换热器空气温度:t c,o =350℃;三、设计工作要求:(1)确定换热器结构:(2)换热器热计算(包括设计计算与流体出口温度校验计算) (3)流体流动压降计算 (4)换热器技术性能 (5)总结(6)上交材料:设计说明书,换热器总图(1#)(手画)参考文献[1] 机械工程手册电机工程手册编辑委员会.机械工程设计手册(动力设备卷)(第二版). 北京:机械工业出版社,1997[2] 有色冶金炉设计手册编委会.有色冶金炉设计手册.北京:冶金工业出版社,2000 [3] 余建祖.换热器原理与设计.北京:北京航空航天大学出版社,2006 [4] T.Kuppan.换热器设计手册.北京:中国石化出版社,2004一、设计任务:设计某一有色熔炼炉烟气余热加热助燃空气的烟道式光管钢管换热器。

二、设计条件如下:1) 地下水平烟道的断面尺寸:mm 1700mm 1392⨯=⨯H W 2) 烟气成分(V/V , %)3) 入换热器的平均烟气标况流量:Vh=2.15m3/s; 4) 入换热器烟气温度:t h,i =750℃; 5) 入换热器空气标况流量:Vc=1.55 m3/s; 6) 入换热器空气温度:t c,i =20℃; 7) 出换热器空气温度:t c,o =350℃;三、设计工作要求:(1)确定换热器结构:(2)换热器热计算(包括设计计算与流体出口温度校验计算) (3)流体流动压降计算 (4)换热器技术性能 (5)总结(6)上交材料:设计说明书,换热器总图(1#)(手画)参考文献[1] 机械工程手册电机工程手册编辑委员会.机械工程设计手册(动力设备卷)(第二版). 北京:机械工业出版社,1997[2] 有色冶金炉设计手册编委会.有色冶金炉设计手册.北京:冶金工业出版社,2000 [3] 余建祖.换热器原理与设计.北京:北京航空航天大学出版社,2006 [4] T.Kuppan.换热器设计手册.北京:中国石化出版社,2004一、设计任务:设计某一有色熔炼炉烟气余热加热助燃空气的烟道式光管钢管换热器。

化工原理课程设计-换热器

化工原理课程设计-换热器

化工原理课程设计学院:化学工程学院班级:姓名:学号:指导教师:2010年06月化工原理课程设计《换热器》设计任务书班级精化07-1 姓名一、设计题目:无相变列管式换热器的设计二、设计任务及操作条件某生产过程中,用循环冷却水冷却柴油。

1、柴油入口温度:140 ℃,出口温度:60 ℃2、柴油流量:6500 kg/h,压力:0.3 MPa3、循环冷却水压力:0.4 MPa,入口温度:29 ℃,出口温度:39 ℃已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s三、设计项目(说明书格式)1、封面、任务书、目录。

2、设计方案简介:对确定的换热器类型进行简要论述。

3、换热器的工艺计算:1)确定物性数据2)估算传热面积3)工艺结构尺寸4)换热器核算:包括传热面积核算和换热器压降核算4、换热器的机械设计5、绘制列管式换热器结构图(CAD)。

6、对本设计进行评述。

7、参考文献成绩评定指导教师2010年6月8 日目录1 设计方案简介 01.1 选择换热器类型 01.2 冷热流体流动通道的选择 02 换热器的设计计算 (1)2.1 确定物性数据 (1)2.2 估算传热面积 (1)2.2.1 热流量 (1)2.2.2 平均传热温差 (1)2.2.3 冷却水用量 (2)2.2.4 总传热系数 (2)2.2.5 计算传热面积 (2)2.3 工艺结构尺寸 (2)2.4 换热器核算 (4)2.4.1 热量核算 (4)2.4.2 换热器内流体的流动阻力 (6)3 换热器机械设计 (9)3.1 壳体壁厚 (9)3.2 管板尺寸 (9)3.3 接管尺寸 (11)3.4 换热器封头选择 (11)3.5 膨胀节选择 (12)3.6 其他部件 (12)4 评述 (14)4.1 可靠性评价 (14)4.2 个人感想 (14)5 参考文献......................... 错误!未定义书签。

换热器课程设计任务书指导书_新

换热器课程设计任务书指导书_新

山东建筑大学课程设计说明书题目:管壳式油冷却器设计课程:热交换器理论与设计院(部):热能工程学院专业:热能与动力工程(热电方向)班级:学生姓名:学号:指导教师:杨丽钱焕群完成日期:山东建筑大学课程设计任务书院系热能工程学院专业热能与动力工程(热电方向)班级姓名课程设计题目:管壳式油冷却器设计课程设计时间:从2014 年1 月6 日到2014 年1月17 日一、课程的目的换热器课程设计是《热交换器理论与设计》课程的主要教学环节之一。

通过课程设计可以使学生加强了解换热器工艺设计内容、程序和基本原则,掌握换热器设计的基本方法和步骤,提高运算和制图能力。

同时,可以使学生进一步巩固所学的理论知识,并运用这些知识来解决工程实际问题。

二、设计技术参数和要求11号润滑油处理量:20Kg/s11号润滑油入口温度: 90℃11号润滑油出口温度: 45℃冷却水流量: 50Kg/s冷却水入口温度: 26℃冷却水工作压力: P = 0.1 MPa (表压)允许最大压力降:油侧 <0.08 MPa,水侧 <0.06 MPa三、设计内容和步骤根据给定条件,提出设计方案,编写设计说明书,绘制装配图和管板、折流板的零件图。

设计内容和步骤包括:1. 换热器型式、台数及流动方式的选择;2. 换热器流体流动空间的选择;3. 流体流速的选择;4. 管子和壳体材料的选择;5. 热计算。

包括确定流体的出口温度、定性温度,换热器的热负荷及平均温差计算。

6. 结构设计。

包括确定换热管直径和长度,确定壳体直径,确定折流板、拉杆等部件的尺寸及数量;选用分程隔板、纵向隔板、挡管、导流筒、防冲板等部件及其结构尺寸确定;要求长径比在4—10之间。

管壳式换热器属于压力容器,壳体应该进行强度计算,但是由于缺乏压力容器的学习,本次课程设计不要求进行强度计算。

7. 传热计算及阻力计算。

包括对传热系数和壁温的核算以及流通通道的阻力计算.要求实际传热面积比所需传热面积大10%—20%。

化工原理课程设计报告-换热器设计任务书

化工原理课程设计报告-换热器设计任务书

-一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计条件使煤油从 140℃冷却到40℃,压力 1bar ,冷却剂为水,水压力为3bar,处理量为 10t/h,进口温度 20 ℃,出口温度 40 ℃三、设计任务1 合理的参数选择和构造设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 构造设计包括壁厚5 主要进出口管径确实定包括:冷热流体的进出口管6 流程图〔以图的形式,并给出各局部尺寸〕及构造尺寸汇总〔以表的形式〕7 评价之8 参考文献一、设计的目的通过对煤油产品冷却的列管式换热器设计,到达让学生了解该换热器的构造特点,并能根据工艺要求选择适当的类型,同时还能根据传热的根本原理,选择流程,确定换热器的根本尺寸,计算传热面积以及计算流体阻力。

总之,通过设计到达让学生自己动手发展设计的实践,获取从事工程技术工作的能力。

二、设计的指导思想1 构造设计应满足工艺要求2 构造简单合理,操作调节方便,运行安全可靠3 设计符合现行国家标准等4 安装、维修方便三、设计要求1 计算正确,分析认证充分,准确2 条理清晰,文字流畅,语言简炼,字迹工整3 图纸要求,图纸、尺寸标准,图框,图签字规4 独立完成四、设计课题工程背景在石油化工生产过程中,往往需要将各种石油产品〔如汽油、煤油、柴油等〕进展冷却,本设计以某厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。

五、参考文献1 化工过程及设备设计,华南工学院, 19862 传热设备及工业炉,化学工程手册第 8 篇, 19873 化工设备设计手册编写组. 金属设备, 1975-4 尾英郎〔日〕等,徐忠权译,热交换设计物册, 19815 谭天恩等. 化工原理(上、下册)化学工业.六、设计思量题1 设计列管式换热器时,通常都应选用标准型号的换热器,为什么?2 为什么在化工厂使用列管式换热最广泛?3 在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?4 说明列管式换热器的选型计算步骤?5 在换热过程中,冷却剂的进出口温度是按什么原那末确定的?6 说明常用换热管的标准规格〔批管径和管长〕。

2011.6换热器设计任务书

2011.6换热器设计任务书

任务书一(一)设计题目:煤油冷却器的设计(二)设计任务及操作条件1:处理能力10600kg/h 煤油2:设备形式列管式换热器3:操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却介质:自来水入口温度30℃,出口温度40℃(3)允许压强降:不大于100kpa(4)煤油定性温度下的物性数据:ρ=825Kg/m3,µ=7.15×10-4Pa·sCp=2.22KJ/(Kg·℃),λ=0.14W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3000kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7000kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:吸收塔尾气冷凝器的设计(二)设计任务及操作条件1:处理能力3t/h吸收塔顶部出来的贫气(温度6℃,压强1.2Mpa,其中含C4约2.0%,C6约1.0%,其余组分按氮气处理),将其中未被吸收的C4、C6全部冷凝2:设备形式立式列管冷凝器3:操作条件(6)C4、C6:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(7)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(8)允许压强降:不大于100Kpa(9)C4、C6定性温度下的物性数据:自查(10)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某吸收操作中富油预热器的设计(二)设计任务及操作条件1:处理能力15t/h富油(C4: 含量8.2%,C6含量91.8%,温度40℃,流量15t/h)2:设备形式列管式换热器3:操作条件(1)富油:入口温度40℃,出口温度80℃(2)加热介质:解析塔出来的贫油(组分近视按全部C6处理),入口温度102℃,出口温度88℃,流量13.2t/h(3)允许压强降:不大于150kpa定性温度下的物性数据:自查(4)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某吸收操作中贫油冷却器的设计(二)设计任务及操作条件1:处理能力13.2t/h解析塔出来的贫油(组分近视按全部C6处理),2:设备形式列管式换热器3:操作条件(1)贫油:入口温度140℃,出口温度40℃(2)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(3)允许压强降:不大于120kpa定性温度下的相关物性数据:自查(4)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某解吸塔塔顶冷凝器的设计(二)设计任务及操作条件1:处理能力10t/h解析塔顶部出来的常压饱和蒸汽(近似按全部C4计算),全部冷凝,2:设备形式立式列管冷凝器3:操作条件(11)C4 冷凝温度温度自查,冷凝液于饱和温度离开冷凝器(12)冷却介质:自来水入口温度20℃,出口温度30℃,流量:自己计算(13)允许压强降:不大于150kpa(14)C4定性温度下的物性数据:自查(15)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:丁二烯蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力7500kg/h饱和丁二烯蒸汽,2:设备形式立式列管冷凝器3:操作条件(1)饱和丁二烯蒸汽:(温度40℃,冷凝潜热为373kJ/kg),冷凝液于饱和温度离开冷凝器(2)冷却介质:水入口温度15℃,出口温度25℃,流量:自己计算(3)允许压强降:不大于150kpa(4)饱和丁二烯定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:丁二烯蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力7500kg/h饱和丁二烯蒸汽,2:设备形式水平列管冷凝器3:操作条件(1)饱和丁二烯蒸汽:(温度40℃,冷凝潜热为373kJ/kg),冷凝液于饱和温度离开冷凝器(2)冷却介质:水入口温度15℃,出口温度25℃,流量:自己计算(3)允许压强降:不大于150kpa(4)饱和丁二烯定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(三)设计任务及操作条件1:处理能力3000kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7000kg/h(3)允许压强降:不大于100kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:吸收塔尾气冷凝器的设计(二)设计任务及操作条件1:处理能力3t/h吸收塔顶部出来的贫气(温度6℃,压强1.2Mpa,其中含C4约2.0%C6约1.0%其余组分按氮气处理),将其中未被吸收的C4、C6全部冷凝2:设备形式水平列管冷凝器3:操作条件(1)C4、C6:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:盐水(性质按25%的浓度查取)入口温度-4℃,出口温度2℃,流量:自己计算(3)允许压强降:不大于100kpa(4)C4、C6定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十一(一)设计题目:某解吸塔塔顶冷凝器的设计(二)设计任务及操作条件1:处理能力10t/h解析塔顶部出来的常压饱和蒸汽(近似按全部C4计算),全部冷凝,2:设备形式水平列管冷凝器3:操作条件(1)C4 冷凝温度温度自查,冷凝液于饱和温度离开冷凝器(2)冷却介质:自来水入口温度20℃,出口温度30℃,流量:自己计算(3)允许压强降:不大于150kpa(4)C4定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十二(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40000kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20000kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250Kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261KJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950Kg/m3,µ=7.42×10-4Pa·sCp=4.187KJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十三(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40100kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20050kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十四(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40050kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20025kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40150kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20075kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40200kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20100kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250kpa(4)有机液定性温度下的物性数据:ρ=1000kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(Kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十七(一)设计题目:某有机液冷却器的设计(二)设计任务及操作条件1:处理能力40250kg/h 有机液2:设备形式列管式换热器3:操作条件(1)有机液:入口温度65℃,出口温度50℃(2)冷却介质:自来水20125kg/h 水入口温度25℃,出口温度计算(3)允许压强降:不大于250Kpa(4)有机液定性温度下的物性数据:ρ=1000Kg/m3,µ=10.0×10-4Pa·sCp=2.261kJ/(kg·℃),λ=0.172W/(m·℃)水定性温度下的物性数据:ρ=950kg/m3,µ=7.42×10-4Pa·sCp=4.187kJ/(Kg·℃),λ=0.621W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)冷却器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书十八(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3050kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力3050kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十一(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式立式列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十二(一)设计题目:正戊烷蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力29500kg/h 正戊烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正戊烷:冷凝温度温度51.7℃,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量6900kg/h(3)允许压强降:不大于150kpa(4)正戊烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)水平列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十三(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44000Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34000Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十四(三)设计题目:原油预热器的设计(四)设计任务及操作条件1:处理能力44050Kg/h 有机液2:设备形式列管式换热器3:操作条件(6)原油:入口温度70℃,出口温度110℃(7)加热介质:柴油34075Kg/h 水入口温度175℃,出口温度计算(8)允许压强降:不大于250Kpa(9)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(10)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十五(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力43950Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油33925Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十六(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44100Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34150Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十七(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44150Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34225Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十八(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力44200Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油34300Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书二十九(一)设计题目:原油预热器的设计(二)设计任务及操作条件1:处理能力43900Kg/h 有机液2:设备形式列管式换热器3:操作条件(1)原油:入口温度70℃,出口温度110℃(2)加热介质:柴油33850Kg/h 水入口温度175℃,出口温度计算(3)允许压强降:不大于250Kpa(4)原油定性温度下的物性数据:ρ=815Kg/m3,µ=30.0×10-4Pa·sCp=2.20KJ/(Kg·℃),λ=0.128W/(m·℃)柴油定性温度下的物性数据:ρ=715Kg/m3,µ=6.4×10-4Pa·sCp=2.48KJ/(Kg·℃),λ=0.133W/(m·℃)(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)预热器器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料任务书三十(一)设计题目:脱丁烷塔塔顶蒸汽冷凝器的设计(二)设计任务及操作条件1:处理能力160000Kg/h 正丁烷饱和蒸汽2:设备形式水平列管冷凝器3:操作条件(1)正丁烷:冷凝温度按绝压为1atm查取,冷凝液于饱和温度离开冷凝器(2)冷却介质:井水入口温度32℃,流量7100Kg/h(3)允许压强降:不大于150Kpa(4)正丁烷定性温度下的物性数据:自查(5)每年按330天计,每天24h连续运行(三)设计容:1、设计方案的选择及流程说明2、工艺计算,及校核3、主要设备工艺尺寸设计(1)立式列管冷凝器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、设计结果汇总5、换热器装备图及工艺流程图(手工绘图要求2号或3号;若计算机绘图要求3号或4号)6、设计评述(四)参考资料。

换热器

换热器

化工原理化工设备课程设计任务书设计题目: 2.4万吨煤油换热器设计学生姓名:专业班级:学号:指导教师:宜宾学院化学与化工学院2012年 12月 13 日列管式换热器设计任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件1. 设计任务设备型式:列管式处理任务:如下表所示:2. 操作条件(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据煤油定性温度下的物性数据()()Cm W C kg kJ c s Pa m kg o o o po o o ⋅=⋅=⋅⨯==-/14.0/22.21015.7/82543λμρ导热系数定压比热容粘度密度原油定性温度下的物性数据()()Cm W C kg kJ c s Pa m kg o o opo o o ⋅=⋅=⋅⨯==-/128.0/2.2100.3/81533λμρ导热系数定压比热容粘度密度柴油定性温度下的物性数据:()()Cm W C kg kJ c s Pa m kg o o opo o o ⋅=⋅=⋅⨯==-/133.0/48.2104.6/71543λμρ导热系数定压比热容粘度密度五、设计内容1. 设计方案的选择2. 设计计算(1) 计算总传热系数 (2) 计算传热面积 3. 主要设备工艺尺寸设计(1)管径尺寸和管内流速的确定(2)传热面积、管程数、管数和壳程数的确定 4. 换热器核算 5. 设计结果汇总 6. 绘制换热器简图7. 换热器壳体封头材料,厚度以及壳体和封头的连接形式;8换热列管的设计选型; 9管板厚度;10换热管的排列及管孔尺寸;11换热管与管板的连接,管板与壳体的连接; 12管箱设计; 13所有接管设计选型; 14折流板的设计;15支座设计选型;16所涉及到的所有法兰设计选型目录第一章概述 01.1换热器的简单介绍 01.2本设计的目的和意义 0第二章设计计算 (1)2.1确定设计方案 (1)2.2确定物性数据 (1)2.3计算总传热系数 (2)2.4计算传热面积 (3)2.5工艺结构尺寸 (3)2.6换热器核算 (4)2.7支座的设计 (11)第三章设计结果汇总 (13)设备设计数据表 (13)设计图纸 (14)参考文献 (14)评语及成绩 (15)第一章概述1.1换热器的简单介绍列管式换热器,是以封闭在壳体管束的壁面作为传热面积的间壁式换热器。

换热器设计任务书

换热器设计任务书

换热器设计任务书任务书。

任务名称:换热器设计。

任务目标:设计一种高效、安全、经济的换热器,用于在工业和商业领域中传递热能,以满足不同行业的需求。

任务内容:1、了解不同行业的换热器需求和相关标准,包括但不限于石化、化工、电力等。

2、根据需求和应用场景,选择合适的换热器类型和材料,考虑热传导、热容量、压力、温度、腐蚀等因素。

3、进行换热器的结构设计和参数计算,包括但不限于热传导和对流计算,材料强度计算等。

4、进行动态模拟和仿真,验证设计的有效性和安全性。

5、编写换热器设计报告,详细说明设计方案、参数计算、仿真结果和成本估算等内容。

6、根据实际需求进行改进和优化,提高换热器的效率、安全性和经济性。

任务时间:2个月。

任务成果:1、符合行业标准和应用场景的高效换热器设计方案;2、结构设计和参数计算文件;3、换热器的动态模拟和仿真结果;4、完整的换热器设计报告,包括设计方案、参数计算和成本估算等;5、满足需求的高效、安全、经济的换热器产品。

任务要求:1、具有相关机械、热力学、材料等专业知识,能够独立完成换热器设计和计算;2、熟悉相关的设计软件和仿真工具,能够进行结构设计、参数计算和动态仿真;3、具有优秀的工程实践能力和分析能力;4、能够与团队合作,与产品开发、销售等部门沟通;5、严格遵守质量标准和安全规范,确保设计符合相关规定和要求。

任务执行计划:任务启动:1周。

资料搜集和分析:1周。

方案设计、参数计算:2周。

动态仿真、优化:2周。

文档编写、团队汇报:1周。

交付产品和报告:1周。

任务验收标准:设计的换热器符合相关安全规范和质量标准;设计的换热器在动态仿真中表现出较好的性能和稳定性;最终交付的产品和报告符合甲方的需求和规定。

责任部门:任务发起人:甲方。

执行团队:乙方(由甲方指定)。

审核人:丙方(由甲方指定)。

项目经理:由乙方自选一名人员担任。

以上为换热器设计任务书,希望能对有关方面提供帮助!。

换热器设计任务书

换热器设计任务书

换热器设计任务书任务背景在工业生产和生活中,换热器被广泛应用于能源转换、冷却、加热和回收等工艺中。

设计一个高效、可靠的换热器对于提高能源利用率、减少能源浪费具有重要意义。

本任务旨在探讨换热器的设计原理、设计要求及设计方法,为实际工程中的换热器设计提供指导和参考。

二级标题1:换热器的定义与分类三级标题1:换热器的定义换热器是一种能够在两个或多个流体之间实现热量传递的设备。

通过换热器,两个流体可以在不直接接触的情况下进行热量交换,从而实现冷却、加热或能量回收等需求。

三级标题2:换热器的分类换热器可以根据传热方式、结构形式和应用领域进行分类。

四级标题1:传热方式分类换热器根据传热方式可以分为对流换热器和传导换热器。

对流换热器主要通过流体的流动进行热量传递,而传导换热器则通过固体间的热传导进行热量传递。

四级标题2:结构形式分类换热器根据结构形式可以分为管壳换热器和板式换热器。

管壳换热器由一系列管子和外壳组成,而板式换热器则由一系列平板和密封结构组成。

四级标题3:应用领域分类换热器根据应用领域可以分为蒸汽换热器、液体换热器、气体换热器等。

不同领域的换热器在设计和性能上可能存在差异。

二级标题2:换热器设计要求三级标题1:换热效果要求换热器的设计目标是实现高效的热量传递。

因此,换热器设计需要满足以下要求:- 实现高热效率:热量传递过程中尽量减少热量损失,提高热效率。

- 尺寸紧凑:在满足换热要求的前提下,尽量减小换热器的体积和重量,节省空间和材料成本。

- 低压降:减少流体流过换热器时的压力损失,提高能源利用效率。

三级标题2:流体流动要求换热器设计需要考虑流体在换热器内的流动情况,以保证热量传递的均匀与充分。

流动性能要求包括以下几个方面: - 流速均匀:尽量避免流体的速度分布不均匀导致热量传递不均。

- 流动阻力小:减小流体在换热器内的阻力损失,降低能耗。

- 防止结垢和堵塞:设计合理的冷却系统,避免结垢和堵塞问题的发生。

换热器课程设计任务书课件

换热器课程设计任务书课件

换热器课程设计任务书设计题目:单级空气预热器设计 设计任务:【一】设计说明书 【1】绪论【2】空气平衡计算(计算单级空气预热器出口热空气过剩空气系数) 【3】燃烧产物体积及焓的计算 【4】单级空气预热器设计计算 【5】单级空气预热器校核计算 【二】设计图纸单级空气预热器设计主体图,1#图纸设计参数:【一】锅炉参数:(1)锅炉额定蒸发量 )/130(/72.9h t s kg D =(2)过热蒸汽参数 压力:MPap gr 9.3=;温度:C t gr ο450= (3)汽包内饱和蒸汽压力 MPa p 3.4= (4)给水参数 压力:MPap gs 8.4=;温度:Ct gs ο145=(5)排污率 %2=pw p(6)预热空气温度C t rk ο288= (7)冷空气温度 C t lkο20= (8)入口烟温 Ciy οθ350= (9)锅炉效率 %7.89=η(10)烟道宽度 m a 8.3=【二】煤的收到基成分(1)燃料名称: 抚顺烟煤 (2)煤的收到基成分①碳 %9.56)(=ar C ω ②氢 %4.4)(=ar H ω ③氧 %1.9)(=ar O ω ④氮 %2.1)(=ar N ω⑤硫 %6.0)(=ar S ω ⑥水分 %0.13)(=ar W ω ⑦灰分 %6.14)(=ar A ω(3)煤的收到基低位发热量 kg kJ Q ar V net /22415..=【三】空预器设计参数:h (4)1.绪论 (5)2.空气平衡计算 (6)空气平衡计算相关参数及公式的选取 (6)煤成分计算 (6)空气平衡计算结果汇总 (7)空气平衡计算结果汇总表 (7)3.单级空气预热器烟气特性计算 (8)烟气的特性参数计算依据 (8)空气过剩系数的选取 (8)烟气特性参数计算依据 (8)烟气特性参数计算汇总 (8)烟气的温焓表计算 (9)烟气的温焓表 (9)4.热平衡及燃料消耗量计算 (10)相关公式的选取 (10)相关计算参数的选取 (11)计算结果汇总 (11)热平衡及燃料消耗计算结果汇总表 (11)5.单级空气预热器的设计计算 (12)6.单级空气预热器的传热热力计算 (15)确定传热方式 (15)计算传热系数 (15)确定烟气对流放热系数 (15)确定辐射放热系数 (15)确定综合传热系 (16)确定辐射换热系数与对流放热系数后根据以下公式便可以确定综合传热系数: (16)误差计算 (16)计算结果汇总表 (16)7.单级空气预热器校核计算 (18)空气预热器校核计算汇总 (18)空气预热器校核计算汇总表 (18)8.计算结果汇总 (20)计算结果汇总 (20)计算结果汇总表 (20)9.单级空气预热器设计总结 (22)参考文献 (23)1.绪论能源紧张是目前世界上普遍存在的严重问题,“节能"是缓和能源紧张不可缺少的措施之一。

换热器设23412541计任务书[1]1

换热器设23412541计任务书[1]1

列管式换热器设计任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件1. 设计任务设备型式:列管式处理任务:如下表所示: 处理量(万吨/年) 物料2.4 2.62.83.03.23.43.6 3.8 4.0 4.24.4 4.6 4.8原油 煤油柴油2. 操作条件(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据原油定性温度下的物性数据s Pa m kg oo o ⋅⨯==-100.3/81533μρ粘度密度五、设计内容1. 设计方案的选择2. 设计计算(1)计算总传热系数(2)计算传热面积3. 主要设备工艺尺寸设计(1)管径尺寸和管内流速的确定(2)传热面积、管程数、管数和壳程数的确定4. 换热器核算5. 设计结果汇总6. 绘制换热器简图目录第一章概述 (1)1.1换热器的简单介绍 (1)1.2本设计的目的和意义 (1)第二章设计计算 (2)2.1确定设计方案 (2)2.2确定物性数据 ............................................. 错误!未定义书签。

2.3计算总传热系数 (3)2.4计算传热面积 ............................................. 错误!未定义书签。

2.5工艺结构尺寸 (8)2.6换热器核算 (8)设计图纸(附图纸) ............................................. 错误!未定义书签。

参考文献 (11)评语及成绩 (12)第一章概述1.1换热器的简单介绍在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

换热器任务书

换热器任务书

本科生毕业设计任务书
(工科及部分理科专业适用)
题目:固定管板式换热器
(AEM800-4.0-250-6/25-4Ⅱ)设计题目来源:□省部级以上□市厅级□横向■自选
题目性质:□理论研究■应用与理论研究□实际应用研究
学院:环境科学与工程学院系:过控
专业班级:过程装备与控制工程082班
学生姓名:张智程学号5801408084
起讫日期:2011年3月------2011年6月
指导教师:魏林生职称:副教授
指导教师所在单位:南昌大学
学院审核(签名):
审核日期:
二0一一年制
说明
1.毕业设计任务书由指导教师填写,并经专业学科组审定,下达到
学生。

2.进度表由学生填写,每两周交指导教师签署审查意见,并作为毕
业设计工作检查的主要依据。

3.学生根据指导教师下达的任务书独立完成开题报告,3周内提交给
指导教师批阅。

4.本任务书在毕业设计完成后,与论文一起交指导教师,作为论文
评阅和毕业设计答辩的主要档案资料,是学士学位论文成册的主要内容之一。

热交换器课程设计任务书(补充数据)

热交换器课程设计任务书(补充数据)

热交换器课程设计任务书(补充数据10组)一、对流管式换热器设计:第一组:(1) 预热空气量:7500 m3/h;(2) 预热空气温度:330 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:8600 m3/h;(5) 换热器进口烟气温度:650 ℃;(6) 烟气成分(体积%):第二组:(1) 预热空气量:8300 m3/h;(2) 预热空气温度:350 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:9800 m3/h;(5) 换热器进口烟气温度:650 ℃;第三组:(1) 预热空气量:10000 m3/h;(2) 预热空气温度:350 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:12500 m3/h;(5) 换热器进口烟气温度:680 ℃;第四组:(1) 预热空气量:11500 m3/h;(2) 预热空气温度:360 ℃;(5) 换热器进口烟气温度:700 ℃;(6) 烟气成分(体积%):第五组:(1) 预热空气量:12500 m3/h;(2) 预热空气温度:380 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:15000 m3/h;(5) 换热器进口烟气温度:700 ℃;第六组:(1) 预热空气量:13500 m3/h;(2) 预热空气温度:330 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:16500 m3/h;(5) 换热器进口烟气温度:650 ℃;第七组:(1) 预热空气量:15800 m3/h;(2) 预热空气温度:350 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:19000 m3/h;(5) 换热器进口烟气温度:665 ℃;(6) 烟气成分(体积%):第八组:(1) 预热空气量:18000 m3/h;(2) 预热空气温度:360 ℃;(5) 换热器进口烟气温度:675 ℃;(6) 烟气成分(体积%):第九组:(1) 预热空气量:20000 m3/h;(2) 预热空气温度:400 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:24200 m3/h;(5) 换热器进口烟气温度:680 ℃;第十组:(1) 预热空气量:21500 m3/h;(2) 预热空气温度:430 ℃;(3) 冷空气温度:20 ℃;(4) 处理烟气量:26000 m3/h;(5) 换热器进口烟气温度:720 ℃;二、环缝式辐射换热器设计:(略)三、设计参考资料:(1)《传热学》,杨世铭、陶文铨主编,高等教育出版社;(2)《热交换原理与设计》,史美中、王中铮主编,东南大学出版社;(3)《换热器原理与设计》余建祖编著,北京航空航天大学出版社;(4)《热质交换原理与设备》,连之伟、陈宝明编著,建筑工业出版社;(5)《重有色冶金炉设计参考资料》(重点第三、第四章),资料编写组编,冶金工业出版社。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业设计任务书
(工科及部分理科专业适用)
题目:固定管板式换热器
(AEM800-4.0-250-6/25-4Ⅱ)设计题目来源:□省部级以上□市厅级□横向■自选
题目性质:□理论研究■应用与理论研究□实际应用研究
学院:环境科学与工程学院系:过控
专业班级:过程装备与控制工程082班
学生姓名:张智程学号5801408084
起讫日期:2011年3月------2011年6月
指导教师:魏林生职称:副教授
指导教师所在单位:南昌大学
学院审核(签名):
审核日期:
二0一一年制
说明
1.毕业设计任务书由指导教师填写,并经专业学科组审定,下达到
学生。

2.进度表由学生填写,每两周交指导教师签署审查意见,并作为毕
业设计工作检查的主要依据。

3.学生根据指导教师下达的任务书独立完成开题报告,3周内提交给
指导教师批阅。

4.本任务书在毕业设计完成后,与论文一起交指导教师,作为论文
评阅和毕业设计答辩的主要档案资料,是学士学位论文成册的主要内容之一。

相关文档
最新文档