变频器干扰的解决方法
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案标题:变频器产生的干扰及解决方案
引言概述:
变频器作为一种电力设备,在工业生产中被广泛应用,但同时也会产生一定的电磁干扰问题。
本文将针对变频器产生的干扰问题进行深入探讨,并提出相应的解决方案。
一、变频器产生的干扰问题
1.1 电磁辐射干扰:变频器在工作时会产生电磁辐射,影响周围设备的正常运行。
1.2 电磁感应干扰:变频器工作时会引起电磁感应,导致周围设备浮现异常。
1.3 电源线干扰:变频器接入电源路线时,可能会对电源系统产生干扰,影响电力设备的正常运行。
二、解决电磁辐射干扰的方案
2.1 优化变频器的设计结构,减少电磁辐射。
2.2 安装屏蔽罩或者屏蔽线,减少电磁波的传播。
2.3 使用电磁屏蔽材料,阻挠电磁辐射的扩散。
三、解决电磁感应干扰的方案
3.1 增加电磁屏蔽设备,减少电磁感应的影响。
3.2 调整变频器的工作频率,避免与其他设备频率冲突。
3.3 使用电磁隔离器件,隔离电磁感应干扰。
四、解决电源线干扰的方案
4.1 安装电源线滤波器,减少电源线干扰。
4.2 使用电磁屏蔽套管,隔离电源线干扰。
4.3 优化电源路线设计,减少电源线干扰的影响。
五、总结
通过对变频器产生的干扰问题进行深入分析,并提出相应的解决方案,可以有效减少电磁干扰对设备运行的影响,保障工业生产的正常进行。
未来在变频器设计和应用中,应更加重视干扰问题的解决,提高设备的稳定性和可靠性。
变频器如何抗干扰变频器干扰解决方法

变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。
2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。
3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。
二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。
2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。
3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。
4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。
5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。
6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。
7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。
8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。
9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。
三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。
2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。
3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。
4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。
变频器干扰解决方法

变频器干扰解决方法
变频器干扰是指变频器在运行时产生的电磁干扰对其他设备或系统造成的影响。
以下是一些解决变频器干扰的方法:
1. 选择合适的变频器:选择质量可靠的变频器,它应该符合相应的国家标准和认证。
2. 使用滤波器:安装电磁滤波器可以有效地减少变频器产生的电磁干扰。
这些滤波器可以安装在电源线路上,也可以安装在变频器输入输出端口上。
3. 接地和屏蔽:确保变频器和受干扰设备都有良好的接地,使用金属屏蔽来减少电磁辐射。
4. 电磁隔离:对于特别敏感的设备,可以考虑使用电磁隔离技术,将变频器与其他设备隔离开来,减少干扰。
5. 优化布线:合理布置电源线和信号线,避免它们相互干扰。
6. 选择合适的工作频率:变频器的工作频率选择对干扰有一定影响。
根据被干扰设备的特点和要求,选择合适的工作频率。
7. 增加滤波元件:在变频器输入和输出端口上增加电容、电感等滤波元件,可
以进一步减少干扰。
8. 定期维护和检测:定期检查和维护变频器和相关设备,及时发现和排除问题,减少干扰的可能性。
9. 软起动:使用软起动功能可以减少变频器启动时的电磁干扰。
10. 良好的排风散热:保持变频器的良好散热,可以减少电磁干扰。
以上是一些常见的解决变频器干扰的方法,具体选择和采取哪些方法要根据具体情况和需要进行综合考虑。
变频器电磁干扰的解决方案

变频器电磁干扰的解决方案标题:变频器电磁干扰的解决方案引言概述:变频器在工业生产中广泛应用,但其工作过程中常常会产生电磁干扰,给设备和系统稳定运行带来困扰。
本文将详细介绍变频器电磁干扰的解决方案,帮助读者更好地理解和解决这一问题。
一、电磁屏蔽措施1.1 金属屏蔽箱的使用:金属屏蔽箱能有效阻挡变频器产生的电磁辐射,减少对周围设备的干扰。
选择合适的金属材料和屏蔽结构,确保屏蔽效果。
1.2 电磁屏蔽罩的应用:对于特定的设备或系统,可以使用电磁屏蔽罩来隔离变频器产生的电磁干扰。
这种罩子通常由导电材料制成,能够有效地吸收和隔离电磁波。
1.3 电磁屏蔽材料的选择:在设计和制造过程中,选择合适的电磁屏蔽材料非常重要。
常见的电磁屏蔽材料包括铁氧体、铜箔、导电涂层等,根据具体需求选用合适的材料。
二、滤波器的应用2.1 输入滤波器的使用:安装输入滤波器可以有效减少变频器输入端的电磁干扰。
输入滤波器能够滤除高频噪声,确保电源电压的稳定性。
2.2 输出滤波器的应用:输出滤波器能够滤除变频器输出端的高频噪声,减少对周围设备的干扰。
选择合适的滤波器参数和类型,确保滤波效果。
2.3 滤波器的维护和调整:定期检查和维护滤波器的工作状态,确保其正常运行。
根据实际情况调整滤波器的参数,以达到最佳的滤波效果。
三、接地措施3.1 变频器的接地:合理的变频器接地可以有效降低电磁干扰。
将变频器接地导线与设备的共同接地点连接,确保接地的稳定性和可靠性。
3.2 设备的接地:除了变频器的接地,设备本身的接地也非常重要。
确保设备的接地导线良好连接,并与变频器接地导线连接在一起,形成良好的接地系统。
3.3 接地电阻的测量:定期测量接地电阻,确保接地系统的良好工作状态。
如果接地电阻过大,应及时采取措施进行修复。
四、电缆布线和屏蔽4.1 电缆的选择:选择合适的电缆类型和规格,能够有效减少电磁干扰。
屏蔽电缆对于抑制电磁辐射和抗干扰能力较强,是较好的选择。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、背景介绍变频器是一种用于调节机电转速的设备,广泛应用于工业生产中。
然而,变频器在工作过程中会产生一定的电磁干扰,对周围的电子设备和通信系统造成影响。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频噪声:变频器在工作时会产生高频噪声,这些噪声会通过电源线、信号线和地线传播到其他设备中,干扰其正常工作。
2. 电磁辐射:变频器在工作时会产生电磁辐射,这种辐射会干扰周围的电子设备和通信系统,影响其正常工作。
3. 电源谐波:变频器使用的电源会产生谐波,这些谐波会通过电源线传播到其他设备中,干扰其正常工作。
三、解决方案1. 滤波器的应用安装滤波器是解决变频器干扰的一种有效方法。
滤波器可以对变频器产生的高频噪声进行滤波处理,减少其传播到其他设备中的干扰。
常见的滤波器类型包括电源滤波器、信号线滤波器和地线滤波器。
根据实际情况选择合适的滤波器进行安装。
2. 电磁屏蔽措施采取电磁屏蔽措施可以有效减少变频器产生的电磁辐射对周围设备的干扰。
常见的电磁屏蔽措施包括金属屏蔽罩的使用、电磁屏蔽材料的应用等。
在设计和安装变频器时,应考虑采取合适的电磁屏蔽措施,将干扰辐射降到最低。
3. 接地措施良好的接地系统可以有效减少变频器产生的电磁干扰。
在安装变频器时,应确保变频器的金属外壳与地线连接良好,同时对其他设备也要进行良好的接地处理,以减少干扰的传播。
4. 优化电源系统优化电源系统可以减少变频器产生的电源谐波,从而降低对其他设备的干扰。
可以采用电源滤波器、电源变压器等设备来优化电源系统,减少谐波的产生。
5. 合理布线合理的布线可以减少变频器产生的干扰。
在布线时,应尽量避免变频器与其他设备的电源线、信号线和地线交叉布置,以减少干扰的传播。
同时,应保持布线整洁,减少电磁干扰的可能性。
6. 故障排查与维护定期进行故障排查和维护工作,及时发现和解决变频器产生的干扰问题。
可以通过使用专业的测试仪器对变频器进行检测,发现问题后及时采取相应的措施进行修复。
变频器抗干扰方法

变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。
然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。
因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。
首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。
2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。
3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。
4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。
其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。
2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。
3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。
4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。
此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。
2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。
3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。
4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。
最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。
这样能够及早发现问题,并对干扰源进行识别和消除。
总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。
通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案变频器是一种用于调节电动机转速和电压的设备,它通过改变电动机的供电频率来实现调速。
然而,变频器在工作过程中会产生一些干扰,这些干扰可能对其他电子设备和电网产生负面影响。
因此,需要采取一些解决方案来减少这些干扰。
1.电磁干扰:变频器在调节电动机的供电频率时会产生较高的电磁噪声,这些噪声会通过电源线、信号线和控制线传播到其他设备中,对电子设备的正常工作产生干扰。
2.谐波污染:变频器工作时会产生较高频率的谐波信号,这些谐波信号会通过电网传播,并污染电力系统。
谐波信号会导致电网电压失真、电流波形畸变,进而影响其他设备的运行。
3.继电器的抖动:变频器在工作过程中控制电机的起停,会通过继电器来实现。
由于变频器工作频率较高,继电器容易出现抖动现象,导致电机频繁启动和停止,对其他设备产生干扰。
为了解决变频器产生的干扰问题,可以采取以下几种解决方案:1.滤波器的使用:安装滤波器可以有效地减少变频器产生的电磁干扰。
滤波器可以对电磁噪声和谐波信号进行滤波处理,降低其对其他设备的干扰。
2.接地和屏蔽措施:通过合理的接地和屏蔽措施可以有效减少电磁干扰的传播。
变频器、电动机和其他设备的外壳应该进行良好的接地,同时使用屏蔽线缆来阻止电磁噪声的传播。
3.调整变频器的工作频率:调整变频器的工作频率可以减少变频器产生的谐波信号。
选择合适的工作频率,使变频器工作在较低的谐波频率范围内,减少对电力系统的谐波污染。
4.选择优质的变频器产品:选择经过认证的优质变频器产品可以有效减少干扰。
优质的变频器产品在设计和制造过程中会考虑到干扰问题,并采取相应的措施进行抑制。
5.合理布置设备:合理布置变频器和其他设备,保持一定的距离,降低干扰的传播。
变频器和其他设备之间应保持足够的间隔,避免信号相互干扰。
综上所述,变频器产生的干扰对其他设备和电网的影响是不可忽视的。
为了解决这些干扰问题,需要采取一系列的措施,包括使用滤波器、接地和屏蔽措施、调整工作频率、选择优质产品以及合理布置设备等。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案1. 引言变频器是一种用于调节机电转速的设备,广泛应用于工业生产中。
然而,变频器在工作过程中会产生电磁干扰,对其他设备和系统造成不利影响。
本文将详细介绍变频器产生的干扰及解决方案。
2. 变频器产生的干扰变频器产生的干扰主要包括电磁辐射干扰和电源线干扰两个方面。
2.1 电磁辐射干扰变频器工作时,机电和变频器之间的电缆会产生电磁辐射,通过空气传播到周围设备和系统中。
这种干扰可能导致其他设备的电子元件受损、通信中断或者数据丢失。
2.2 电源线干扰变频器通过电源线接入电网,其高频脉冲信号会通过电源线传播到其他设备和系统中,引起电源线上的电压和电流波动,导致其他设备的正常工作受到干扰。
3. 解决方案为了解决变频器产生的干扰问题,可以采取以下几种方案:3.1 滤波器安装滤波器是减少电磁辐射干扰的有效方法。
滤波器可以在变频器的电缆和电源线上安装,通过滤波器的滤波作用,将高频噪声滤除,减少电磁辐射干扰的传播。
3.2 屏蔽措施为了减少电磁辐射干扰的传播,可以采取屏蔽措施。
在变频器和机电之间的电缆上使用屏蔽材料包裹,阻挡电磁辐射的传播。
此外,还可以在设备周围建立金属屏蔽罩,进一步减少电磁辐射的泄漏。
3.3 接地措施良好的接地系统可以有效减少电磁辐射干扰。
通过建立良好的接地网络,将变频器和其他设备的接地点连接在一起,减少电磁辐射的泄漏。
此外,还可以使用接地屏蔽器,将电磁辐射导向接地,减少对其他设备的干扰。
3.4 选择合适的电缆选择合适的电缆也可以减少电磁辐射干扰。
使用屏蔽效果好的电缆,能够有效地阻挡电磁辐射的传播。
此外,还可以选择带有抗干扰能力的电缆,减少电源线干扰对其他设备的影响。
3.5 距离隔离在设计设备布局时,可以将变频器与其他敏感设备保持一定的距离,减少电磁辐射干扰的传播。
通过合理的布局,将变频器放置在远离其他设备的位置,可以有效降低干扰的程度。
4. 结论变频器产生的干扰对其他设备和系统的正常工作造成为了一定的影响,但通过采取相应的解决方案,可以有效减少干扰的程度。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言在工业控制系统中,变频器是一种常见的设备,用于控制机电的转速和运行。
然而,变频器在工作过程中会产生一定的电磁干扰,可能对其他设备和系统造成影响。
因此,本文将探讨变频器产生的干扰问题,并提供相应的解决方案。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器在工作时会产生高频电磁辐射,可能干扰周围的设备和系统,特殊是电子设备。
2. 电源线干扰:变频器的输入和输出电源线可能会传导干扰信号,影响其他设备的正常工作。
3. 电磁感应干扰:变频器的输出电缆可能会产生电磁感应干扰,导致其他设备的电压和电流异常。
三、变频器干扰的影响1. 电子设备故障:变频器产生的干扰可能导致其他电子设备发生故障,如计算机崩溃、通信中断等。
2. 传感器误差:变频器干扰可能导致传感器信号受到干扰,造成测量误差。
3. 控制系统不稳定:变频器产生的干扰可能导致控制系统不稳定,影响生产过程的正常运行。
四、变频器干扰解决方案1. 电磁屏蔽:在变频器周围安装金属屏蔽罩,减少电磁辐射干扰的传播。
同时,对变频器的输入和输出电缆进行屏蔽处理,阻挠电磁感应干扰的产生。
2. 滤波器:在变频器的输入和输出电缆上安装滤波器,能有效地吸收和滤除干扰信号,保证电源线上的电压和电流稳定。
3. 接地措施:良好的接地系统能够减少变频器产生的干扰,通过连接地线和金属屏蔽罩等方式,将干扰信号引流至地。
4. 电缆布线:合理布置变频器的电缆,与其他设备的电缆保持一定的距离,减少电磁感应干扰的可能性。
5. 变频器选择:选择具有较低辐射干扰的变频器产品,尽量避免使用辐射干扰较大的型号。
五、干扰测试与监测1. 干扰测试:通过专业的测试仪器对变频器产生的干扰进行测试,包括电磁辐射、电源线干扰和电磁感应干扰等。
2. 干扰监测:对关键设备和系统进行实时监测,发现干扰问题及时采取相应的解决措施。
六、结论变频器产生的干扰是工业控制系统中常见的问题,可能对其他设备和系统造成不良影响。
变频器抗电磁干扰措施有哪些

变频器抗电磁干扰措施有哪些变频器是一种用于调节电动机转速的设备,它通过改变电源频率来控制电机的转速。
然而,由于其工作原理和电磁特性,变频器在工作过程中容易受到电磁干扰的影响。
为了保证变频器的正常工作和延长设备的使用寿命,必须采取一定的措施来抗电磁干扰。
1. 电磁屏蔽。
电磁屏蔽是最常见的抗电磁干扰措施之一。
通过在变频器的外壳和内部电路上添加屏蔽层,可以有效地阻止外部电磁波对设备的干扰。
屏蔽层通常采用导电材料制成,如铜箔、铝箔等,能够有效地吸收和屏蔽外部电磁波,保护设备的正常工作。
2. 地线连接。
良好的接地是抗电磁干扰的重要措施之一。
通过将变频器的外壳和内部电路与地线连接,可以有效地排除设备内部的静电和电磁干扰,保证设备的正常运行。
此外,地线连接还可以减少设备与外部环境的电磁耦合,提高设备的抗干扰能力。
3. 滤波器。
在变频器的输入端和输出端添加滤波器是抗电磁干扰的有效措施之一。
输入端滤波器主要用于滤除电源输入端的高频干扰信号,输出端滤波器主要用于滤除电机输出端的高频干扰信号。
通过滤波器的作用,可以有效地减少电磁干扰对设备的影响,保证设备的正常运行。
4. 等效电路设计。
在变频器的电路设计中,采用合理的等效电路设计是抗电磁干扰的重要手段之一。
通过合理设计电路的布局和连接方式,可以减少电路间的电磁耦合,减小电磁干扰的影响。
此外,合理设计电路的等效电路参数,可以提高电路的抗干扰能力,保证设备的正常工作。
5. 屏蔽电缆。
在变频器和电机之间采用屏蔽电缆连接是抗电磁干扰的有效措施之一。
屏蔽电缆通常具有导电屏蔽层,可以有效地阻止外部电磁波对信号传输的干扰,保证信号的准确传输。
此外,屏蔽电缆还可以减少电磁波对设备的影响,提高设备的抗干扰能力。
6. 环境监测。
定期对变频器周围的电磁环境进行监测是抗电磁干扰的重要手段之一。
通过监测周围的电磁干扰情况,可以及时发现和排除电磁干扰的影响,保证设备的正常运行。
此外,监测环境的变化还可以为设备的抗干扰措施提供参考依据,保证设备的稳定运行。
变频器有效的抗干扰措施

变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。
由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。
为了提高变频器的抗干扰能力,下面列举了一些有效的措施。
1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。
地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。
2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。
电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。
3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。
具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。
屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。
4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。
选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。
5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。
为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。
6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。
输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。
7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。
为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。
总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案变频器是一种将电源的频率和电压转换为所需的频率和电压的电力调节装置。
它在许多工业和家用设备中被广泛应用,如电机驱动、电梯、空调等。
然而,变频器在运行过程中会产生一些干扰问题,这些干扰可能对其他设备和系统造成负面影响。
本文将重点介绍变频器产生的干扰及其解决方案。
一、变频器产生的干扰类型:1.电磁辐射干扰:变频器运行时会产生较高频率的电磁辐射,对周围的电子设备和无线通信设备造成电磁干扰。
2.电功率干扰:变频器会对电源网络产生带有谐波成分的高电流脉冲,容易导致电网电压波动,同时也可能导致其他设备的故障。
3.传导干扰:变频器内部的电磁干扰会通过电力线或控制信号线传导到其他设备中,影响其正常工作。
二、变频器产生干扰的原因:1.变频器内部电路的高频振荡:变频器内部的开关电路会产生高频振荡,因为各种电容和电感元件之间的互联会产生谐振环路,导致电路的振荡频率高于基本频率。
2.高频开关的操作:变频器内部的半导体开关装置,如IGBT等,会频繁开关,导致高频电流脉冲。
三、解决变频器干扰问题的方法:1.滤波器的使用:通过在变频器和被干扰设备之间添加滤波器,可以有效减少电磁辐射干扰和传导干扰。
滤波器可以选择带通滤波器、陷波器等。
2.感应式隔离变压器:通过使用感应式隔离变压器,可以有效消除变频器产生的电功率干扰。
感应式隔离变压器可以将电网和变频器之间的电源隔离,降低干扰传导。
3.屏蔽和接地:在设计和安装变频器系统时,应注意使用屏蔽电缆和接地装置,以减少电磁辐射干扰和传导干扰。
正确的接地和屏蔽可以有效降低或消除干扰。
4.合理的电缆布线:将变频器和被干扰设备之间的电缆布线分离,避免电缆交叉和平行布线。
这样可以减少电磁辐射和传导干扰的发生。
5.系统优化:在设计和安装变频器系统时,应选择质量可靠、抗干扰能力较强的变频器产品。
优化系统结构,提高系统的抗干扰能力。
总结:变频器产生的干扰是一个普遍存在的问题,对于设备的正常运行和其他设备的工作状态产生了一定的影响。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,被广泛应用于工业生产中。
然而,变频器在工作过程中产生的电磁干扰问题也逐渐凸显出来。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频脉冲干扰:变频器内部的开关元件工作时,会产生高频脉冲信号,这些高频脉冲信号会通过电源线和信号线传播,导致其他设备受到干扰。
2. 电磁辐射干扰:变频器内部的高频电流和电压变化会产生电磁场,这些电磁场会辐射到周围环境中,干扰其他设备的正常工作。
3. 地线干扰:变频器的地线接触不良或电阻过大,会导致地线电压的变化,进而引起其他设备的干扰。
三、变频器产生的干扰对设备的影响1. 信号干扰:变频器产生的高频脉冲信号会干扰其他设备的信号传输,导致数据传输错误或丢失。
2. 电磁辐射干扰:变频器产生的电磁辐射会影响其他设备的正常工作,甚至可能引起设备故障。
3. 电源干扰:变频器产生的高频脉冲信号会通过电源线传播,影响其他设备的电源稳定性,导致设备不能正常工作。
四、变频器干扰解决方案1. 滤波器的应用:在变频器的输入端和输出端分别安装滤波器,可以有效地抑制变频器产生的高频脉冲信号和电磁辐射。
2. 地线的优化:确保变频器的地线接触良好,并使用低阻抗的地线,以减小地线电压的变化,降低地线干扰的可能性。
3. 屏蔽措施:对变频器进行屏蔽处理,可以减少电磁辐射干扰。
同时,在变频器的输入端和输出端分别安装屏蔽罩,以阻挡电磁辐射的传播。
4. 接地措施:在变频器的输入端和输出端分别设置良好的接地装置,以减小电磁辐射的影响范围。
5. 信号隔离:对变频器的输入端和输出端进行信号隔离,可以有效地防止信号干扰的传播。
6. 电源滤波:在变频器的输入端安装电源滤波器,可以减小高频脉冲信号对电源的干扰,保证其他设备的电源稳定性。
五、结论变频器作为重要的电力调节设备,在工业生产中起到了关键的作用。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器是一种用于调节机电转速的设备,它通过改变电源频率来改变机电的转速。
然而,变频器在工业应用中往往会产生电磁干扰,对周围的电子设备和通信系统造成不利影响。
本文将详细介绍变频器产生的干扰原因、干扰类型以及相应的解决方案。
二、干扰原因变频器产生的干扰主要源于以下几个方面:1. 高频噪声:变频器工作时,会产生高频噪声,这些噪声会通过电源线、信号线和地线传播,导致附近设备的干扰。
2. 脉冲干扰:变频器输出的电压和电流波形不彻底是正弦波,而是由一系列脉冲组成的,这些脉冲会对其他设备产生干扰。
3. 电磁辐射:变频器内部的电子元件和电路会产生电磁辐射,这种辐射会干扰附近的电子设备和通信系统。
三、干扰类型变频器产生的干扰主要表现为以下几种类型:1. 电源干扰:变频器的高频噪声会通过电源线传播,影响到其他电子设备的正常工作。
2. 信号干扰:变频器的脉冲干扰会通过信号线传播,导致其他设备接收到干扰信号,影响其正常工作。
3. 辐射干扰:变频器的电磁辐射会干扰附近的电子设备和通信系统,导致其工作异常或者信号质量下降。
四、解决方案为了解决变频器产生的干扰问题,可以采取以下一些解决方案:1. 滤波器:在变频器的输入端和输出端添加合适的滤波器,可以有效地抑制高频噪声和脉冲干扰。
2. 屏蔽措施:对变频器进行屏蔽处理,减少其电磁辐射对周围设备的影响。
可以采用金属屏蔽罩、金属隔离板等方式进行屏蔽。
3. 接地措施:合理的接地设计可以有效地减少变频器产生的干扰。
可以采用单点接地、多点接地等方式,确保设备的接地电阻符合要求。
4. 电缆布线:合理的电缆布线可以减少变频器对其他设备的干扰。
可以采用屏蔽电缆、远离敏感设备等方式进行布线。
5. 电磁兼容性测试:对变频器进行电磁兼容性测试,确保其符合相关标准要求,减少对其他设备的干扰。
五、结论变频器产生的干扰是工业应用中常见的问题,但通过合理的解决方案,可以有效地减少干扰对其他设备和通信系统的影响。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案1.引言随着科技的发展,变频器被广泛应用于各个领域,如工业生产、农业、建筑等。
虽然变频器提高了设备的效率和可控性,但也会产生一些干扰问题。
本文将详细介绍变频器产生的干扰及解决方案。
2.变频器产生的干扰2.1电磁干扰电磁干扰是变频器内部电路和外部环境之间的相互影响。
主要表现为电磁辐射和感应电磁干扰。
2.1.1电磁辐射2.1.2感应电磁干扰由于变频器的高频振荡,会在电源线和信号线上产生高频干扰电流和电压。
这些干扰信号会通过电源线和信号线传播,导致与其相连的设备产生干扰。
2.2电网干扰变频器并网运行时,可能会对电网产生干扰,并引起电网的电压畸变和谐波污染。
3.变频器干扰的解决方案为了解决变频器产生的干扰问题,我们可以从以下几个方面入手。
3.1电磁屏蔽电磁屏蔽是最常见的解决电磁干扰问题的方法之一、在变频器的设计和生产过程中,应当采用屏蔽技术,将变频器的电磁辐射范围控制在允许的范围内。
3.2滤波器滤波器可以有效地抑制感应电磁干扰。
在变频器的输入端和输出端添加合适的滤波器,可以滤除高频干扰信号,减少对其他设备的干扰。
3.3地线连接良好的地线连接可以降低电磁干扰的情况。
在变频器的安装中,应该确保良好的地线连接,可以采用多点接地或者选择屏蔽地线的方式,以达到减少电磁干扰的效果。
3.4加强产品管理对于变频器生产企业来说,加强产品管理也是减少干扰的一个关键手段。
要进行严格的产品质量把关,确保变频器的设计和生产符合相关的标准和规定。
4.结论变频器在提高设备效率和可控性的同时,也带来了一定程度的干扰问题。
在实际应用中,我们可以通过电磁屏蔽、滤波器、地线连接等方法来解决这些干扰问题。
通过合理的技术手段和产品管理,可以减少变频器带来的干扰,提高设备的稳定性和可靠性。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案引言概述:随着现代工业的发展,变频器在电气控制系统中得到了广泛应用。
然而,变频器在工作过程中会产生一定的干扰,给其他设备带来不利影响。
本文将探讨变频器产生的干扰问题,并提出解决方案。
正文内容:1. 变频器产生的干扰1.1 电磁干扰:变频器在工作过程中会产生高频电磁辐射,这种辐射会干扰周围的电子设备,导致其正常工作受阻。
1.2 电源干扰:变频器对电源系统的电流和电压波形产生扰动,引起电网电压波动,进而干扰其他设备的正常工作。
1.3 传导干扰:变频器的高频电流会通过电源线、信号线等传导到其他设备中,造成干扰。
2. 解决方案2.1 电磁屏蔽:通过在变频器外壳中添加屏蔽材料,减少电磁辐射对周围设备的干扰。
同时,合理设计电缆布线,使用屏蔽电缆,减少传导干扰。
2.2 滤波器的应用:在变频器的输入端和输出端添加滤波器,用于滤除电源干扰和输出端的高频噪声,降低干扰水平。
2.3 接地处理:优化变频器的接地方式,确保接地电阻符合标准要求,减少干扰的传导路径。
2.4 电源质量改善:通过加装稳压器、滤波器等设备,改善电源质量,减少电源波动对其他设备的干扰。
2.5 信号隔离:对变频器的输入和输出信号进行隔离处理,减少干扰信号的传递。
总结:综上所述,变频器产生的干扰主要包括电磁干扰、电源干扰和传导干扰。
为解决这些问题,可以采取电磁屏蔽、滤波器的应用、接地处理、电源质量改善和信号隔离等方案。
通过这些措施,可以有效降低变频器产生的干扰,确保其他设备的正常运行。
在实际应用中,需要根据具体情况选择合适的解决方案,并进行适当的调试和优化,以达到最佳效果。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案引言概述:变频器是一种用来调节电机的转速和输出功率的设备,广泛应用于工业生产和机械设备中。
然而,变频器在工作过程中会产生一定的干扰,给设备和系统带来一定的影响。
本文将详细介绍变频器产生的干扰及解决方案。
一、变频器产生的干扰1.1 电磁干扰:变频器在工作时会产生电磁辐射,这种辐射会对周围的电子设备和通信系统产生干扰,导致设备的正常工作受阻。
1.2 电网干扰:变频器将电网的交流电转换为直流电,然后再将直流电转换为需要的频率和电压输出。
这个过程中会产生电网波动和谐波,对电网的稳定性和电力设备造成干扰。
1.3 机械干扰:变频器在控制电机转速时,会通过改变电机的电压和频率来实现。
这种频繁的改变会对电机和机械设备产生额外的压力和振动,导致设备的寿命缩短。
二、解决方案2.1 电磁屏蔽:通过在变频器和受干扰设备之间添加电磁屏蔽材料,可以有效地隔离电磁干扰,减少干扰对设备的影响。
2.2 滤波器的应用:在变频器的输入端和输出端添加滤波器,可以滤除电网的谐波和波动,减少对电网和其他设备的干扰。
2.3 机械隔离:通过增加减振装置和隔振材料,可以减少变频器对机械设备的振动和压力,保护设备的正常运行。
三、电磁兼容性测试3.1 辐射测试:对变频器进行辐射测试,检测其电磁辐射水平是否符合相关标准,如果不符合,需要进行电磁屏蔽和滤波器的优化。
3.2 抗干扰测试:对变频器进行抗干扰测试,检测其对外界干扰的抵抗能力,如果不符合要求,需要对变频器的设计和电路进行优化。
3.3 整机测试:对整个系统进行综合测试,评估变频器对其他设备的干扰程度,根据测试结果进行相应的处理和改进。
四、合理布线和接地4.1 信号线和电源线的分离:将变频器的信号线和电源线进行分离布线,避免相互干扰,减少干扰的传播。
4.2 接地的合理设计:对变频器和其他设备的接地进行合理设计,确保接地的可靠性和连续性,减少接地回路的干扰。
五、定期维护和保养5.1 清洁和散热:定期清洁变频器和散热器,保持设备的良好散热状态,避免因过热而引起的干扰。
变频器干扰的解决方法

变频器干扰的解决方法1.电源线的处理:-使用屏蔽电源线:屏蔽电源线可以有效地减少高频电磁辐射对周围设备的影响。
可以使用带有金属屏蔽层的电源线或者使用有预制的金属外壳的电源线。
-增加滤波器:安装滤波器可以有效地滤除变频器产生的高频电磁辐射。
可以在变频器电源线的输入端和输出端分别安装滤波器,以减少干扰。
2.接地的处理:-良好的接地:通过确保设备的良好接地,可以有效地减少变频器产生的电磁干扰。
接地必须是可靠的,并且要尽量避免接地回路的干扰。
-分离地:在使用变频器时,尽量将变频器的接地与其他设备的接地分离开来,以避免地线回路的相互干扰。
3.电磁屏蔽的处理:-金属屏蔽:在变频器周围加装金属屏蔽罩或金属壳体,能够有效地隔离高频电磁辐射,减少对周围设备的干扰。
-电磁屏蔽材料:使用电磁屏蔽材料制作电磁屏蔽罩,例如使用铁、铜或者其他合金材料制作可靠的屏蔽罩。
4.信号处理的优化:-添加滤波器:在电源输入端和输出端添加滤波器,以减少变频器产生的高频噪声。
滤波器应根据具体的变频器工作频率进行选择。
-圆滑信号:通过对变频器的输出信号进行平滑处理,可以减少信号的峰值,并降低其高频部分对其他设备的干扰。
5.电缆布线的改进:-使用屏蔽电缆:使用具有屏蔽层的电缆可以有效地减少高频电磁辐射和电磁感应。
尽量使用屏蔽电缆对变频器和其他设备进行连接。
-避免并行布线:尽量避免并行布置电缆,特别是高频电缆和低频电缆的并行布线容易引起干扰。
应尽量采用交错布线的方式。
6.间隔与屏蔽:-增加间隔:将变频器与其他设备之间的物理间隔增加,以减少电磁辐射的传导。
-增加物理屏蔽:在变频器和其他设备之间设置屏蔽隔离板,可以有效地减少电磁辐射以及电磁感应。
7.增加电磁兼容性测试:-定期进行电磁兼容性(EMC)测试:通过定期对变频器及其周围设备进行电磁兼容性测试,可以及时发现和解决干扰问题。
在测试过程中,可以对变频器的输入和输出电磁干扰进行评估,并对相关问题进行优化。
变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器作为一种常见的电力调节设备,在工业生产中得到了广泛的应用。
然而,变频器在运行过程中会产生一定的电磁干扰,对其他设备和系统造成不利影响。
本文将详细介绍变频器产生的干扰原因及其解决方案。
二、变频器产生的干扰原因1. 高频噪声干扰:变频器在工作时会产生高频噪声,这些噪声会通过电源线、信号线以及空气传导到其他设备和系统中,造成干扰。
2. 电磁辐射干扰:变频器内部的电子元件在工作时会产生电磁辐射,这些辐射会通过电磁波的形式传播到周围环境中,对其他设备和系统造成干扰。
3. 电源波形失真:变频器在将直流电源转换为交流电源时,会引入波形失真,这些失真信号会干扰到其他设备和系统。
三、变频器产生的干扰解决方案1. 电磁屏蔽措施:a. 在变频器周围设置金属屏蔽罩,阻挡电磁辐射的传播,减少对周围设备的干扰。
b. 使用电磁屏蔽材料对变频器进行包裹,有效减少电磁辐射。
c. 优化变频器的布局,减少电磁辐射的产生。
2. 滤波措施:a. 在变频器的输入端和输出端分别安装滤波器,滤除高频噪声和电磁干扰。
b. 使用电源滤波器对电源进行滤波,减少电源波形失真。
3. 接地措施:a. 对变频器进行良好的接地,减少电磁辐射和电磁干扰。
b. 对其他设备和系统进行良好的接地,提高其抗干扰能力。
4. 信号隔离措施:a. 使用光电耦合器等信号隔离器件,将变频器的控制信号与其他设备隔离,减少干扰的传播。
b. 优化信号线的布线,减少信号线的长度和交叉,降低干扰的可能性。
5. 故障监测与处理:a. 定期对变频器进行故障监测,及时发现并处理可能导致干扰的故障。
b. 配备专业的维护人员,及时处理变频器故障,减少干扰对生产的影响。
四、结论变频器产生的干扰对其他设备和系统的正常运行造成为了一定的影响。
为了解决这一问题,我们可以采取电磁屏蔽、滤波、接地、信号隔离以及故障监测与处理等措施。
通过这些解决方案的应用,可以有效减少变频器产生的干扰,保障生产设备和系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器干扰的解决方法
在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。
变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。
因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不
可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。
谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。
一、变频器干扰的来源
首先是来自外部电网的干扰。
电网中的谐波干扰主要通过变频器的供电电源干扰变频器。
电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。
这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。
变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。
供电电源的干扰对变频器主要有:
(1)过压、欠压、瞬时掉电;
(2)浪涌、跌落;
(3)尖峰电压脉冲;
(4)射频干扰。
1、晶闸管换流设备对变频器的干扰
当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。
它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
2、电力补偿电容对变频器的干扰
电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。
在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
其次是变频器自身对外部的干扰。
变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。
另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。
因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。
变频器的输入和输出电流中,都含有很多高次谐波成分。
除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。
它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。
(1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。
显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。
因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。
它具有很强的高次谐波成分。
有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。
(2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。
但其中与载波频率相等的谐波分量仍是较大的。
二、干扰信号的传播方式
变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。
具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。
同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。
(1)电路耦合方式
即通过电源网络传播。
由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出
端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。
显然,这是变频器输入电流干扰信号的主要传播方式。
(2)感应耦合方式
当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。
感应的方式又有两种:
a、电磁感应方式,这是电流干扰信号的主要方式;
b、静电感应方式,这是电压干扰信号的主要方式。
(3)空中幅射方式
即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。
三、变频调速系统的抗干扰对策
根据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。
为防止干扰,可采用硬件抗干扰和软件抗干扰。
其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。
具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
1、所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。
在变频调速传动系统中,通常是
电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
2、在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。
为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。
若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。
在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。
滤波器就是用于削弱频率较高的谐波分量的主要手段。
根据使用位置的不同,可分为:
(1) 输入滤波器通常又有两种:
a、线路滤波器主要由电感线圈构成。
它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。
b、辐射滤波器主要由高频电容器构成。
它将吸收掉频率很高的、具有辐射能量的谐波成分。
(2) 输出滤波器也由电感线圈构成。
它可以有效地削弱输出电流中的高次谐波成分。
非但起到抗干扰的作用,且能削弱电动机中由高次谐波谐波电流引起的附加转矩。
对于变频器输出端的抗干扰措施,必须注意以下方面:
a、频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管;
b、输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。
3、屏蔽干扰源是抑制干扰的最有效的方法。
通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。
为使屏蔽有效,屏蔽罩必须可靠接地。
4、正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。
在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。
对于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。
变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。
建议变频器的接地与其它动力设备接地点分开,不能共地。
5、采用电抗器
在变频器的输入电流中频率较低的谐波分量(5次谐波、7次谐波、11次谐波、13次谐波等所)所占的比重是很高的,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功
率,使线路的功率因数大为下降。
在输入电路内串入电抗器是抑制较低谐波电流的有效方法。
根据接线位置的不同,主要有以下两种:(1)电抗器串联在电源与变频器的输入侧之间。
其主要功能有:
a、通过抑制谐波电流,将功率因数提高至(0.75-0.85);
b、削弱输入电路中的浪涌电流对变频器的冲击;
c、削弱电源电压不平衡的影响。
(2)直流电抗器串联在整流桥和滤波电容器之间。
它的功能比较单一,就是削弱输入电流中的高次谐波成分。
但在提高功率因数方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。
6、合理布线
对于通过感应方式传播的干扰信号,可以通过合理布线的方式来削弱。
具体方法有:
(1)设备的电源线和信号线应量远离变频器的输入、输出线;
(2)其他设备的电源线和信号线应避免和变频器的输入、输出线平行。
四、结论
通过对变频器应用过程中干扰的来源和传播途径的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,重视变频器的EMC要求,已成为变频调速传动系统设计、应用必须面对的问题,也是变频器应用和推广的关键之一。
变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。
工业现场和社会环
境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。
我们相信变频器的EMC问题一定会得到有效解决。