神经网络的类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述
本文主要介绍了当前常用的神经网络,这些神经网络主要有哪些用途,以及各种神经网络的优点和局限性。
1 BP神经网络
BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
初始权值阈值的确定:所以权值及阈值的初始值应选为均匀分布的小数经验
值,约为(-2.4/F~2.4/F)之间,其中F 为所连单元的输入层节点数
1.1 主要功能
(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数。
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来。
(3)分类:把输入向量所定义的合适方式进行分类。
(4)数据压缩:减少输出向量维数以便传输或存储。
1.2 优点及其局限性
BP神经网络最主要的优点是具有极强的非线性映射能力。理论上,对于一个三层和三层以上的BP网络,只要隐层神经元数目足够多,该网络就能以任意精度逼近一个非线性函数。其次,BP神经网络具有对外界刺激和输入信息进行联想记忆的能力。这是因为它采用了分布并行的信息处理方式,对信息的提取必须采用联想的方式,才能将相关神经元全部调动起来。BP 神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完整信息。这种能力使其在图像复原、语言处理、模式识别等方面具有重要应用。再次,BP 神经网络对外界输入样本有很强的识别与分类能力。由于它具有强大的非线性处理能力,因此可以较好地进行非线性分类, 解决了神经网络发展史上的非线性分类难题。另外,BP 神经网络具有优化计算能力。BP神经网络本质上是一个非线性优化问题, 它可以在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。不过,其优化计算存在局部极小问题,必须通过改进完善。
由于BP网络训练中稳定性要求学习效率很小,所以梯度下降法使得训练很慢。动量法因为学习率的提高通常比单纯的梯度下降法要快一些,但在实际应用中还是速度不够,这两种方法通常只应用于递增训练。
多层神经网络可以应用于线性系统和非线性系统中,对于任意函数模拟逼近。当然,感知器和线性神经网络能够解决这类网络问题。但是,虽然理论上是可行的,但实际上BP网络并
不一定总能有解。
对于非线性系统,选择合适的学习率是一个重要的问题。在线性网络中,学习率过大会导致训练过程不稳定。相反,学习率过小又会造成训练时间过长。和线性网络不同,对于非线性多层网络很难选择很好的学习率。对那些快速训练算法,缺省参数值基本上都是最有效的设置。
非线性网络的误差面比线性网络的误差面复杂得多,问题在于多层网络中非线性传递函数有多个局部最优解。寻优的过程与初始点的选择关系很大,初始点如果更靠近局部最优点,而不是全局最优点,就不会得到正确的结果,这也是多层网络无法得到最优解的一个原因。为了解决这个问题,在实际训练过程中,应重复选取多个初始点进行训练,以保证训练结果的全局最优性。
网络隐层神经元的数目也对网络有一定的影响。神经元数目太少会造成网络的不适性,而神经元数目太多又会引起网络的过适性。
2 RBF(径向基)神经网络
径向基函数(RBF-Radial Basis Function)神经网络是由J.Moody和C.Darken在80年代末提出的一种神经网络,它是具有单隐层的三层前馈网络。由于它模拟了人脑中局部调整、相互覆盖接收域(或称感受野-Receptive Field)的神经网络结构,因此,RBF网络是一种局部逼近网络,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
2.1 主要功能
图像处理,语音识别,时间系列预测,雷达原点定位,医疗诊断,错误处理检测,模式识别等。RBF网络用得最多之处是用于分类,在分类之中,最广的还是模式识别问题,次之是时间序列分析问题。
2.2 优点及其局限性
(一)优点:
神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此有很大的应用市场。
①它具有唯一最佳逼近的特性,且无局部极小问题存在。
②RBF神经网络具有较强的输入和输出映射功能,并且理论证明在前向网络中RBF网络是完成映射功能的最优网络。
③网络连接权值与输出呈线性关系。
④分类能力好。
⑤学习过程收敛速度快
(二)局限性:
①最严重的问题是没能力来解释自己的推理过程和推理依据。
②不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
③把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
④理论和学习算法还有待于进一步完善和提高。
⑤隐层基函数的中心是在输入样本集中选取的, 这在许多情况下难以反映出系统真正的输入输出关系, 并且初始中心点数太多; 另外优选过程会出现数据病态现象。
3 感知器神经网络
是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。原始的感知器神经网络只有一个神经元。主要用来模拟人脑的感知特征,由于采取阈值单元作为传递函数,所以只能输出两个值,适合简单的模式分类问题。当感知器用于两类模式分类时,相当于在高维样本空间用一个超平面将两类样本分开,但是单层感知器只能处理线性问题,对于非线性或者线性不可分问题无能为力。假设p是输入向量,w是权值矩阵向量,b为阈值向量,由于其传递函数是阈值单元,也就是所谓的硬限幅函数,那么感知器的决策边界就是wp+b,当wp+b>=0时,判定类别1,否则判定为类别2。
3.1 主要功能
主要用于分类。
3.2 优点及其局限性
感知器模型简单易于实现,缺点是仅能解决线性可分问题。解决线性不可分问题途径:一是采用多层感知器模型,二是选择功能更加强大的神经网络模型。
4 线性神经网络
线性神经网络是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。线性神经网络可以采用基于最小二乘LMS的Widrow-Hoff学习规则调节网络的权值和阈值,和感知器一样,线性神经网络只能处理反应输入输出样本向量空间的线性映射关系,也只能处理线性可分问题。目前线性神经网络在函数拟合、信号滤波、预测、控制等方面有广泛的应用。线性神经网络和感知器网络不同,它的传递函数是线性函数,输入和输出之间是简单的纯比例关系,而且神经元的个数可以是多个。只有一个神经元的线性神经网络仅仅在传递函数上和感知器不同,前者是线性函数的传递函数,后者是阈值单元的传递函数,仅此而已。