七年级数学下册期中考试试卷(最新整理)
2023年部编版七年级数学下册期中考试卷(加答案)
2023年部编版七年级数学下册期中考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.已知点P (2a+4,3a-6)在第四象限,那么a 的取值范围是( )A .-2<a <3B .a <-2C .a >3D .-2<a <25.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.观察下列图形,是中心对称图形的是( )A .B .C .D .7.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A.4 cm B.5 cm C.6 cm D.10 cm9.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6510.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知,|a|=﹣a,bb=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=_____.5.若不等式组x a0{12x x2+≥-->有解,则a的取值范围是________.5.若一个数的平方等于5,则这个数等于________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x-﹣1=723x-2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、A6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、55°3、﹣2c4、a>﹣15、6、160°三、解答题(本大题共6小题,共72分)1、(1)7;(2)x=﹣14 232、x=10;a=-4;11.3、略4、略.5、(1)作图见解析;(2)120.6、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。
2023年人教版七年级数学下册期中试卷(加答案)
2023年人教版七年级数学下册期中试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC 3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=494) A .32 B .32- C .32± D .81165.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE6.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程3157146x x ---=2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5 (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、C6、A7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、55°3、4x﹣2(15﹣x)=42.4、50°5、316、7三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1)证明见解析;(2)∠FAE=135°;4、20°5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)0.6;122.5;(2)(0.9x-82.5)元;(3)250千瓦.。
湖南省永州市新田县2023-2024学年七年级下学期期中考试数学试卷(含答案)
2024年期中质量监测试卷七年级数学(试题卷)温馨提示:1.本试卷包括试题卷和答题卡。
考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效。
考生在答题卡上按答题卡中注意事项的要求答题。
2.考试结束后,将本试题卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
本试卷共三道大题,26个小题。
如有缺页,考生须声明。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
本大题共10个小题,每小题3分,共30分)1.下列方程组中,是二元一次方程组的是()A .B .C .D .2.下列各式从左到右的变形中,是因式分解的是( )A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.已知是因式分解的结果,则的值为( )A .B .C .D .5.将多项式提公因式后,另一个因式为()A .B .C .D .6.若是一个完全平方公式,则的值为()A .6B .12C .D .7.从甲地到乙地有一段上坡路与一段下坡路。
如果上坡平均每小时走,下坡平均每小时走,那么从甲地走到乙地需要15分钟,从乙地走到甲地需要20分钟。
若设从甲地到乙地上坡路程为,下坡路程为,则所列方程组正确的是()A.B.C.D.8.如果是方程组的解,则的值为()A.1B.C.2D.9.“九宫图”于我国古代夏禹时期的《洛书》(如图1),是世界上最早的矩阵,又称“幻方”,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等(如图2),图3的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则的值为()图1 图2 图3A.0B.1C.3D.610.如图,将两张边长分别为和的正方形纸片按图1,图2两种方式放置长方形内(图1,图2中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示,若长方形中边的长度分别为.设图1中阴影部分面积为,图2中阴影部分面积为.当时,的值为()图1 图2A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分,请将答案填在答题卡的答案栏内)11.计算:______.12.已知一个正方形的边长是,则它的面积是______(用科学记数法表示)。
贵州省部分学校2023-2024学年七年级下学期期中考试数学试卷(含解析)
贵州部分学校七年级2023-2024学年度第二学期期中考试数学试卷(本试卷共3大题,26小题,满分150分,完成试卷120分钟)注意事项:1.答题时,务必将自己的姓名、准考证号填写在答题卡規定的位置.2.答选择題,必須使用2B铅笔将答題卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结来后,只需将答题卡交回,试题卷由考生自己留存.一、选择题(本题共有12小题,每题3分,只有唯一答案,共计36分1. 下列各数中,是无理数的是()A. B. C. D. 0答案:A解析:解:,,,0四个数中,是无理数,其它三个均为有理数,故选A.2. 下列各组角中,和是对顶角的是()A. B.C. D.答案:D解析:解:根据两条直线相交,才能构成对顶角进行判断,A、B、C都不是由两条直线相交构成的图形,选项错误,不符合定义;D是由两条直线相交构成的图形,选项正确,符合定义.故选:D.3. 如图,在平面直角坐标系中,被墨水污染的点的坐标可能是()A. B. C. D.答案:D解析:解:如上图,在平面直角坐标系中,被墨水污染的点的坐标可能是,故选:D.4. 下列方程组中,是二元一次方程组的是()A. B. C. D.答案:C解析:解:A.,第一个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;B.,第二个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;C.符合二元一次方程组的定义,故该选项符合题意;D.,第二个方程是分式方程,方程组不是二元一次方程组,故该选项不符合题意;故选:C.5. 如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是()A. B. C. D.答案:C解析:解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的,6. 下列各数:①,②3.14,③0,④,⑤,⑥,⑦,其中无理数有()A. 1个B. 2个C. 3个D. 4个答案:C解析:解:∵,,∴无理数有:,,,故选:C7. 某同学要从学校回家,所有道路的方向是向西或向北,若他的路线是.则阴影部分覆盖的数对可以是()A. B. C. D.答案:A解析:解:∵所有道路的方向是向西或向北,∴某同学的路线是.故选:A.8. 《九章算术》中有一题:“今有大器五、小器一,容三斛;大器一、小器五,容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容量各是多少斛?若大容器的容量为斛,小容器的容量为斛,则可列方程组()A. B. C. D.解析:解:根据题意,得,故选:B.9. 如图是一盏可调节台灯及其示意图.固定支撑杆垂直底座于点,与是分别可绕点和旋转的调节杆,台灯灯罩可绕点旋转调节光线角度,在调节过程中,最外侧光线、组成的始终保持不变.现调节台灯,使外侧光线,,若,则()A. B. C. D.答案:B解析:解:如图所示,过点A作,过点B作,∵,∴,∵,∴,即,∵,∴,∴,∵,,∴,∴,∴,故选:B.10. 如图,在数轴上表示的点可能是()A. PB. QC. MD. N答案:D解析:解:∵,∴,∴在数字4和5之间,故选:D.11. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第47次运动后动点的坐标是()A. B. C. D.答案:A解析:解:由题知,第1次运动后动点P的坐标是;第2次运动后动点P坐标是;第3次运动后动点P的坐标是;第4次运动后动点P的坐标是;第5次运动后动点P的坐标是;第6次运动后动点P的坐标是;第7次运动后动点P的坐标是;第8次运动后动点P的坐标是;…,由此可见,第n次运动后动点P的横坐标为n,且纵坐标按1,0,2,0依次出现,又因为余3,所以第47次运动后动点P的坐标是(47,2);故选:A.12. 若不论k取什么数,关于x的方程(a、b是常数)的解总是,则的值是()A B. C. D.答案:C解析:不论k取什么数,关于x的方程(a、b是常数)的解总是,,,,,,,故选:C.二、填空题(本题共有6小题,每小题4分,共计24分)13. 比较大小:______.答案:解析:解:,,,,,,故答案为:14. 如图,已知,,则______.答案:##60度解析:解:∵,∴,∴,∵,∴,故答案为:.15. 如果点在第二象限,那么m的取值范围________.答案:##解析:解:根据题意:,,故答案为:.16. 如图,数轴上A,B,C,D四点对应的数都是整数,若点A对应的数为a,点B对应的数为b,数轴上每个小格对应一个单位长度,且,则点C对应的数为__________.答案:0解析:解:根据数轴可知,,,解得:,点C对应的数为:,故答案为:0;17. 已知,的平方根是______.答案:解析:解:根据题意知,,,,的平方根为.故答案为:18. 已知关于,的方程组的解是,则方程组的解是____________________.答案:解析:解:方程组可化为,关于,的方程组的解是,方程组中,,解得:,,方程组的解是,故答案为:.三、解答题(8个小题,19题12分,20、21、22题每题10分,23、24、25、26题每小题12分,共计90分)19. (1)计算:.(2)解方程组:答案:(1);(2)解析:(1)解:.(2)解:,,得,把代入,得,故原方程组的解为.20. 如图,将直角三角形沿方向平移得到直角三角形,其中,,,求阴影部分的面积.答案:解析:解:直角三角形沿方向平移得到直角三角形,,.,.∴.21. 计算下列各式并归纳结论:(1);;(2);;(3)根据(1),(2)的结果,请猜想:与的值是否相等?结论:(选填“”或“”).答案:(1);(2)12;(3)小问1解析:解:;;故答案为:;;小问2解析:解:;;小问3解析:解:由(1)(2)的结果可知,,故答案为:22. 如图,在直角坐标平面内,已做,,(1)求的面积.(2)在y轴上找一点D,使,求点D的坐标.答案:(1)16 (2)或小问1解析:解:;小问2解析:设点D的坐标为,.解得.∴满足条件的点D的坐标为或;23. 一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数单位:辆乙种货车辆数单位:辆累计送货吨数单位:吨(1)问甲、乙两种货车的载质量分别为多少吨?(2)现租用该公司辆甲种货车及辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问货主这次应付运费多少元?答案:(1)甲货车的载质量为吨,乙货车的载质量为吨(2)货主这次应付运费元小问1解析:设甲货车的载质量为吨,乙货车的载质量为吨,依题意得:,解得:,答:甲货车的载质量为吨,乙货车的载质量为吨;小问2解析:货主应付运费为:元,答:货主这次应付运费元.24. 阅读下列材料:我们知道面积是5的正方形边长是,因为,且更接近于2,所以设,将正方形边长分为2与两部分,如图所示.由面积公式,可得.因为较小,略去,得方程,解得.(1)阅读上述材料,可以得到______;(2)请类比所给方法,探究的近似值.(画出示意图,表明数据,并写出求解过程,结果保留两位小数)答案:(1)2.25(2)小问1解析:解:根据题意,.故答案为:2.25;小问2解析:因为,且更接近于3,所以设,如下图,将正方形边长分为3与两部分,由面积公式,可得,因为较小,略去,得方程,解得∴.25. 如图,一只甲虫在的方格(每小格边长为1)纸上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫.规定:向上向右走为正,向下向左走为负.例如从A到B记为,从D到C 记为,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中(______,______),(______,______),;(2)若这只甲虫从A处去P处的行走路线依次为,,,,请在图中标出P处的位置;(3)若这只甲虫的行走路线为,请计算该甲虫走过的路程.答案:(1),(2)作图见解析(3)10小问1解析:解:,,故答案为:,;小问2解析:解:如图,点P即为所求;小问3解析:解:,答:该甲虫走过的路程是10.26. 如图(1),已知,点E在直线、之间,探究与、之间的关系.学以致用(1)如图(1)当,时,求的度数.(2)如图(2),已知,若,,求出度数.答案:(1)(2)小问1解析:解:解:过点作.,,,,,,,又,,;小问2解析:解:过点作,如图:,,,,,又,,,,,答:的度为.。
2024年下学期期中考试七年级数学试卷(问卷)
2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。
2023年部编版七年级数学下册期中考试卷(含答案)
2023年部编版七年级数学下册期中考试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°36+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2) 5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3x B .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程(1)2(2)3(41)5(1)x x x ---=- (2)211011412x x x ++-=-2.化简求值(1)先化简,再求值:()2222232245a b ab a b ab ab ⎡⎤---+-⎣⎦,其中2a =-,12b = (2)已知2|4|(1)0a b -++=,求222225[2(42)]4ab a b ab a b a b ---+的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、B6、D7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、60°3、0.4、-405、±46、200°三、解答题(本大题共6小题,共72分)1、(1)65x=-;(2)2x=.2、(1)32;(2)36.3、(1)35°;(2)36°.4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。
新疆克孜勒苏柯尔克孜自治州2023-2024学年七年级下学期4月期中考试数学试卷(含答案)
七年级·数学时间:100分钟满分:100分一、单项选题(本大题共9小题,每小题3分,共27分,请按答题卷中的要求作答)1.下列各数中,属于无理数的是()A.B.0C.D.2.3的算术平方根为()A.3B.C.D.3.如图,在平面直角坐标系中,被手盖住的点的坐标可能为()A.B.C.D.4.如图,顽皮的小聪课间把教师的直角三角板的直角顶点放在黑板的两条平行线a,b上,已知,则的度数为()A.B.C.D.5.下列计算中,正确的是()A.B.C.D.6.下列说法正确的是()A.0的平方根是0B.1的平方根是1B.的平方根是D.0.01是0.1的一个平方根7.下列命题中,是真命题的是()A.相等的角是对顶角B.内错角相等,两直线平行C.同旁内角互补D.垂直于同一直线的两直线平行8.如图,,,,则的度数是()A.B.C.D.9.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分,请按答题卷中的要求作答).10.如图,是一把剪刀,若,则________度.11.如图,一个弯形管道ABCD的拐角,,这时说,理由:________.12.已知点在x轴上,则________.13.如图,,,若,则的度数是________.14.如图,在平面直角坐标系中,点P的坐标为,点Q是x轴上的一个动点,当线段PQ的长最小时,点Q的坐标为________.15.若,,则________.三、解答题(本大题共8小题,共55分,解答应写出必要的文字说明,证明过程或演算步骤)16.(6分)计算:(1)(2)17.(6分)求出下列各式中的实数x:(1)(2)18.(6分)已知:如图,直线AB与CD被EF所截,,求证:.19.(9分)已知,,垂足为B、D,,求证:,请你将证明过程补充完整.证明:,,,垂足分别为B,D(已知),(垂直定义),________________________又(已知),________(________________)________________(________________)20.(6分)如图,直角坐标系中的顶点都在网格点上.(1)将先向左平移5个单位长度,再向下平移3个单位长度,得到,则的三个顶点坐标分别是(____,____)、(____,____)、(____,____);(2)请在图中画出;(3)的面积为________平方单位.21.(6分)如下表,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小红输入的数字及所得的运算结果:A0149162536B012345若小红输入的数为64,输出的结果应为多少?若小红输入的数字为a,你能用a表示输出结果吗?22.(6分)如图,直线AB、CD相交于点O,OA平分.(1)若于点O,求的度数;(2)若,求的度数.23.(10分)在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含角的直角三角尺EFG (,)”为主题开展数学活动.(1)如图(1),若三角尺的角的顶点G放在CD上,若,求的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明与间的数量关系.图(1)图(2)参考答案七年级·数学一、选择题(每小题3分,共27分)123456789C CD B B A B A A二、填空题(每小题3分,共18分)10. 4513. 130°(或130度)14. (1,0)15. 17.32三.解答题(16题-23题,共8题,共55分)16. (1)3详解:解:原式=..........................................2分=3......................................................1分(2)详解:解:原式=..........................................1分=......................................................3分17.(1)详解:解:(1)..........................................3分(2)详解:解:或..........................................2分.........................................3分18.详解:证明:(对顶角相等)1分且2分(等量代换)4分(同位角相等,两直线平行)6分19.详解:证明:∵,,垂足分别为B,D(已知),∴(垂直定义),∴DE∥BC ...............................2分∴.............................3分又∵(已知),∴.(等量代换),..............................5分∴BE ∥FG (同位角相等,两直线平行),.........................8分∴(两直线平行,同旁内角相等)...............9分20.详解:(1)..................2分(2)图略;........................4分(3)5..................6分21.详解:.......................................3分..............................................6分22.详解:(1)1分平分2分3分(2)如图所示1分2分平分3分23.详解:(1)1分(等量代换)5分(2)即又5分。
2023年人教版七年级数学下册期中试卷(及答案)
2023年人教版七年级数学下册期中试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6.如下图,在下列条件中,能判定AB//CD的是()A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠47.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①8.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.下列各组数值是二元一次方程x﹣3y=4的解的是()A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.41xy=⎧⎨=-⎩10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为()A.10 B.9 C.8 D.7二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为________.2.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4+x x-有意义,+1x=___________.5.已知不等式组2123x ax b-<⎧⎨->⎩的解集为11x-<<,则()()11a b+-的值是________.6.﹣6416________.三、解答题(本大题共6小题,共72分)1.解方程组:10 216 x yx y+=⎧⎨+=⎩2.化简求值:()1已知a是133b=54ab+()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b+--.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.CD=,4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3m ⊥,13mAD DCBC=,求这块地的面积.AB=,12m5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、C6、C7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、10.3、43 32a≤≤4、15、6-6、-2或-6三、解答题(本大题共6小题,共72分)1、64 xy=⎧⎨=⎩2、(1)±3;(2)2a+b﹣1.3、(1)∠AOE,∠BOC;(2)125°4、224cm.5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1)经过15小时快车追上慢车;(2)经过2或2.5小时两车相距50千米.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2B .16的平方根是±4C .25的平方根是±5D .﹣36的算术平方根是62.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.若,则()m a b +的值为10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号) 16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算:(1)232643--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A.4的平方根是±2,故错误,不符合题意;B16的平方根是±2,故错误,不符合题意;C.25的平方根是±5,故正确,符合题意;D.-36没有算术平方根,故错误,不符合题意;故选:C.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论.【详解】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵6<46<7,可得c=6;∴a+2b+c=3;∴a+2b+c的算术平方根为3.【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为5-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知|x|=5, |y|=2, 且|x+y|=﹣x﹣y, 则x﹣y的值为()A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣72.如图是甲、乙两车在某时段速度随时间变化的图象, 下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题: “一条竿子一条索, 索比竿子长一托.折回索子却量竿, 却比竿子短一托“其大意为: 现有一根竿和一条绳索, 用绳索去量竿, 绳索比竿长5尺;如果将绳索对半折后再去量竿, 就比竿短5尺.设绳索长x尺, 竿长y尺, 则符合题意的方程组是()A. B. C. D.4.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.如图, AB∥CD, ∠1=58°, FG平分∠EFD, 则∠FGB的度数等于()A. 122°B. 151°C. 116°D. 97°6. 下列运算正确的是()A. B. C. D.7.已知关于x的不等式组的整数解共有5个, 则a的取值范围是()A. ﹣4<a<﹣3 B. ﹣4≤a<﹣3 C. a<﹣3 D. ﹣4<a<8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.一副直角三角板如图放置, 点C在FD的延长线上, AB//CF, ∠F=∠ACB=90°, 则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°10.已知关于x的方程2x-a=x-1的解是非负数, 则a的取值范围为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a、b为实数, 且b=+4, 则a+b=________.2.如图, 在△ABC中, BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°, 则∠A=________.3. 已知点A(0, 1), B(0 , 2), 点C在x轴上, 且, 则点C的坐标________.4. 若x2+kx+25是一个完全平方式, 则k的值是__________.5.若关于x的方程有增根, 则m的值是________.6. 一个正多边形的一个外角为30°, 则它的内角和为________.三、解答题(本大题共6小题, 共72分)1. 解方程(1)- =1- (2)2. 已知关于x的方程m+ =4的解是关于x的方程的解的2倍, 求m的值.3. 如图,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠AGD=∠ACB, 求证:∠1=∠2.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 央视热播节目“朗读者”激发了学生的阅读兴趣. 某校为满足学生的阅读需求, 欲购进一批学生喜欢的图书, 学校组织学生会成员随机抽取部分学生进行问卷调查, 被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类, 根据调查结果绘制了统计图(未完成), 请根据图中信息, 解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人, 估计该校喜欢“社科类”书籍的学生人数.6. 如图, 阶梯图的每个台阶上都标着一个数, 从下到上的第1个至第4个台阶上依次标着﹣5, ﹣2, 1, 9, 且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、C3、A4、B5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.(4,0)或(﹣4,0)4、±10.5、0.6.1800°三、解答题(本大题共6小题, 共72分)1.(1);(2)2、m=0.3、略。
2024年济南天桥区七年级下学期数学期中考试试卷(含答案)
2023-2024学年第二学期七年级期中考试(B)数学试题(2024.05)注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.324-=________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____. 16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.222﹣12的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点P关于x轴的对称点为(,1)a-,则点P的纵坐标为1点P关于y轴的对称点为(2,)b-,则点P的横坐标为2则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】(1)∵34<<,∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
华师大版七年级下册数学期中考试试卷及答案
华师大版七年级下册数学期中考试试题一、单选题1.下列方程,是一元一次方程的是()A .32x x-=B .2x y +=C .2210x x ++=D .11x x+=2.下列四则选项中,不一定成立的是()A .若x=y,则2x=x+yB .若ac=bc,则a=bC .若a=b,则a 2=b 2D .若x=y,则2x=2y3.若关于 x 的方程 23x a +=与 27x a +=的解相同,则 a 的值为()A .23-B .113C .113-D .234.下列方程变形中正确的是()A .由32a =,得32a =B .由233x x -=,得3x =C .由310.9x -=,得1030109x -=D .由232a b=+,得2312a b =+5.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为()A .x =0B .x =﹣1C .x =2D .x =﹣26.关于x ,y 的二元一次方程2x+3y =20的非负整数解的个数为()A .2B .3C .4D .57.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是()A .﹣1B .1C .﹣5D .58.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y=⎧⎪⎨+=⎪⎩9.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是()A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-10.方程组1232008321244880x y x y +=⎧⎨+=⎩①②,x y +的值为是()A .0B .1C .1-D .211.关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是()A .a≥1B .a >1C .a≤1D .a <112.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是()A .2k ≥B .1k <C .k 2≤D .12k ≤<13.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤14.已知xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则x :y :z 等于()A .3:2:1B .1:2:3C .4:5:3D .3:4:515.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为()A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x-=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩16.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是()A .10515601260x x +=-B .10515601260x x -=+C .10515601260x x -=-D .+1051512x x =-17.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,44max =.按照这个规定,那么方程{},21max x x x -=+的解为()A .-1B .13-C .1D .-1或13-18.关于x 的不等式(1)3(1)a x a -<-的解都能使不等式5x a <-成立,则a 的取值范围是()A .2a =B .2a ≤C .12a <≤D .1a <或2a ≥二、填空题19.若关于x 的方程||1(2)21a a x ---=是一元一次方程,则=a ____________.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.21.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.22.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则abc 值为__________.23.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.24.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.25.不等式组112251x x ⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.26.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.27.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.28.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中﹣3≤a≤1,给出下列结论:①11x y =⎧⎨=⎩是方程组的解;②当a =﹣2时,x+y =0;③若y≤1,则1≤x≤4;④若S =3x ﹣y+2a ,则S 的最大值为11.其中正确的有_______.三、解答题29.(1)12223x x x -+-=-(2)34105642x y x y -=⎧⎨+=⎩(3)32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②(本小题把解集在数轴上表示出来)30.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.31.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?32.已知:23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y kx b =+的解.(1)求k 、b 的值;(2)若不等式323x m x +>+的最大整数解是k ,求m 的取值范围.33.已知关于x y 、的方程组731x y m x y m +=--⎧⎨-=+⎩的解满足00x y ≤<,.(1)求m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?34.为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A 、B 两种类型鱼苗共320箱运到某村养殖,其中A 种鱼苗比B 种鱼苗多80箱.(1)求A 种鱼苗和B 种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A 种鱼苗40箱和B 种鱼苗10箱,乙种货车最多可装A 种鱼苗和B 种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.A【分析】根据一元一次方程的定义即可得出答案.【详解】A:是一元一次方程,故A正确;B:有两个未知数,所以不是一元一次方程,故B错误;C:方程次数为2次,所以不是一元一次方程,故C错误;D:是分式方程,故D错误;故答案选择A.【点睛】本题考查的是一元一次方程的定义:只有一个未知数并且未知数的次数为1的整式方程. 2.B【分析】根据等式的性质逐项判断即可.【详解】=+,一定成立A.若x y=,两边同加x,等式不变,即2x x y=,两边同除以一个不为0的数,等式不变;因为不知c是否为0,所以a b=不一B.若ac bc定成立C.若a b=,两边同时平方,等式不变,即22a b=,一定成立D.若x y =,两边同乘以一个数(如2),等式不变,即22x y =,一定成立故答案为:B.3.B 【分析】先把a 看做常数,分别根据两个方程解出x 的值,再令两个x 的值相等即可得出答案.【详解】∵23x a +=∴32ax -=又∵27x a +=∴x=7-2a又23x a +=与27x a +=的解相同∴3722aa -=-解得:113a =故答案选择B.【点睛】本题考查的是解一元一次方程,难度适中,根据两个方程的解相同列出等式是解决本题的关键.4.D 【分析】根据等式的基本性质判断各选项即可.【详解】解:A 、由32a =,得23a =,故本选项错误;B 、由233x x -=,得3x =-,故本选项错误;C 、由310.9x -=,得103019x -=,故本选项错误;D 、由232a b=+,得2312a b =+,故本选项正确.故选:D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5.A 【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【详解】解:根据题意,得:2x ﹣1=x+a ﹣1,把x =2代入这个方程,得:3=2+a ﹣1,解得:a =2,代入原方程,得:212133x x -+=-,去分母,得:2x ﹣1=x+2﹣3,移项、合并同类项,得:x =0,故选A .【点睛】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.6.C 【解析】【分析】把x 作为已知数表示出y ,即可确定出非负整数解.【详解】方程2320x y +=解得:2023xy -=当1x =时,6y =当4x =时,4y =当7x =时,2y =当10x =时,0y =综上,二元一次方程的非负整数解的个数有4个故选:C.【点睛】本题考查了二元一次方程的特殊解的解法,掌握方程的解法是解题关键.7.A 【解析】【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D 【解析】【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A 选项中最高次数为2次,则不是;B 选项中第二个方程不是整式方程,则不是;C 选项中含有3个未知数,则不是;故选:D .【点睛】本题主要考查的就是二元一次方程组的定义问题.在解决定义问题的时候特别要注意所有方程都必须是整式方程,否则就不是二元一次方程组.9.B 【解析】【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解:43x m y m +-⎧⎨-⎩=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B .【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.10.D 【解析】【分析】先把两个二元一次方程相加,进而即可得到答案.【详解】1232008321244880x y x y +=⎧⎨+=⎩①②,由①+②得:444x+444y=888,∴x y +=2.故选D .【点睛】本题主要考查解二元一次方程,掌握等式的基本性质,是解题的关键.11.C 【解析】【分析】根据不等式组解集的确定法则:大大取大即可得出答案.【详解】解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .【点睛】本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.12.A 【解析】【分析】由已知不等式组无解,确定出k 的范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解,∴k 的范围为k≥2,故选:A .【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.13.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.B【解析】【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.15.D【解析】【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x ì-=-ïïíï-=-ïî,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.16.A【解析】【分析】设他家到学校的路程是xkm ,将时间单位转化成小时,然后根据题意列方程即可.【详解】设他家到学校的路程是xkm ,∵10分钟=1060小时,5分钟=560小时,∴10+1560x =12x ﹣560.故选:A .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.B【解析】【分析】利用题中的新定义化简已知方程,求解即可.【详解】解:当x x >-时0x >,{},max x x x -=,方程化简得21x x =+,解得1x =-(不符合题意,舍去)当x x <-时0x <,{},-max x x x -=,方程化简得-21x x =+,解得13x =-故选:B【点睛】此题考查了实数的运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.C【解析】【分析】根据关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,列出关于a 的不等式,即可解答.【详解】解:∵关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,∴a-1>0,即a >1,解不等式(a-1)x <3(a-1),得:x <3,则有:5-a≥3,解得:a≤2,则a 的取值范围是1<a≤2.故选:C .【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.19.-2【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).【详解】由一元一次方程的特点得:11a -=,20a -≠,解得:2a =-.故答案为:2a =-.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.13k ≤【解析】【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132kx -=∵方程的解是非负数∴1302k -≥解得13k ≤故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式.21.180【解析】【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】设这种商品每件的进价为x 元,根据题意得:x (1+20%)=270×0.8解得:x=180.故答案为180.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.﹣40【解析】【分析】将x =−2、y =2代入第1个方程,将x =3、y =−2代入两个方程可得关于a 、b 、c 的方程组,解之可得答案.【详解】解:由题意得:-2+223223148a b a b c =⎧⎪-=⎨⎪+=⎩,解得:45-2 abc=⎧⎪=⎨⎪=⎩,()=45-2=-40abc⨯⨯,故答案为:﹣40.【点睛】本题主要考查二元一次方程组的解的问题,解题的关键是理解相关概念,其中二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=5 2()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩,再利用加减消元法即可求出a,b.【详解】解:方法一,∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,可得m=﹣1,n=2,∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩,整理为:42546a ba+=⎧⎨=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解、运用在此题体现明显.24.2m <-【解析】【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】313x y m x y +=+⎧⎨+=⎩①②由①+②得4x+2y=4+m ,422m x y ++=,∴由21x y +<,得412m +<,解得:2m <-.故答案为2m <-.【点睛】考查解一元一次不等式,解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.25.1x =【解析】【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >-故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键.26.26【解析】【分析】设共有x 名学生,根据每人分3本,那么余8本,可得图书共有(3x +8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x 名学生,则图书共有(3x +8)本,由题意得,0<3x +8−5(x−1)<3,解得:5<x <6.5,∵x 为非负整数,∴x =6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.27.20cm 2##20平方厘米【解析】【分析】设小长方形的长为xcm ,宽为163x -cm ,观察图形即可列出关于x 的一元一次方程,解之即可得出x 的值,即可求出结论.【详解】设小长方形的长为xcm ,宽为163x -cm ,由题意得:2×163x -+8=x+163x -,解得:x=10,所以163x -=2,∴小长方形的面积为20;故答案是:20cm 2.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.28.①②③④【解析】【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断即可.【详解】343x y a x y a +=-⎧⎨-=⎩①②,①⨯3+②得:x+2y=3,把11x y =⎧⎨=⎩代入得1+2=3,即11x y =⎧⎨=⎩是方程组的解,故①正确a=-2时,366x y x y +=⎧⎨-=-⎩,整理的x+y=0,故②正确,若y≤1,32x -≤1,解得:x ≥1,∵x-y=3a ,∴x-32x -=3a ,由﹣3≤a≤1得:53x -≤≤,所以y≤1时,14x ≤≤,故③正确,∵343x y a x y a+=-⎧⎨-=⎩,∴2x=2+4a ,∵S=3x-y+2a=2x+3a+2a=9a+2,﹣3≤a≤1∴S 的最大值为9+2=11,故④正确,故答案为①②③④【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.根据条件,求出x 、y 的表达式及x 、y 的取值范围是解题关键.29.(1)x =1;(2)62x y =⎧⎨=⎩;(3)211x y z =⎧⎪=-⎨⎪=⎩;(4)x≤1,见解析【解析】【分析】(1)首先去分母,然后移项合并同类项即可求解;(2)利用加减消元法进行求解,首先消去y ,然后将x 的值代入方程即可求解;(3)利用加减消元法进行求解,首先消去z ,然后将x 、y 的值代入方程即可求解;(4)首先解两个不等式,然后将不等式的解表示在数轴上即可.【详解】(1)去分母得:6x ﹣3x+3=12﹣2x ﹣4,移项合并得:5x =5,解得:x =1.(2)①×3得:9x ﹣12y =30③②×2得:10x+12y =84④③+④得19x =114,x =6把x =6代入②,解得y =2原方程组的解是62x y =⎧⎨=⎩(3)②+③×3,得3x+17y =﹣11④,④﹣①,得19y =﹣19,解得,y =﹣1,将y =﹣1代入①,得x =2,将y =﹣1代入②,得z =1,故原方程组的解是211x y z =⎧⎪=-⎨⎪=⎩.(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②,由①得,x≤1,由②得,x <4,故此不等式组的解集为:x≤1.在数轴上表示为:;【点睛】本题考查了解一元一次方程,二元一次方程组,三元一次方程组和一元一次不等式组,考查较细,消元思想和降次思想是解决多元方程和高次方程的关键.30.4【解析】【分析】先解出不等式5(x-2)+8<6(x-1)+7的解,再求出不等式的最小整数解,然后把不等式的最小整数解代入方程2x-ax=4即可求出答案【详解】解:解不等式得x>-3,所以最小整数解为x =-2.所以2×(-2)-a×(-2)=4,解得a =4.故答案为4.【点睛】本题考查一元一次不等式的解,解不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.31.(1)甲乙再合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共340000元.【解析】【分析】(1)设甲乙再合作x天才能把该工程完成,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总施工费用=甲队每天的施工费用×甲队工作的时间+乙队每天的施工费用×乙队工作的时间,即可求出结论.【详解】(1)设甲乙再合作x天才能把该工程完成,依题意,得:246075x x++=1,解得:x=20.答:甲乙再合作20天才能把该工程完成.(2)5000×(24+20)+6000×20=340000(元).答:完成此项工程需付给甲、乙两队共340000元.【点睛】此题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)k的值是2,b的值是﹣1;(2)0≤m<1.【解析】【分析】(1)把23xy=⎧⎨=⎩和25xy=-⎧⎨=-⎩代入y kx b=+,得到方程组,解方程组可得答案;(2)首先根据一元一次不等式的解法,可得x<3-m,然后根据不等式3+2x>m+3x的最大整数解是k,可得2<3-m≤3,据此求出m的取值范围即可.【详解】解:(1)∵23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y =kx+b 的解,∴2325k b k b +=⎧⎨-+=-⎩①②,①-②得:48,k =2,k ∴=把2k =代入①得:1,b =-所以方程组的解是:21k b =⎧⎨=-⎩.∴k 的值是2,b 的值是﹣1.(2)∵3+2x >m+3x ,∴x <3﹣m ,∵不等式3+2x >m+3x 的最大整数解是k ,2k =,∴2<3﹣m≤3,∴m 的取值范围是:0≤m <1.【点睛】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力,并根据不等式的整数解情况列出关于m 的不等式组.33.(1)23m -<≤;(2)m=−1.【解析】【分析】(1)先由二元一次方程组求得x 、y 的表达式,再由00x y ≤<,,解得m 的取值范围,再化简即可;(2)关键是把原不等式整理成(2m+1)x<2m+1,根据1x >两边都乘以2m+1不等号方向改变,得出2m+1<0.【详解】(1)方程组731x y m x y m +=--⎧⎨-=+⎩①②,①+②得2x=2m−6,∴x=m−3;①−②得2y=−4m−8,∴y=−2m−4,∵00x y ≤<,,∴30240m m -≤⎧⎨--<⎩③④,解得:23m -<≤;(2)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<12-,又∵23m -<≤∴122m -<<-,∵m 为整数,∴m=−1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,有一定的综合性.掌握解二元一次方程组和一元一次不等式组的方法是解题关键.34.(1)A 种鱼苗有200箱,B 种鱼苗有120箱(2)3种方案(方案见解析),方案①运费最少,最少运费是29600元.【解析】【分析】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,利用A 、B 两种类型鱼苗共320箱,A 种鱼苗比B 种鱼苗多80箱,可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车x 辆,利用甲乙货车装A 种鱼苗的数量和甲乙货车装B 种鱼苗的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可.【详解】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,根据题意得320{80x y x y +=-=解得200{120x y ==,答∶A 种鱼苗有200箱,B 种鱼苗有120箱;(2)设租用甲种货车x辆,根据题意得()()1020812040208200x xx x⎧+-≥⎪⎨+-≥⎪⎩,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为∶方案甲车乙车运费①262⨯4000+6⨯3600=29600②353⨯4000+5⨯3600=30000③444⨯4000+4⨯3600=30400所以方案①运费最少,最少运费是29600元.【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组.。
四川省巴中市巴州区2023-2024学年七年级下学期期中考试数学试卷(含解析)
2024年春七年级期中数学学情问卷(满分150分120分钟完卷)注意事项:1.答题前,先将自己的班级、姓名填写清楚.2.所有题在答卷规定的位置作答,在草稿纸、试卷上答题无效.3.考试结束后,将答卷交监考老师.一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程中是二元一次方程的是()A. B.C. D.答案:D解析:解:A、不是整式方程,不符合题意;B、是二元二次方程,不符合题意;C、是二元二次方程,不符合题意,D、是二元一次方程,符合题意;故选:D.2. 已知是方程x+my=5的解,则m的值是()A. 1B. ﹣1C. ﹣2D. 2答案:D解析:解:把代入方程x+my=5,得1+2m=5,解得m=2.故选:D.3. 如果,那么下列不等式成立的是()A. B. C. D.答案:C解析:解:将不等式的两边同时减去b,得,故A错误;将不等式的两边同时减去3,得,故B错误;将不等式的两边同时乘(-1),得,故C正确;将不等式的两边同时乘,得,故D错误.故选C.4. 下列等式变形正确的是()A 如果,那么 B. 如果,那么C. 如果,那么D. 如果,那么答案:B解析:解:A.利用等式性质1,两边都加,得到,原变形错误,故此选项不符合题意;B.利用等式性质2,两边都乘,得到,原变形正确,故此选项符合题意;C.成立条件是,原变形错误,故此选项不符合题意;D.如果,那么或,原变形错误,故此选项不符合题意.故选:B.5. 将方程变形为,其错在()A. 不应将分子、分母同时扩大10倍B. 移项未改变符号C. 等式右边的1没有乘以10D. 去括号出现错误答案:B解析:解:根据分数的基本性质将分母化为整数得:移项得:故错在移项未改变符号故选:B.6. 若为都是方程ax+by=1的解,则a+b的值是()A. 0B. 1C. 2D. 3答案:C解析:解:为都是方程ax+by=1的解,解②得:把代入①得:故选C7. 用代入法解关于的方程组时,代入正确的是()A. B. C. D.答案:D解析:解:,把①代入②,得:.故选:D.8. 不等式的非负整数解的个数为()A. 2个B. 3个C. 4个D. 5个答案:B解析:解:∴非负整数解有:0,1,2,∴共有3个非负整数解.故选:B.9. 已知方程组,那么x与y的关系是()A. B. C. D.答案:C解析:解:得:,即,故选:C.10. 如果关于x的不等式的解集是,那么a的取值范围是()A. B. C. D.答案:C解析:解:关于的不等式的解集是,,解得,故选:.11. 《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,多你一倍之上;乙说得甲九只羊,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.” 设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A. B.C. D.答案:B解析:解:由题意得:,故选:B.12. 如图,表中给出的是某月的月历,任意选取“”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A. 63B. 98C. 140D. 168答案:D解析:解:设“”型框中的正中间的数为x,则其他6个数分别为,,,,,,这7个数之和为:,由题意得A.,解得:,能求得这7个数;B.,解得:,能求得这7个数;C.,解得:,能求得这7个数;D.,解得:,,月历中不会有32号,故不能求得这7个数.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13. 如果,用x表示y的式子正确的是___________.答案:解析:解:方程,移项得:,解得:.故答案为:.14. 已知方程是关于的一元一次方程,则=__________.答案:1解析:∵方程(m-3)x|m-2|+4=2m是关于x的一元一次方程,∴m-3≠0,|m-2|=1,解得:m=1,故答案是:1.15. 已知关于x的方程=+1的解与方程4x﹣5=3(x﹣1)的解相同,则a的值_____.答案:8解析:解方程4x﹣5=3(x﹣1)得:x=2,把x=2代入方程=+1中,可得:=+1,解得:a=8.故答案为816. 已知,,,则代数式的值是__________.答案:22解析:,①②③,得,∴.故答案22;17. 已知关于的不等式组,有且只有3个整数解,则的取值范围是______________答案:9 12解析:解:,由①得:,由②得:,解得:,∵不等式组有且只有3个整数解,∴分别为1,2,3,∴.故答案为:.18. 图①是一个长为a,宽为b的长方形,以此小长方形按图②拼成的一个大正方形和一小正方形,设小正方形的面积为,大正方形的面积为,小长方形的面积为.若,且,则_____.答案:3解析:解:由题意知,,∵,,∴,解得,故答案为:3.三、解答题(本大题共8小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)19. 解下列方程、方程组或不等式组①;②;③④解不等式组:,并把它的解集在数轴上表示出来.答案:①;②;③;④,数轴见解析解析:解:①;;②;;③得,解得,将代入得,,故原方程的解为;④,由得,,解得;由②得,,解得;故原不等式组的解集为,在数轴上表示如下:20. 已知是方程的解,求关于y的方程的解.答案:解析:解:把代入方程得:,解得:,代入方程得:,解得:.21. 已知方程组的解中,为非正数,为负数.(1)求的取值范围;(2)化简.答案:(1)(2)5小问1解析:解:①+②,得:,解得:,①-②,得:,解得:,∵x为非正数,y为负数,∴解得:;小问2解析:解:∵,∴22. 一份试卷共30道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确的答案选出来,选对得4分,选错或不选倒扣1分,如果一个学生得了95分,那么他选对了几道题?答案:他选对了25道题解析:解:设他选对了x道题,则选错或不选的有道题.根据题意,得,解得.答:他选对了25道题.23. 下面是两位同学的一段对话.小王:请问五一期间你准备去哪里玩?小李:五一期间我们准备随一个旅行团去诺水河旅游去了.小王:你们旅游团有多少人?住哪里?小李:我们准备住在一个小旅馆,如果每间房住4人,就有20人无处住,如果每间房住8人,就有一间房不空也不满.小王想了想,很快就有了答案.请你根据以上对话,列不等式组求解:这个旅行团有多少人?这个旅馆有多少间客房?答案:该旅行团有44人,旅馆有6间客房解析:解:设该旅行团有间客房,依题意得,解之得.为整数,,.答:该旅行团有44人,旅馆有6间客房.24. 若有理数a,b满足条件:(m是整数),则称有理数a,b是一对“共享数”,其中整数m是a,b的“共享因子”.(1)3和5 一对“共享数”,6和8 一对“共享数”;(填“是”或“不是”)(2)若7和x是一对“共享数”,且“共享因子”是2,求x的值;(3)探究:当有理数q与p满足什么条件时,q、p是一对“共享数”.答案:(1)是,不是;(2)1;(3)当q、p之和是4的倍数时,q、p是一对“共享数”.解析:解:(1)根据题中的新定义得:,即3和5是一对“共享数”.,即6和8不是一对“共享数”.故答案为:是,不是.(2)根据题中的新定义得:,去分母得:14+2x=7+x+8,解得:x=1.∴x的值是1.(3)若有理数q,p是一对“共享数”,则(m是整数),解得:.∵m是整数∴当有理数q、p满足条件:q、p之和是4的倍数时,q、p是一对“共享数”.25. 如图,已知点在数轴上对应的数为,点对应的数为,与之间的距离记作AB.已知a=-2,b比a大12,(1)则B点表示的数是_____;(2)设点在数轴上对应的数为,当PA-PB=4时,求的值;(3)若点M以每秒1个单位的速度从A点出发向右运动,同时点N以每秒2个单位的速度从B点向左运动.设运动时间是t秒,则运动t秒后,①用含t的代数式表示M点到达的位置表示的数为_____, N点到达的位置表示的数为_____;②当t为多少秒时,M与N之间的距离是9?答案:(1)10;(2)x=6;(3)①-2+t , 10-2t;②当t值为1秒或7秒时M与N之间的距离为9解析:(1)10(2)x=6(3)①-2+t , 10-2t②(10-2t)-(-2+t)=9t=1(-2+t)-(10-2t)=9t=7综上,当t值为1秒或7秒时M与N之间的距离为9.26. 随着疫情的结束,光雾山的游客人数越来越多,光雾山旅游公司打算购买游览车20辆,现有A和B两种型号车,如果购买A型号车6辆,B型号14辆,需要资金580万元;如果购买A型号车12辆,B型号车8辆,需要资金760万元.经预算,光雾山旅游公司准备购买设备的资金不高于500万元.(每种型号至少购买1辆).已知每种型号游览车的座位数如表所示:A型号B型号座位数(个/辆)6030(1)每辆A型车和B型车各多少万元?(2)请问光雾山旅游公司有几种购买方案?且哪种方案的座位数最多,是多少?答案:(1)每辆型车50万元,每辆型车20万元(2)共有3种购买方案,购买型车3辆,型车17辆时,座位数最多,是690个小问1解析:解:设每辆型车万元,每辆型车万元,依题意得:,解得:.答:每辆型车50万元,每辆型车20万元.小问2解析:设购买型车辆,则购买型车辆,依题意得:,解得:.又,均为正整数,可以为1,2,3,有3种购买方案,方案1:购买型车1辆,型车19辆,座位数(个;方案2:购买型车2辆,型车18辆,座位数为(个;方案3:购买型车3辆,型车17辆,座位数为(个.,方案3的座位数最多.答:共有3种购买方案,购买型车3辆,型车17辆时,座位数最多,是690个.。
山东省济宁市金乡县2023-2024学年七年级下学期4月期中考试数学试卷(含答案)
七年级数学试题第I卷(选择题)一、单选题(每题3分,共30分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排4号B.4排3号C.3排5号D.5排3号2.在实数:,,,,4,,中,无理数有()A.1个B.2个C.3个D.4个3.下列计算正确的是()A.B.C.D.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( )A.32°B.58°C.68°D.60°5.下列语句中,真命题是()A.是的平方根B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.若,则D.相等的两个角是对顶角6.若一个正数的两个平方根为和,则这个正数是()A.2B.3C.8D.97.在平面直角坐标系中,点M坐标为,若轴,且线段,则点N坐标为()A.B.C.或D.或8.实数a,b,c在数轴上对应的点的位置如图所示,则化简得()A.B.C.D.9.如图,在长方形纸片ABCD中,点F是边BC上一点(不含端点),沿DF折叠纸片使得点C落在点C′位置,满足C′D∥AC,∠ADF-∠ACB=18°,则∠ADF的度数是()A.42°B.36°C.54°D.18°10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(,1),第2次接着运动到点(,0),第3次接着运动到点(,2),…,按这样的运动规律,经过第2024次运动后,动点P的坐标是()A.(2024,0)B.(―2024,0)C.(―2024,1)D.(―2024,2)二、填空题(每题3分,共15分)11.的算术平方根是.12.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”的坐标是,“兵”的坐标是,那么“帅”的坐标为.13.如果点坐标满足,那么称点为“美丽点”,若某个位于第二象限的“美丽点”到轴的距离为2,则点的坐标为.14.当光线从水中射向空气中时,要发生折射.在水中平行的光线在空气中也是平行的.如图,一组平行光线从水中射向空气中,已知,∠2=2∠6,则.15.对于任何实数a,可用表示不超过a的最大整数,如,,现对72进行如下操作:72第一次[72]=8第二次[8]=2第三次[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是______.三、解答题(共55分)16.(本题6分)计算:17.(本题6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(-3,0),B(-6,-2),C(-2,-5).将△ABC向上平移4个单位长度,再向右平移5个单位长度,得到△A1B1C1.(1)直接写出点B1的坐标;(2)在平面直角坐标系xOy中画出△A1B1C1;(3)求△A1B1C1的面积.18.(本题7分)如图,于点,,点、、在同一条直线上,平分,求的度数.19.(本题8分)已知:的立方根是,的算术平方根3,是的整数部分.(1)求的值;(2)求的平方根.20.(本题8分)如图,在中,点在上,点在上,点在上,且,.(1)求证:;(2)若平分,平分,且,求的度数.21.(本题9分)阅读下列材料:小高在学习中遇到一有趣的个问题:如何比较111―3与113―11的大小请你先阅读下面的内容,然后帮助解决此问题(1)……由此可归纳出结论2:______.(2) 根据上面的结论计算:∵∴13―2=3+2类似的:∵∴16―5=______(3)类比应用:17―5=______(4)请你根据以上总结的结论,比较111―3与113―11的大小.22.(本题11分)如图①,在平面直角坐标系中,为原点,已知,,且,满足关系式:,现同时将点,向上平移3个单位长度,再向右平移1个单位长度,得到,的对应点,,连接,,.(1)______,b =______,点C 的坐标为_________,点D 的坐标为_________;(2)连接,在轴上是否存在一点,使得三角形的面积等于三角形面积的?若存在,请求出点P的坐标:若不存在,请说明理由;(3)如图②,点是直线上一个动点,连接、,当点在直线上运动时,请直接写出与,的数量关系.七年级数学试题参考答案一、单选题(每题3分,共30分)1.B 2.C 3.D 4.B 5.A 6.D 7.C 8.A 9.C 10.B二、填空题(每题3分,共15分)11.2 12.(0,-2)13.14.15. 225三、解答题(共55分)16.(本题6分)解:原式...................................................4分............................6分17.(本题6分)解:(1)...................................................2分(2)如图所示:...................................................4分(3).................................6分18.(本题7分)解:...................................................1分∵∴...........................3分∴...................................................4分平分∴...................................................6分∴....................................................7分19.(本题8分)解:(1)由题得...................................................2分...................................................4分又................................5分(2)当时........................6分∴其平方根为...................................................8分20.(本题8分)(1)证明:∵EF∥CD ∴∠1+∠ECD= 180° ........................................2分∵∠1+∠2=180° ∴∠ECD=∠2 ................................................3分∴GD//CA ..................................................4分(2)解:∵GD∥CA ∴∠A=∠GDB=40°,∠2=∠ACD ...........................................5分∵GD平分∠CDB ∴∠2=∠GDB=40° ..........................................6分∴∠ACD=40° ..................................................7分∵CD平分∠ACB ∴∠ACB =2∠ACD=80°. ..................................................8分21.(本题9分)解:(1)..................................................2分(2)6+5..................................................3分(3)7+52.................................................5分(4)∵111―3=11+32113―11=13+112.................................................7分∵11+3<13+11..................................................8分∴11+32<13+112..................................................9分22.(本题11分)解:(1),2,,..................................................4分(2)由题意得:×4×3=6 ..................................................5分∵S∆ABC=12S∆ABC=4 ..................................................6分∴S∆BDP=23×3×BP=4∴12..................................................7分解得:BP=83,或..................................................8分(3)当点在上时,∠OMC=∠MOB+∠MCD..................................................9分当点在的延长线上时,∠MOB=∠OMC+∠MCD ..................................................10分当点在的延长线时,∠MCD=∠OMC+∠MOB. ..................................................11分。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
初一下学期数学期中考试试卷
初一下学期数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是实数?A. πB. iC. √2D. 0.33333...2. 以下哪个表达式表示了正确的乘法分配律?A. a(b + c) = ab + acB. a + bc = ab + acC. a(b - c) = ab - acD. a(b + c) = ab - ac3. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是4. 以下哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 圆D. 平行四边形5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 以上都不是6. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 4)(x - 4)C. x^2 - 4 = (x + 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x < 2x + 1C. 3x = 2x + 1D. 3x ≤ 2x + 18. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:89. 以下哪个选项是正确的几何图形的面积公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积 = 长× 宽C. 三角形的面积 = 底× 高÷ 2D. 以上都是10. 以下哪个选项是正确的几何图形的周长公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 圆形的周长= 2 × π × 半径D. 以上都是二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
湖南省张家界市慈利县2023-2024学年七年级下学期期中考试数学试卷(含答案)
七年级数学题号一二三总分得分考生注意:全卷共有三道大题,满分100分,时量120分钟。
一、选择题(每小题3分,共10道小题,合计30分)题号12345678答案1.下列方程组中是二元一次方程组的是()A.B.C.D.2.下列各式计算正确的是()A.B.C.D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.已知多项式与的乘积中不含项,则常数a的值是()A.B.2C.D.15.下列各选项中因式分解正确的是( )A.B.C.D.6.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+17.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为斤,则可列方程组为()A.B.C.D.8.已知方程组的解满足,则的值为()A.B.C.2D.49.我们知道下面的结论:若(a>0,且a≠1),则m=n.设,,,下列关于m,n,p三者之间的关系正确的是()A.m-n=p B.m+n=p C.m+p=n D.p+n=m10.的计算结果的个位数字是()A.8B.6C.2D.0二、填空题(每小题3分,共8道小题,合计24分)11.多项式各项的公因式是.12.分解因式:.13.和都是方程的解,则.14.如果单项式与是同类项,则.15.若是关于的完全平方式,则.16.若,则的值为.17.若,,则.18.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为3;图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为21;若将3个正方形A和2个正方形B并列放置后构造新正方形如图3(图2,图3中正方形AB纸片均无重叠部分),则图3阴影部分面积是.三、解答题(19.20题每小题6分,21.22题每小题8分,23.24题每小题9分,25,26题每小题10分)19.计算:(1)(2).20.先化简,再求值:,其中,.21.把下列多项式分解因式:(1)(2)22.解下列二元一次方程组:(1);(2).23.如图,直线、相交于点O,平分.(1)若,求的度数;(2)若,求的度数.24.如图1在一个长为,宽为的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中阴影部分的正方形的边长是___________.(2)请用两种不同的方法表示图2中阴影部分的面积:方法1:方法2:由此得出的等量关系式是:(3)根据(2)的结论,解决如下问题:已知,求的值(4)如图3,点C是线段上的一点,以为边向两边作正方形,面积分别是和,设,两正方形的面积和,求图中阴影部分面积.25.随着“低碳生活,绿色出行”理念的普及,新能汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能汽车尝试进行销售;据了解,2辆A型汽车、3辆B型汽车的进价共计80万元,3辆A 型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,哪种方案获利最大?最大利润是多少元?26.数学教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式;例如求代数式的最小值.可知当时,有最小值,最小值是,根据阅读材料用配方法解决下列问题:(1)分解因式:_________.(2)当a,b为何值时,多项式有最小值,并求出这个最小值.(3)当a,b为何值时,多项式有最小值,并求出这个最小值.七年级数学参考答案一、选择题(每小题3分,共10道小题,合计30分)12345678910C D A B D C C D B D二、填空题(每小题3分,共8道小题,合计24分,第7题填对一个得2分)11.xy 12.13.0 14.315.7或-1 16.17.418.4519.(1)(3分) (2)(3分)20.4ab(3分),-4(3分).21.(1)(4分)(2)(4分)22.(1)(4分) ;(2)(4分)23.(1)70° (2)18°(1)解:∵直线、相交于点O,,∴,(2分)∵平分,∴;(4分)(2)∵,,∴,∴,(6分)∵平分,,∴.(9分)24.(1)(1分)(2)(1分);(1分);(1分)(3)(3分) (4)14 (2分)25.(1)解:设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,(2分)解得:.(1分)答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)解:设购进A型汽车m辆,购进B型汽车n辆,依题意,得:,解得:.∵m,n均为正整数,∴或或,(每写对一种情况得1分,共3分)∴共3种购买方案,方案一:购进A型车6辆;方案二:购进A型车4辆;方案三:购进A型车2辆.(3)解:方案一获得利润:(元);方案二获得利润:(元);方案三获得利润:(元).∵,∴购进A型车2辆,B型车15辆获利最大,最大利润为91000元.(每算对1种得1分,结果1分,共4分)26.(1)(m+1)(m-5);(2)a=2,b=-3,最小值为5;(3)a=4,b=3,最小值为20解:(1)m2-4m-5=(m2-4m+4)-9=(m-2)2-32=(m-2+3)(m-2-3)=(m+1)(m-5),故答案为:(m+1)(m-5);(3分)(2)a2+b2-4a+6b+18=(a2-4a+4)+(b2+6b+9)+5=(a-2)2+(b+3)2+5,(2分)∴当a=2,b=-3时,a2+b2-4a+6b+28有最小值为5;(1分)(3)a2-2ab+2b2-2a-4b+30=a2+(-2ab-2a)+(b2+2b+1)+(b2-6b+9)+20=a2-2a(b+1)+(b+1)2+(b-3)2+20=(a-b-1)2+(b-3)2+20,(2分)当a=4,b=3时,原式取最小值20.∴当a=4,b=3时,多项式a2-2ab+2b2-2a-4b+28有最小值20.(2分)。
华师大版七年级下册数学期中考试试卷含答案
华师大版七年级下册数学期中考试试题一、单选题1.下面给出的5个式子:①3>0;②4x+y<2;③2x=3;④x-1;⑤x-2≥3.其中不等式有()A .2个B .3个C .4个D .5个2.下列解方程过程中,变形正确的是()A .由5x ﹣1=3,得5x =3﹣1B .由x 4+1=310.1x ++12,得x4+1=3101x ++12C .由3﹣12x -=0,得6﹣x+1=0D .由32xx -=1,得2x ﹣3x =13.已知单项式312xy 与43a xy +-是同类项,那么a 的值是()A .-1B .0C .1D .24.利用代入消元法解方程组236532x y x y +=⎧⎨-=⎩①②,下列做法正确的是()A .由①得x =632y+B .由①得y =623x -C .由②得y =235x -+D .由②得y =523x +5.若方程组()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,则k 的值为()A .1B .0C .2D .﹣26.已知a b 、满足方程组2426a b a b -=⎧⎨+=⎩,则3a b +的值为()A .10B .8C .6D .﹣27.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =,则这个等式是()A .32y x =+B .32y x =-+C .32y x =-D .32y x =--8.方程23132x x ---= 中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=-1,那么墨水盖住的数字是()A .17B .2C .1D .09.复兴中学七年级(1)班学生参加植树活动,一部分学生抬土,另一部分学生担土.已知全班共用土筐59个,扁担36个,求抬土、担土的学生各多少人?如果设抬土的学生x 人,担土的学生y 人,则可得方程组()A .2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .2592236xy x y ⎧+=⎪⎨⎪+=⎩D .259236x y x y +=⎧⎨+=⎩10.若a:2=b:3=c:7,且a ﹣b+c=12,则2a ﹣3b+c 等于()A .2B .4C .37D .1211.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A .7.5秒B .6秒C .5秒D .4秒12.关于x 的方程为(x-4)m=x-4且m≠1,则代数式2222(32)6x x x x ---+的值是()A .36B .40C .56D .68二、填空题13.已知3602x +=,则x =_____.14.用不等式表示:“2与x 的和的3倍是负数”为_________________.15.若关于x 、y 的方程x |k|﹣1+(k ﹣2)y =6是二元一次方程,则k =_____.16.若x ay b =⎧⎨=⎩是方程22x y -=的一个解,则631a b -+=_______17.关于x 的方程243x m -=和21x +=有相同的解,那么m =_________.18.如果|x ﹣2y+1|+|x+y ﹣5|=0,那么xy =_____.19.方程组32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩的解为____________.20.我们知道,无限循环小数都可以转化为分数.例如,将.0.3转化为分数时,可设0.3x = ,则10 3.330.3x ==+ ,所以10x=3+x ,解得x=13,即.10.33=.仿此方法,将..0.45化为分数是____.三、解答题21.解方程(组)(1)11x ﹣3=x+2;(2)22(3)6363x x x -+-=-;(3)237342x y x y +=⎧⎨-=⎩;(4)6()7()212()5()1x y x y x y x y --+=⎧⎨--+=-⎩.22.当x 取何值时,代数式3x ﹣5与﹣4x+6的值互为相反数.23.当整数a 为何值时,关于x 的方程221145ax x +--=的解是正整数.24.已知()2120a ab -+-=,求关于x 的方程()()()()()()2016112220152015x x x xab a b a b a b ++++=++++++ 的解.25.李老师让全班同学们解关于x 、y 的方程组217x ay bx y +=⎧⎨-=⎩①②(其中a 和b 代表确定的数),甲、乙两人解错了,甲看错了方程①中的a ,解得14x y =⎧⎨=-⎩,乙看错了②中的b ,解得11x y =-⎧⎨=⎩,请你求出这个方程组的正确解.26.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?28.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组191817171615x yx y+=⎧⎨+=⎩①②时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:12 xy=-⎧⎨=⎩(1)请你采用上述方法解方程组:201620112012 201020052000x yx y+=⎧⎨+=⎩(2)请你采用上述方法解关于x,y的方程组()()()()3232m x m y mn x n y n⎧+++=⎪⎨+++=⎪⎩,其中m n≠.参考答案1.B 【分析】根据不等式的定义解答即可.【详解】解:①3>0是不等式、②4x+y<2是不等式、③2x=3是等式、④x-1是代数式、⑤x-2≥3是不等式,共有3个不等式.故答案为B .【点睛】本题考查了不等式的定义,即用不等号把两个式子连接起来所形成的式子叫不等式.2.C 【分析】各方程变形得到结果,即可作出判断.【详解】解:A 、由5x ﹣1=3,得到5x =3+1,不符合题意;B 、由x 4+1=310.1x ++12,得x 4+1=30101x ++12,不符合题意;C 、由3﹣12x -=0,得6﹣x+1=0,符合题意;D 、由32x x-=1,得2x ﹣3x =6,不符合题意,故选C .3.A 【分析】根据同类项的定义,同类项中所含的字母及对应字母的指数都相同即可解答.【详解】因为312xy 和43a xy +-是同类项所以3=4+a 所以a=-1故本题答案为A .【点睛】本题考查了同类项的定义,掌握相关知识点事解答本题关键.4.B 【解析】【详解】由①得,2x=6-3y ,∴632yx +=;3y=6-2x ,∴623xy -=;由②得,5x=2+3y ,∴2+35yx =;3y=5x-2,∴523x y -=.故选B .5.C 【解析】【分析】根据方程组的解x ,y 的值相等,可求出x 和y ,可得关于k 的方程,再解方程,可得出答案.【详解】解:由()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,得4x+3x =7,解得x =1,x =y =1,由方程的解满足方程,得k+(k ﹣1)=3,解得k =2,故选:C .【点睛】本题考查了二元一次方程(组)的解,得出关于k 的一元一次方程是解题的关键.6.A 【解析】【分析】先解方程组求出a b 、的值,再代入求出3a b +的值;本题还可以用加减消元法直接求出.【详解】解:2426a b a b -=⎧⎨+=⎩①②由①×2+②得,514a =,解得:145a =把145a =代入①得,85b =,当145a =,85b =时,3148=3+55=10a b+⨯另外方法:由①+②得,310a b +=故选:A 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.本题还可以用加减消元法直接求出.7.B 【解析】【分析】分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.【详解】解:分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得4282k b k b -=+⎧⎨=-+⎩①②,①+②,得2b=4,解得b=2,把b=2代入①,得-4=2k+2,解得k=-3,把k=-3,b=2代入等式y kx b =+,得32y x =-+.故选:B.【点睛】本题主要考查了二元一次方程组的解法,理解题意,熟练解法是解题的关键.8.C 【解析】【分析】墨水盖住的部分用a 表示,把x=-1代入方程,即可得到一个关于a 的方程,即可求解.【详解】解:墨水盖住的部分用a 表示,把x=-1代入方程得:213132a -----=,解得:a=1.故选:C .【点睛】本题考查了一元一次方程的解的定义,理解定义是关键.9.B 【解析】【分析】根据“班共用土筐59个,扁担36个”可以列出相应的方程组,本题得以解决.【详解】解:由题意可得,2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.B 【解析】【分析】由a:2=b:3=c:7,可设a=2k ,b=3k ,c=7k ,代入计算求得k ,然后分别求得a,b,c,代入所求代数式计算即可.【详解】解:设a:2=b:3=c:7=k ,则a=2k ,b=3k ,c=7k ,代入方程a−b+c=12得:2k−3k+7k=12,解得:k=2,即a=4,b=6,c=14,则2a−3b+c=2×4−3×6+14=4.故选:B.【点睛】本题考查比例的性质,代数式的求值,牢记相关的知识点并能灵活应用是解题关键.11.D 【解析】【详解】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x 秒,则100÷5×x=80,解得x=4,故选D .12.D【解析】【分析】先由(x-4)m=x-4且m≠1得到x=4,然后代入化简后的代数式计算即可.【详解】解:∵(x-4)m=x-4,∴(4)(1)0x m --=又∵m≠1,∴40x -=,即x=4,∵2222222(32)626+2+4+644x x x x x x x x x ---+=-=+,当x=4时,原式=244x +=2444⨯+=68故选择:D 【点睛】本题考查了解一元一次方程,代数式的求值,正确对条件式及所求得代数式进行变形化简是解题的关键.13.-4【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程移项得:32x=-6,解得:x=-4,故答案为:x=-4.【点睛】此题考查解一元一次方程,熟练掌握运算法则是解题的关键.14.3(2+x)<0【解析】【分析】2与x 的和的3倍是负数,那么前面所得的结果小于0.【详解】解:2与x 的和为2+x ,2与x 的和的3倍为3(2+x),∵积是负数,∴3(2+x)<0,故答案为:3(2+x)<0.【点睛】此题考查由实际问题抽象出一元一次不等式,解题的关键是理解负数用数学符号表示是“<0”.15.-2【解析】【分析】根据二元一次方程的定义即可求解.【详解】依题意可得|k|﹣1=1,k-2≠0解得k=-2故答案为:-2.【点睛】此题主要考查二元一次方程的定义,解题的关键是熟知二元一次方程的特点.16.7【解析】【分析】把x a y b=⎧⎨=⎩代入方程后,方程两边在乘3后整体代入即可解答.【详解】解:把x a y b =⎧⎨=⎩代入方程,得2a-b=2,方程两边同时乘3得,6a-3b=6,则631a b -+=6+1=7,故答案为:7.【点睛】本题考查了等量代换和整体思想,解题的关键是掌握相关知识点.17.-2【解析】【分析】先由21x +=求得x ,然后将x 代入243x m -=即可求得m 的值.【详解】解:由x+2=1解得x=-1,将x=-1代入243x m -=,得-2-4=3m ,即m=-2故答案为:-2.【点睛】本题考查了同解方程,利用同解方程列出关于m 的方程并求解是解答本题关键.18.6【解析】【分析】根据两个非负数之和为0,则这两个数都为0,建立关于x 、y 的方程组,解方程组求出x 、y 的值,然后代入代数式求值即可.【详解】解:∵2150x y x y -+++-=∴21050x y x y -+=⎧⎨+-=⎩解之:32x y =⎧⎨=⎩∴xy=3×2=6故答案为:6.【点睛】本题考查的是绝对值非负数的性质、解二元一次方程组,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.19.211 xyz=⎧⎪=-⎨⎪=⎩【解析】【分析】根据加减消元法即可求解.【详解】解328 23154 x yy zx y z-=⎧⎪+=⎨⎪+-=-⎩①②③③×3得3x+15y-3z=-12④②+④得3x+17y=-11⑤⑤-①得19y=-19解得y=-1把y=-1代入①得3x+2=8解得x=2把y=-1代入②得-2+3z=1解得z=1故原方程组的解为211 xyz=⎧⎪=-⎨⎪=⎩故答案为:211xyz=⎧⎪=-⎨⎪=⎩.【点睛】此题主要考查三元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.5 11【解析】【分析】设x=..0.45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②−①得方程100x−x =45,解方程即可.【详解】设x =..0.45,则x =0.4545…①,根据等式性质得:100x =45.4545…②,由②−①得:100x−x =45.4545…−0.4545…,即:100x−x =45,99x =45解方程得:x =4599=511.故答案为:511.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.21.(1)12x =;(2)103x =;(3)21x y =⎧⎨=⎩;(4)52x y =⎧⎨=-⎩.【解析】【分析】(1)根据解一元一次方程的步骤:移项、合并同类项、系数化1进行求解即可;(2)先去分母,根据解一元一次方程的步骤求解即可;(3)用加减消元法①×3-②×2即可求出y ,把y 的值代入原方程就可求出方程组的解;(4)先去括号化简方程组,再利用加减法解方程组即可.【详解】(1)11x ﹣3=x+2移项得:11x ﹣x =3+2,合并同类项得:10x =5,系数化为1得:x =12.(2)22(3)6363x x x -+-=-去分母,方程的两边同时乘以6得:36(2)184(3)x x x --=-+,去括号得:36218412x x x -+=--,合并同类项得:381412x x -=-,移项得:1550x =,系数化为1得:103x=;(3)237 342 x yx y+=⎧⎨-=⎩①②①×3-②×2得:17y=17,解得:y=1,把y=1代入①得:237x+=,解得:x=2,∴方程组的解为:21xy=⎧⎨=⎩.(4)6()7()21 2()5()1x y x yx y x y--+=⎧⎨--+=-⎩整理得:371 33963 x yx y+=⎧⎨+=-⎩①②②﹣①得:32y=﹣64,y=﹣2,把y=﹣2代入①得:x=5,∴方程组的解为:52xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程,二元一次方程组,解题的关键是把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.22.1.【解析】【分析】先根据相反数的性质列出关于x的方程,再根据解一元一次方程的步骤依次计算可得.【详解】解:根据题意,得:3x﹣5+(﹣4x+6)=0,去括号,得:3x﹣5﹣4x+6=0,移项,得:3x ﹣4x =5﹣6,合并同类项,得:﹣x =﹣1,系数化为1,得:x =1.【点睛】本题主要考查了解一元一次方程和相反数的性质,解题的关键是掌握相反数的两数的和为0及解一元一次方程的步骤.23.a =2.【解析】【分析】解关于x 的方程221145ax x +--=可得x =658a -,要使方程的解为正整数,即必须使658a -为正整数,(5a ﹣8)应是6的正约数,分析可得:a =2.【详解】解:关于x 的方程221145ax x +--=,解为x =658a -,要使方程的解为正整数,即必须使658a -为正整数,则(5a ﹣8)应是6的正约数,则5a ﹣8=1,2,3,6,且a 是整数,则a =2.【点睛】本题考查解一元一次方程的整数解问题,先解方程,把方程的解用未知数表示出来,分析其为整数的情况,可得出答案.24.2017x =【解析】【分析】先根据非负数的性质,得到,a b 的值,把,a b 的值代入方程,利用列项相消的方法合并同类项,再解方程即可.【详解】解:()2120a ab -+-= ,,20ab ∴⎨-=⎩解得:1,2a b =⎧⎨=⎩原方程化为:2016,12233420162017x x x x +++∙∙∙+=⨯⨯⨯⨯111111111(12016,223342015201620162017x ∴-+-+-+∙∙∙+-+-=1(12016,2017x ∴-=20162016,2017x ∴=∴2017x =.【点睛】本题考查了两个非负数之和为0的性质,以及列项相消合并同类项,一元一次方程的解法,掌握以上知识是解题的关键.25.21x y =⎧⎨=-⎩【解析】【分析】把甲的解代入方程②求出b 的值,把乙的解代入①求出a 的值,确定出方程组,求出正确的解即可.【详解】解:由题意可知,把14x y =⎧⎨=-⎩代入方程②中,得b+4=7,解得b=3;把11x y =-⎧⎨=⎩代入方程①中,得-2+a=1,解得a=3;把3b ⎨=⎩代入方程组,可得2311372x y x y +=⎧⎨-=⎩,解得:21x y =⎧⎨=-⎩,∴原方程组的解应为21x y =⎧⎨=-⎩.【点睛】此题考查了二元一次方程组的解,解题的关键是掌握方程组的解即为能使方程组中两方程都成立的未知数的值.26.安排12名工人加工大齿轮,安排15名工人加工小齿轮.【解析】【分析】设生产大齿轮的人数为x ,则生产小齿轮的人数为(27﹣x ),再由两个大齿轮与三个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设需安排x 名工人加工大齿轮,安排(27﹣x )名工人加工小齿轮,依题意得:12272103x x ⨯⨯=⨯(﹣)解得x=12,则27-x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点睛】本题考查的知识点是简单的工程问题,解题关键是根据所给条件列出关于x 的关系式,求出未知数的值.27.(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【解析】【分析】(1)设该店有客房x 间,房客y 人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.【详解】解:(1)设该店有客房x 间,房客y 人;根据题意得:()7791x y x y +=⎧⎨-=⎩,解得:863x y =⎧⎨=⎩.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱若一次性定客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.“点睛”本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.28.(1)402404x y =-⎧⎨=⎩;(2)23x y =-⎧⎨=⎩【解析】【分析】(1)先把两式相减得出x+y 的值,再把x+y 的值与2010相乘,再用加减消元法求出x 的值,用代入消元法求出y 的值即可;(2)先把两式相减得出(m-n)x+(m-n)y=m-n 的值,再用加减消元法求出x 的值,用代入消元法求出y 的值即可.【详解】解:(1)201620112012201020052000x y x y +=⎧⎨+=⎩①②,①-②,得:6x+6y=12,即x+y=2③,③×2010,得:2010x+2010y=4020④,④-②,得:y=404,将y=404代入③得:x=-402,∴方程组的解为:402404x y =-⎧⎨=⎩;(2)()()()()3232m x m y m n x n y n ⎧+++=⎪⎨+++=⎪⎩①②,①-②,得:(m-n)x+(m-n)y=m-n,∵m≠n,∴x+y=1③,③×(n+3),得:(n+3)x+(n+3)y=n+3④,④-②,得:y=3,将y=3代入③得:x=-2,∴方程组的解为23xy=-⎧⎨=⎩.【点睛】此题考查解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y 90
A、
x
y
15
x y 90
B、
x
2
y
15
x y 90
C、
x
15
2
y
2x 90 D、 x 2 y 15
6.有两边相等的三角形的两边长为 3cm,5cm,则它的周长为
()
A.8cm
B.11cm
C.13cm
D.11cm 或 13cm
7、一个多边形的内角和比它的外角和的 2 倍还大 180°,这个多边形的边数为: ( )
3
3
小是
.
22.一个多边形除了一个内角外,其余各内角之和为 1680°,那么这个多边形的
边数为________.
E
D A
C
B
F
初一数学答题卷
一、精心选一选,慧眼识金!(每题 4 分,共 48 分)此题做在机读答题卡上 二、耐心填一填,你能行!(每题 3 分,共 30 分)
13、
;14、
;15、
, 16、
元,求甲、乙二人各分得利润多少千元.若设甲分得 x 千元,乙分得 y 千元,
由题意得( )
- 1 - / 11
七年级数学下册期中考试试卷
x 2y 1 A、
2y 3x
x 2y 3 B、
3x 2y
x 2y 3 C、
3y 2x
x 2y 3 D、
2x 3y
10、给出下列说法:
(1) 两条直线被第三条直线所截,同位角相等;
-4 -3 -2 -1 0 1 2 3 4 x
-1 -2 -3 -4
七年级数学下册期中考试试卷
3x 5y m 2 27、已知方程组 5x 3y m 的解 x、 y 互为相反数,求 m 的值。(8 分)
28、如图:直线 DE 交△ABC 的边 AB、AC 于 D、E,交 BC 延长线于 F,若∠B=67°,
应点为 A′(3,1),点 B 的对应点为 B′(4,0),则点 B 的坐标为:( )
A.(9,0) B.(-1,0) C.(3,-1) D.(-3,-1)
3、如图:已知 AB∥CD,∠B=1200,∠D=1500,则∠O 等于(
).
(A)500 A
(B)600
(C)800
B
(D)900
O
C
D
七年级数学下册期中考试试卷
七年级数学下册期中考试试题
时间:120 分钟 满分:150 分
一、精心选一选,慧眼识金!(每题 4 分,Байду номын сангаас 40 分) 1.三角形的一个外角小于与它相邻的内角,则这个三角形是( )
A.锐角三角形 B.钝角三角形; C.直角三角形 D.无法确定
2、在平面直角坐标系中,线段 A′B′是由线段 AB 经过平移得到的,已知点 A(-2,1)的对
;
17、
,
; 18、
; 19、
;
20、
;21、
;22、
.
三、用心做一做,马到成功!
- 3 - / 11
七年级数学下册期中考试试卷
23、解下列方程组(每题 5 分,共 10 分):
x y 3 (1)
3x 8y 14
3x 4 y 16 (2)
5x 6 y 33
24.如图,根据下列条件,可以判定哪两条直线平行?并说明判定的根据是什么。(6 分) ①∠2=∠B;②∠1=∠D;③∠3+∠F=180°。
50°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按
β为_________度的方向动工。
20.有以下图形:①正三角形;②正方形;③正六边形;④正八边形。现在要选
其中的两种图形进行平面镶嵌,请你写出你所有的选择(填序
号)
。
21、如图,△ABC 中,∠C=90°,∠BAD= 1 ∠BAE,∠ABD= 1 ∠ABF,则∠D 的大
3 题图
5 题图
4.△ABC 中,∠A= 1 ∠B= 1 ∠C,则△ABC 是( ) 34
A.锐角三角形
B.直角三角形; C.钝角三角形
D.都有可能
5、如图,AB⊥BC,∠ABD 的度数比∠DBC 的度数的两倍少 15°,设∠ABD 和∠DBC 的度数分别为 x、y,那么下面可以求出这两个角的度数的方程组是( )
(2) 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
(3) 相等的两个角是对顶角;
(4) 从直线外一点到这条直线的垂线段,叫做这点到直线的距离;
其中正确的有( )
A 0个
B 1个
C 2个
D 3个
A
1
B
11.如图,若 AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2
B.∠2-∠1
C.180°-∠1+∠2
D.180°-∠2+∠1
C
2 E
11 题图
D F
12、 a 、 b 、 c 为三角形的三边长,化简 a b c a b c a b c a b c ,结
果是 ( )
A、0
B、 2a 2b 2c C、 4a
D、 2b 2c
二、耐心填一填,你能行!(每题 3 分,共 30 分)
∠ACB=74°,∠AED=48°,求∠BDF 的度数。(8 分)
13.在 3x 4 y 9 中,如果 2 y = 6,那么 x =
。
14、P(m-4,1-m)在 x 轴上,则 m=
。
15、如图,AC⊥BC,AC=3,BC=4,AB=5,则点 B 到 AC 的距离为
16.如图,AB∥CD,直线 EF 分别交 AB、CD 于 E、F,EG 平分∠BEF,若∠1=72°,则∠ 2=________度.
17、方程 2x n 3 y3mn2 3 0 是二元一次方程,则, m
n
;
B
A
E
B
C
A
15 题图
C
1
F
2D G
16 题图
北
北
乙
甲
19 题图
- 2 - / 11
七年级数学下册期中考试试卷
x2
ax 3y 1
18、已知
是方程组
的解,则 a b =
;
y 1
x by 5
19、如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东
A.7
B.8
C.9
D.10
8、在下列点中,与点 A( 2 , 4 )的连线平行于 y 轴的是 ( )
A、(2, 4 ) B、(4, 2)
C、(-2,4) D、(-4,2)
9、甲、乙二人按 3:2 的比例投资开办了一家公司,约定除去各项支出外,所得
利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的 2 倍少 3 千
25.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=40°,∠C=60°,求∠DAE 的度数.(8 分)
26.在平面直角坐标系中,顺次连结 A(-2,1),B(-2,-1),C(2,-2),D(2,3)各点,你会得到一个
什么图形?试求出该图形的面积.(6 分)
y
4
3
2
1
- 4 - / 11