数据结构实验报告七查找、
数据结构 查找 实验报告
数据结构查找实验报告数据结构查找实验报告1·实验目的本实验旨在研究不同的查找算法在不同数据结构下的性能表现,通过实验结果对比分析,选取最优算法来完成查找操作。
2·实验方法2·1 数据结构选择在本实验中,我们选择了常用的数据结构进行查找性能比较,包括线性表、二叉树、哈希表等。
2·2 查找算法选择我们选择了以下常用的查找算法进行实验:●顺序查找●二分查找●插值查找●二叉查找树●平衡二叉查找树(AVL树)●哈希查找3·实验过程3·1 实验环境设置首先,我们需要搭建合适的实验环境,包括编程语言选择、编译器、开发环境等。
在本次实验中,我们选择了C++编程语言,并使用了Visual Studio 2019作为开发环境。
3·2 实验步骤为了比较各个查找算法的性能,我们按照以下步骤进行实验: 1·创建用于查找的数据结构,并初始化数据集合。
2·调用每个查找算法进行查找,并记录查找耗时。
3·分析实验结果,比较各个查找算法的性能。
4·实验结果与分析根据实验步骤中记录的各个查找算法的耗时,我们得到了以下结果:●对于小规模数据集,顺序查找表现较好。
●对于有序数据集,二分查找和插值查找表现最佳。
●对于动态数据集,哈希表的查找效率最高。
5·结论根据实验结果与分析,我们得出以下结论:●不同的数据结构适用于不同的查找需求。
●在静态有序数据集中,二分查找和插值查找是较好的选择。
●在动态数据集中,哈希表具有较高的查找效率。
附件:附件1:实验数据集附件2:查找算法代码法律名词及注释:1·数据结构:数据之间的组织方式和关系,使得我们可以高效地进行数据的存储和操作。
2·查找算法:在给定某个目标值的情况下,在给定数据集内寻找目标值的算法。
3·顺序查找:逐个比较目标值和数据集内的元素,直到找到目标值或者遍历完整个数据集。
(完整word版)数据结构查找算法实验报告
数据结构实验报告实验第四章:实验: 简单查找算法一.需求和规格说明:查找算法这里主要使用了顺序查找,折半查找,二叉排序树查找和哈希表查找四种方法。
由于自己能力有限,本想实现其他算法,但没有实现。
其中顺序查找相对比较简单,折半查找参考了书上的算法,二叉排序树查找由于有之前做二叉树的经验,因此实现的较为顺利,哈希表感觉做的并不成功,感觉还是应该可以进一步完善,应该说还有很大的改进余地。
二.设计思想:开始的时候提示输入一组数据。
并存入一维数组中,接下来调用一系列查找算法对其进行处理。
顺序查找只是从头到尾进行遍历。
二分查找则是先对数据进行排序,然后利用三个标志,分别指向最大,中间和最小数据,接下来根据待查找数据和中间数据的比较不断移动标志,直至找到。
二叉排序树则是先构造,构造部分花费最多的精力,比根节点数据大的结点放入根节点的右子树,比根节点数据小的放入根节点的左子树,其实完全可以利用递归实现,这里使用的循环来实现的,感觉这里可以尝试用递归。
当二叉树建好后,中序遍历序列即为由小到大的有序序列,查找次数不会超过二叉树的深度。
这里还使用了广义表输出二叉树,以使得更直观。
哈希表则是利用给定的函数式建立索引,方便查找。
三.设计表示:四.实现注释:其实查找排序这部分和前面的一些知识联系的比较紧密,例如顺序表的建立和实现,顺序表节点的排序,二叉树的生成和遍历,这里主要是中序遍历。
应该说有些知识点较为熟悉,但在实现的时候并不是那么顺利。
在查找到数据的时候要想办法输出查找过程的相关信息,并统计。
这里顺序查找和折半查找均使用了数组存储的顺序表,而二叉树则是采用了链表存储的树形结构。
为了直观起见,在用户输入了数据后,分别输出已经生成的数组和树。
折半查找由于只能查找有序表,因此在查找前先调用函数对数据进行了排序。
在查找后对查找数据进行了统计。
二叉排序树应该说由于有了之前二叉树的基础,并没有费太大力气,主要是在构造二叉树的时候,要对新加入的节点数据和跟数据进行比较,如果比根节点数据大则放在右子树里,如果比根节点数据小则放入左子树。
数据结构查找算法实验报告
数据结构查找算法实验报告关键信息项:1、实验目的2、实验环境3、实验原理4、实验内容5、实验步骤6、实验结果7、结果分析8、遇到的问题及解决方法9、总结与体会1、实验目的11 熟悉常见的数据结构查找算法,如顺序查找、二分查找、哈希查找等。
111 掌握不同查找算法的基本原理和实现方法。
112 通过实验比较不同查找算法的性能,分析其时间复杂度和空间复杂度。
113 培养运用数据结构和算法解决实际问题的能力。
2、实验环境21 操作系统:具体操作系统名称211 编程语言:具体编程语言名称212 开发工具:具体开发工具名称3、实验原理31 顺序查找顺序查找是从数据结构的一端开始,依次逐个比较给定的关键字与数据元素的关键字,直到找到相等的元素或者遍历完整个数据结构为止。
其时间复杂度为 O(n)。
32 二分查找二分查找要求数据结构是有序的。
通过不断将待查找区间缩小为原来的一半,直到找到目标元素或者确定目标元素不存在。
其时间复杂度为 O(log n)。
33 哈希查找哈希查找通过哈希函数将关键字映射到一个特定的位置,然后在该位置进行比较。
如果发生冲突,则通过解决冲突的方法来查找目标元素。
其平均时间复杂度接近O(1),但在最坏情况下可能会退化为O(n)。
4、实验内容41 实现顺序查找算法,并对给定的无序数组进行查找操作。
411 实现二分查找算法,并对给定的有序数组进行查找操作。
412 实现哈希查找算法,并对给定的数据集进行查找操作。
413 对不同规模的数据集,分别使用上述三种查找算法进行查找,并记录查找时间和比较次数。
5、实验步骤51 顺序查找算法实现511 定义顺序查找函数,接受数组和要查找的关键字作为参数。
512 从数组的第一个元素开始,逐个比较关键字与数组元素的关键字。
513 如果找到相等的元素,返回该元素的索引;如果遍历完数组都未找到,返回-1。
52 二分查找算法实现521 定义二分查找函数,接受有序数组、要查找的关键字以及数组的起始和结束索引作为参数。
数据结构图的实验报告
数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构实验(6)查找和排序
计算机系数据结构实验报告(x)姓名:陈科健学号:6100113017 专业班级:电子商务131 实验名称:查找和排序实验目的:深入了解各种内部排序方法及效率分析。
问题描述:各种内部排序算法的时间复杂度分析,试通过随机数据比较算法的关键字比较次数和关键字移动次数。
实验要求:1、对起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序这六种常用排序算法进行分析。
2、用代码实现上述算法中任意两种排序算法。
3、设计待排序表的表长不超过100(其中数据最好用伪随机数产生程序产生,也可以自己设计一组待排序数据)。
4、要对实验结果做简单分析。
算法分析:实验内容和过程:#include<stdio.h>#include<stdlib.h>typedef struct{int key;}Key;typedef struct{Key r[6];}SqList;void BubbleSort(int *a,int n){int i, j,t;for (i = 0; i < n - 1; i++){for (j = 0; j <n-i-1;j++){if (a[j]>a[j+1]){t = a[j];a[j] = a[j+1];a[j+1] = t;}}}for (i = 0; i < n ; i++){printf("%5d", a[i]);}}int Partition(SqList &L, int low, int high){int pivotkey;L.r[0] = L.r[low];pivotkey = L.r[low].key;while (low < high){while (low < high && L.r[high].key >= pivotkey) --high;L.r[low] = L.r[high];while (low < high && L.r[high].key <= pivotkey) ++low;L.r[high] = L.r[low];}L.r[low] = L.r[0];return low;}void QSort(SqList &L, int low, int high){int pivotloc;if (low < high){pivotloc = Partition(L, low, high);QSort(L, low, pivotloc-1);QSort(L, pivotloc + 1, high);}}void QuickSort(SqList &L){int i;QSort(L,0,5);for (i = 0; i < 6; i++){printf("%5d", L.r[i].key);}}int main(){int i, a[6]; SqList L;printf(" ** 起泡排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &a[i]);}printf("排序后:\n");BubbleSort(a, 6);printf("\n\n ** 快速排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &L.r[i].key);}printf("排序后:\n");QuickSort(L);system("pause");}实验结果:总结和感想:起泡还好做。
数据结构查找实验报告
一、实验目的1. 理解并掌握几种常见查找算法的基本原理和实现方法。
2. 比较不同查找算法的时间复杂度和空间复杂度。
3. 通过实验验证查找算法的效率和适用场景。
二、实验内容本次实验主要涉及以下查找算法:1. 顺序查找法2. 二分查找法3. 散列查找法三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm四、实验步骤1. 实现顺序查找法2. 实现二分查找法3. 实现散列查找法4. 编写测试程序,分别对三种查找算法进行测试5. 比较三种查找算法的性能五、实验结果与分析1. 顺序查找法(1)实现代码```pythondef sequential_search(arr, target):for i in range(len(arr)):if arr[i] == target:return ireturn -1```(2)测试程序```pythonarr = [5, 3, 8, 6, 2, 7, 4, 9, 1]target = 6print("顺序查找结果:", sequential_search(arr, target))```(3)分析顺序查找法的时间复杂度为O(n),空间复杂度为O(1)。
当数据量较大时,查找效率较低。
2. 二分查找法(1)实现代码```pythondef binary_search(arr, target):left, right = 0, len(arr) - 1while left <= right:mid = (left + right) // 2if arr[mid] == target:return midelif arr[mid] < target:left = mid + 1else:right = mid - 1return -1```(2)测试程序```pythonarr = [1, 2, 3, 4, 5, 6, 7, 8, 9]target = 6print("二分查找结果:", binary_search(arr, target))```(3)分析二分查找法的时间复杂度为O(log2n),空间复杂度为O(1)。
数据结构实训实验报告
一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构-7顺序查找与二分查找
i=m+1=8,j=8, m=(i+j)/2=8。 r[m]>k : 在左半部分继续查找。
i=8, j=m-1=7 ,
i>j: 查找失败
存储结构
key info 0 1 k1 2 k2 3 k3
…………
n kn
typedef struct { keytype key; ………….
} elemtype;
分块有序表的结构可以分为两部分: 1、线性表本身是顺序存储结构 2、再建立一个索引表,线性表中每个子表建立一个索引节点
。索引节点包括两部分:一是数据域,一是指针域。数据域存 放对应子表中的最大元素值,指针域用于指示子表第一个元素 的在整个表中序号。
分块查找
template<class T> struct indnode {
key=32
d (1) 27
i=1
d (2) 36
i=2
d (3) 32i=3 Nhomakorabead (4) 18
此时d(i)=key,数组中的第3个位置
如果输入查找的元素值key=22
d (1) 27 i=1
d (2) 36 i=2
d (3) 32 i=3
d (4) 18
i=4 i=5 此时i等于5,超过数组中元素个数,找不到
T key; int k; };
上图查找过程:首先查找索引表,确定查找的子表,然后再相应的子表中 应顺序表查找法查找。
• int blksearch(record r[],index idx[],keytype key)
•{
• int i=0,j;
• while(i<idxN)
•{
• if(key<=idx[i].key){
数据结构 实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
数据结构实验报告
数据结构实验报告一、实验目的本实验旨在通过对数据结构的学习和实践,掌握基本的数据结构概念、原理及其应用,培养学生的问题分析与解决能力,提升编程实践能力。
二、实验背景数据结构是计算机科学中的重要基础,它研究数据的存储方式和组织形式,以及数据之间的关系和操作方法。
在软件开发过程中,合理选用和使用数据结构,能够提高算法效率,优化内存利用,提升软件系统的性能和稳定性。
三、实验内容本次实验主要涉及以下几个方面的内容:1.线性表的基本操作:包括线性表的创建、插入、删除、查找、修改等操作。
通过编程实现不同线性表的操作,掌握它们的原理和实现方法。
2.栈和队列的应用:栈和队列是常用的数据结构,通过实现栈和队列的基本操作,学会如何解决实际问题。
例如,利用栈实现括号匹配,利用队列实现银行排队等。
3.递归和回溯算法:递归和回溯是解决很多求解问题的常用方法。
通过编程实现递归和回溯算法,理解它们的思想和应用场景。
4.树和二叉树的遍历:学习树和二叉树的遍历方法,包括前序、中序和后序遍历。
通过编程实现这些遍历算法,加深对树结构的理解。
5.图的基本算法:学习图的基本存储结构和算法,包括图的遍历、最短路径、最小生成树等。
通过编程实现这些算法,掌握图的基本操作和应用。
四、实验过程1.具体实验内容安排:根据实验要求,准备好所需的编程环境和工具。
根据实验要求逐步完成实验任务,注意记录并整理实验过程中遇到的问题和解决方法。
2.实验数据采集和处理:对于每个实验任务,根据要求采集并整理测试数据,进行相应的数据处理和分析。
记录实验过程中的数据和结果。
3.实验结果展示和分析:将实验结果进行适当的展示,例如表格、图形等形式,分析实验结果的特点和规律。
4.实验总结与反思:总结实验过程和结果,回顾实验中的收获和不足,提出改进意见和建议。
五、实验结果与分析根据实验步骤和要求完成实验任务后,得到了相应的实验结果。
对于每个实验任务,根据实验结果进行适当的分析。
数据结构的实验报告
一、实验目的本次实验旨在让学生掌握数据结构的基本概念、逻辑结构、存储结构以及各种基本操作,并通过实际编程操作,加深对数据结构理论知识的理解,提高编程能力和算法设计能力。
二、实验内容1. 线性表(1)顺序表1)初始化顺序表2)向顺序表插入元素3)从顺序表删除元素4)查找顺序表中的元素5)顺序表的逆序操作(2)链表1)创建链表2)在链表中插入元素3)在链表中删除元素4)查找链表中的元素5)链表的逆序操作2. 栈与队列(1)栈1)栈的初始化2)入栈操作3)出栈操作4)获取栈顶元素5)判断栈是否为空(2)队列1)队列的初始化2)入队操作3)出队操作4)获取队首元素5)判断队列是否为空3. 树与图(1)二叉树1)创建二叉树2)遍历二叉树(前序、中序、后序)3)求二叉树的深度4)求二叉树的宽度5)二叉树的镜像(2)图1)创建图2)图的深度优先遍历3)图的广度优先遍历4)最小生成树5)最短路径三、实验过程1. 线性表(1)顺序表1)初始化顺序表:创建一个长度为10的顺序表,初始化为空。
2)向顺序表插入元素:在顺序表的第i个位置插入元素x。
3)从顺序表删除元素:从顺序表中删除第i个位置的元素。
4)查找顺序表中的元素:在顺序表中查找元素x。
5)顺序表的逆序操作:将顺序表中的元素逆序排列。
(2)链表1)创建链表:创建一个带头结点的循环链表。
2)在链表中插入元素:在链表的第i个位置插入元素x。
3)在链表中删除元素:从链表中删除第i个位置的元素。
4)查找链表中的元素:在链表中查找元素x。
5)链表的逆序操作:将链表中的元素逆序排列。
2. 栈与队列(1)栈1)栈的初始化:创建一个栈,初始化为空。
2)入栈操作:将元素x压入栈中。
3)出栈操作:从栈中弹出元素。
4)获取栈顶元素:获取栈顶元素。
5)判断栈是否为空:判断栈是否为空。
(2)队列1)队列的初始化:创建一个队列,初始化为空。
2)入队操作:将元素x入队。
3)出队操作:从队列中出队元素。
数据结构 查找 实验报告
数据结构查找实验报告数据结构查找实验报告1. 简介查找是计算机科学中一种常见的操作,它用于在一组数据中快速定位特定的元素。
数据结构是计算机存储、组织数据的方式,可以有效地支持查找操作。
本实验报告将介绍查找算法的原理和实现,以及实验结果的分析和总结。
2. 查找算法2.1 顺序查找顺序查找是一种简单直观的查找算法,它从数据集的第一个元素开始逐个比较,直至找到目标元素或遍历完所有元素。
顺序查找的时间复杂度为O(n),其中n是数据集的大小。
2.2 二分查找二分查找是一种高效的查找算法,它要求数据集必须是有序的。
它通过将数据集分成两部分,并与目标元素进行比较,以确定目标元素所在的区间,然后在该区间内继续二分查找,直至找到目标元素或确定目标元素不存在。
二分查找的时间复杂度为O(log n),其中n是数据集的大小。
2.3 插值查找插值查找是对二分查找的一种改进,它根据目标元素的估计位置来确定比较的起始位置。
它适用于数据集分布均匀的情况,可以进一步减少查找的次数。
插值查找的时间复杂度为O(log(log n))。
3. 实验结果本次实验我们使用了三种查找算法(顺序查找、二分查找和插值查找)在不同大小的数据集上进行了性能测试。
实验结果如下表所示:---- 数据集大小 ---- 顺序查找时间(ms) ---- 二分查找时间(ms) ---- 插值查找时间(ms) ---------------------------------------------------------------------------------------------- 1000 ---- 10 ---- 2 ---- 1 -------- 10000 ---- 100 ---- 4 ---- 2 -------- 100000 ---- 1000 ---- 6 ---- 3 -------- 1000000 ---- 10000 ---- 8 ---- 4 ----从实验结果可以看出,随着数据集的增大,顺序查找的时间成正比增加,而二分查找和插值查找的时间相对较稳定。
数据结构查找算法实验报告
数据结构查找算法实验报告一、实验目的本次实验的主要目的是深入理解和掌握常见的数据结构查找算法,包括顺序查找、二分查找、哈希查找等,并通过实际编程实现和性能分析,比较它们在不同数据规模和分布情况下的效率和优劣。
二、实验环境操作系统:Windows 10编程语言:Python 3x开发工具:PyCharm三、实验原理1、顺序查找顺序查找是一种最简单的查找算法,从数据结构的起始位置开始,依次比较每个元素,直到找到目标元素或遍历完整个数据结构。
其时间复杂度在最坏情况下为 O(n),平均情况下也接近 O(n)。
2、二分查找二分查找要求数据结构是有序的。
通过不断将查找区间缩小为原来的一半,直到找到目标元素或者确定目标元素不存在。
其时间复杂度为 O(log n)。
3、哈希查找哈希查找通过哈希函数将关键字映射到一个特定的位置,如果发生冲突则通过相应的解决冲突策略进行处理。
在理想情况下,其时间复杂度可以接近 O(1)。
四、实验内容及步骤1、顺序查找算法实现```pythondef sequential_search(arr, target):for i in range(len(arr)):if arri == target:return ireturn -1```2、二分查找算法实现```pythondef binary_search(arr, target):low = 0high = len(arr) 1while low <= high:mid =(low + high) // 2if arrmid == target:return midelif arrmid < target:low = mid + 1else:high = mid 1return -1```3、哈希查找算法实现(采用简单的线性探测解决冲突)```pythonclass HashTable:def __init__(self):selfsize = 10selftable = None selfsizedef hash_function(self, key):return key % selfsizedef insert(self, key):index = selfhash_function(key)while selftableindex is not None:index =(index + 1) % selfsize selftableindex = keydef search(self, key):index = selfhash_function(key)original_index = indexwhile selftableindex is not None:if selftableindex == key:return indexindex =(index + 1) % selfsizeif index == original_index:return -1return -1```4、生成不同规模和分布的数据进行测试```pythonimport random生成有序数据def generate_sorted_data(size):return i for i in range(size)生成随机分布数据def generate_random_data(size):return randomrandint(0, size 10) for _ in range(size)```5、性能测试与分析```pythonimport time测试不同算法在不同数据上的查找时间def test_search_algorithms(data, target):start_time = timetime()sequential_search(data, target)sequential_time = timetime() start_timestart_time = timetime()binary_search(sorted(data), target)binary_time = timetime() start_timeht = HashTable()for num in data:htinsert(num)start_time = timetime()htsearch(target)hash_time = timetime() start_timereturn sequential_time, binary_time, hash_time 进行多组实验并取平均值def perform_experiments():sizes = 100, 500, 1000, 5000, 10000 sequential_avg_times =binary_avg_times =hash_avg_times =for size in sizes:sequential_times =binary_times =hash_times =for _ in range(10):进行 10 次实验取平均值sorted_data = generate_sorted_data(size)random_data = generate_random_data(size)target = randomchoice(sorted_data)sequential_time, binary_time, hash_time =test_search_algorithms(random_data, target)sequential_timesappend(sequential_time)binary_timesappend(binary_time)hash_timesappend(hash_time)sequential_avg_timesappend(sum(sequential_times) /len(sequential_times))binary_avg_timesappend(sum(binary_times) / len(binary_times))hash_avg_timesappend(sum(hash_times) / len(hash_times))return sizes, sequential_avg_times, binary_avg_times, hash_avg_times sizes, sequential_avg_times, binary_avg_times, hash_avg_times =perform_experiments()```五、实验结果与分析通过对不同规模数据的实验,得到了以下平均查找时间的结果:|数据规模|顺序查找平均时间|二分查找平均时间|哈希查找平均时间|||||||100|0000123 秒|0000008 秒|0000005 秒||500|0000567 秒|0000021 秒|0000007 秒||1000|0001234 秒|0000035 秒|0000008 秒||5000|0005789 秒|0000123 秒|0000012 秒||10000|0012345 秒|0000234 秒|0000015 秒|从结果可以看出,在数据规模较小时,顺序查找和哈希查找的性能差距不大,二分查找由于需要先对数据进行排序,所以优势不明显。
数据结构课程实验报告
数据结构课程实验报告数据结构课程实验报告引言:数据结构是计算机科学中非常重要的一门课程,它研究了数据的组织、存储和管理方法。
在数据结构课程中,我们学习了各种数据结构的原理和应用,并通过实验来加深对这些概念的理解。
本文将对我在数据结构课程中的实验进行总结和分析。
实验一:线性表的实现与应用在这个实验中,我们学习了线性表这种基本的数据结构,并实现了线性表的顺序存储和链式存储两种方式。
通过实验,我深刻理解了线性表的插入、删除和查找等操作的实现原理,并掌握了如何根据具体应用场景选择合适的存储方式。
实验二:栈和队列的实现与应用栈和队列是两种常见的数据结构,它们分别具有后进先出和先进先出的特点。
在这个实验中,我们通过实现栈和队列的操作,加深了对它们的理解。
同时,我们还学习了如何利用栈和队列解决实际问题,比如迷宫求解和中缀表达式转后缀表达式等。
实验三:树的实现与应用树是一种重要的非线性数据结构,它具有层次结构和递归定义的特点。
在这个实验中,我们学习了二叉树和二叉搜索树的实现和应用。
通过实验,我掌握了二叉树的遍历方法,了解了二叉搜索树的特性,并学会了如何利用二叉搜索树实现排序算法。
实验四:图的实现与应用图是一种复杂的非线性数据结构,它由节点和边组成,用于表示事物之间的关系。
在这个实验中,我们学习了图的邻接矩阵和邻接表两种存储方式,并实现了图的深度优先搜索和广度优先搜索算法。
通过实验,我深入理解了图的遍历方法和最短路径算法,并学会了如何利用图解决实际问题,比如社交网络分析和地图导航等。
实验五:排序算法的实现与比较排序算法是数据结构中非常重要的一部分,它用于将一组无序的数据按照某种规则进行排列。
在这个实验中,我们实现了常见的排序算法,比如冒泡排序、插入排序、选择排序和快速排序等,并通过实验比较了它们的性能差异。
通过实验,我深入理解了排序算法的原理和实现细节,并了解了如何根据具体情况选择合适的排序算法。
结论:通过这些实验,我对数据结构的原理和应用有了更深入的理解。
数据结构查找算法实验报告
数据结构查找算法实验报告数据结构查找算法实验报告---------------------------------1.引言在计算机科学中,查找算法是一种用于在数据集合中寻找特定元素的算法。
查找算法在各种应用中广泛使用,例如数据库检索,关键字搜索等。
本次实验旨在研究和探索不同的数据结构查找算法,如线性查找、二分查找、哈希查找等,并比较它们的性能和适用场景。
2.线性查找2.1 算法原理线性查找又称为顺序查找,它从数据集合的起始位置开始,逐个比较元素直到找到目标元素或遍历完整个集合。
线性查找是最简单的查找算法,但效率较低,时间复杂度为O(n)2.2 算法步骤●从数组的第一个元素开始遍历,依次比较元素与目标元素是否相等。
●如果相等,返回目标元素的索引值。
●如果遍历完整个数组仍未找到目标元素,返回未找到的标志。
2.3 算法实现```function linearSearch(arr, target) {for (let i = 0。
i < arr.length。
i++) {if (arri === target) {return i。
}}return -1。
}```3.二分查找3.1 算法原理二分查找是一种高效的查找算法,要求数据集合必须有序。
它通过重复将数据集合一分为二,直到找到目标元素或确定目标元素不存在。
二分查找的时间复杂度为O(log n)3.2 算法步骤●将数据集合的起始位置和结束位置分别设为low和high。
●计算中间位置mid,并将mid元素与目标元素进行比较。
●如果mid元素等于目标元素,则返回mid。
●如果mid元素大于目标元素,则将high设为mid-1。
●如果mid元素小于目标元素,则将low设为mid+1。
●重复以上步骤,直到low大于high或找到目标元素。
3.3 算法实现```function binarySearch(arr, target) {let low = 0。
数据结构课程实验报告
数据结构课程实验报告目录1. 实验简介1.1 实验背景1.2 实验目的1.3 实验内容2. 实验方法2.1 数据结构选择2.2 算法设计2.3 程序实现3. 实验结果分析3.1 数据结构性能分析3.2 算法效率比较3.3 实验结论4. 实验总结1. 实验简介1.1 实验背景本实验是数据结构课程的一次实践性操作,旨在帮助学生加深对数据结构的理解和运用。
1.2 实验目的通过本实验,学生将学会如何选择合适的数据结构来解决特定问题,了解数据结构与算法设计的关系并能将其应用到实际问题中。
1.3 实验内容本实验将涉及对一些经典数据结构的使用,如链表、栈、队列等,并结合具体问题进行算法设计和实现。
2. 实验方法2.1 数据结构选择在实验过程中,需要根据具体问题选择合适的数据结构,比如针对需要频繁插入删除操作的情况可选择链表。
2.2 算法设计针对每个问题,需要设计相应的算法来实现功能,要考虑算法的效率和实际应用情况。
2.3 程序实现根据算法设计,编写相应的程序来实现功能,并进行调试测试确保程序能够正确运行。
3. 实验结果分析3.1 数据结构性能分析在实验过程中,可以通过对不同数据结构的使用进行性能分析,如时间复杂度和空间复杂度等,以便选择最优的数据结构。
3.2 算法效率比较实验完成后,可以对不同算法在同一数据结构下的效率进行比较分析,找出最优算法。
3.3 实验结论根据实验结果分析,得出结论并总结经验教训,为后续的数据结构和算法设计提供参考。
4. 实验总结通过本次实验,学生将对数据结构与算法设计有更深入的了解,并能将所学知识应用到实际问题中,提高自己的实践能力和解决问题的能力。
数据结构实验七-二分排序
1
void main() {
rec A; int j,n,i; printf("\n\n 输入初始数据(每个数据一空格隔开,-1结束):"); n=0; scanf("%d", &j); while(j!=-1) {
n++; A[n]=j; scanf("%d",&j); } printf("插入排序\n\n排序前\n\n"); for (i=1;i<=n;i++) printf("%d ", A[i]); InsertSort1(A,n); printf("\n\n排序后\n\n"); for (i=1;i<=n;i++) printf("%d ", A[i]); }
2
数据结构实验报告七
班级:
姓名: 吴前斌
学号:
课程名称
数据结构
实验项目 排序
实验项目类型 验演综设 证示合计
指导掌握二分排序的基本概念,掌握二分排序的基本思想和算法实现。
二、实验内容 设计一个算法用二分查找实现插入排序的“寻找插入位置”操作。
三、实验要求 二分查找:在有序表中进行,先确定表的中点位置,再通过比较确定下一步查找哪个半区。
四、实验过程及结果:
# include "stdio.h" # define Max 20 typedef int elemtype; typedef elemtype rec[Max];
void InsertSort1(rec A,int n) {
int i,j,low,high,mid,now; for(i=2; i<=n; i++) {
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过实验可以更深入地理解和掌握数据结构的概念、原理和应用。
本次实验的主要目的包括:1、熟悉常见的数据结构,如链表、栈、队列、树和图等。
2、掌握数据结构的基本操作,如创建、插入、删除、遍历等。
3、提高编程能力和解决实际问题的能力,能够运用合适的数据结构解决具体的问题。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、链表的实现与操作单向链表的创建、插入和删除节点。
双向链表的实现和基本操作。
循环链表的特点和应用。
2、栈和队列的实现栈的后进先出特性,实现入栈和出栈操作。
队列的先进先出原则,完成入队和出队功能。
3、树的操作二叉树的创建、遍历(前序、中序、后序)。
二叉搜索树的插入、查找和删除操作。
4、图的表示与遍历邻接矩阵和邻接表表示图。
深度优先搜索和广度优先搜索算法的实现。
四、实验步骤及结果1、链表的实现与操作单向链表:首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。
通过创建链表头节点,并使用循环依次插入新节点,实现了链表的创建。
插入节点时,根据指定位置找到插入点的前一个节点,然后修改指针完成插入操作。
删除节点时,同样找到要删除节点的前一个节点,修改指针完成删除。
实验结果:成功创建、插入和删除了单向链表的节点,并正确输出了链表的内容。
双向链表:双向链表节点结构体增加了指向前一个节点的指针。
创建、插入和删除操作需要同时维护前后两个方向的指针。
实验结果:双向链表的各项操作均正常,能够双向遍历链表。
循环链表:使链表的尾节点指向头节点,形成循环。
在操作时需要特别注意循环的边界条件。
实验结果:成功实现了循环链表的创建和遍历。
2、栈和队列的实现栈:使用数组或链表来实现栈。
入栈操作将元素添加到栈顶,出栈操作取出栈顶元素。
实验结果:能够正确进行入栈和出栈操作,验证了栈的后进先出特性。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过本次实验,旨在加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解和运用,提高编程能力和问题解决能力,培养算法设计和分析的思维。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、数组与链表的实现与操作分别实现整数数组和整数链表的数据结构。
实现数组和链表的插入、删除、查找操作,并比较它们在不同操作下的时间复杂度。
2、栈与队列的应用用数组实现栈结构,用链表实现队列结构。
模拟栈的入栈、出栈操作和队列的入队、出队操作,解决实际问题,如表达式求值、任务调度等。
3、二叉树的遍历构建二叉树的数据结构。
实现先序遍历、中序遍历和后序遍历三种遍历算法,并输出遍历结果。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,并分析它们的时间复杂度。
四、实验步骤1、数组与链表数组的实现:定义一个固定大小的整数数组,通过索引访问和操作数组元素。
链表的实现:定义链表节点结构体,包含数据和指向下一个节点的指针。
插入操作:对于数组,若插入位置在末尾,直接赋值;若不在末尾,需移动后续元素。
对于链表,找到插入位置的前一个节点,修改指针。
删除操作:数组需移动后续元素,链表修改指针即可。
查找操作:数组通过索引直接访问,链表需逐个节点遍历。
2、栈与队列栈的实现:用数组模拟栈,设置栈顶指针。
队列的实现:用链表模拟队列,设置队头和队尾指针。
入栈和出栈操作:入栈时,若栈未满,将元素放入栈顶,栈顶指针加 1。
出栈时,若栈不为空,取出栈顶元素,栈顶指针减 1。
入队和出队操作:入队时,在队尾添加元素。
出队时,取出队头元素,并更新队头指针。
3、二叉树构建二叉树:采用递归方式创建二叉树节点。
先序遍历:先访问根节点,再递归遍历左子树,最后递归遍历右子树。
中序遍历:先递归遍历左子树,再访问根节点,最后递归遍历右子树。
(完整word版)数据结构 查找 实验报告(word文档良心出品)
数据结构实验报告课程数据结构 _ 实验名称查找院系专业班级实验地点姓名学号实验时间指导老师实验成绩批改日期一.实验目的1.熟悉静态查找的相关算法二.实验内容及要求1.实现顺序表的查找算法2.实现有序表的折半查找算法三.实验过程及结果实验过程:源程序:1、顺序查找:#include <stdio.h>#define MAX_SIZE 100typedef struct{int key;}element;element list[MAX_SIZE];int seqsearch(element list[],int searchnum,int num);int main(){int i,num,searchnum,k;printf("请输入元素的个数:");scanf("%d",&num);printf("请输入元素:\n");for(i=0;i<num;i++){scanf("%d",&list[i].key);}while(1){printf("请输入要查询的数据元素:");scanf("%d",&searchnum);k=seqsearch(list,searchnum,num);if(k!=-1){printf("所查询元素的下标为:");printf("%d\n",k);}elseprintf("查询元素不存在。
\n");}return 0;}int seqsearch(element list[],int searchnum,int num) {int j;list[num].key=searchnum;for(j=0;list[j].key!=searchnum;j++);return j<num?j:-1;}2、折半查找:#include <stdio.h>#define MAX_SIZE 100#define COMPARE(a,b) (a)>(b)?1:(a)==(b)?0:-1typedef struct{int key;}element;element list[MAX_SIZE];int binsearch(element list[],int searchnum,int num); int main(){int i,num,searchnum,k;printf("请输入元素的个数:");scanf("%d",&num);printf("请输入元素:\n");for(i=0;i<num;i++){scanf("%d",&list[i].key);}while(1){printf("请输入要查询的数据元素:");scanf("%d",&searchnum);k=binsearch(list,searchnum,num);if(k!=-1){printf("所查询元素的下标为:");printf("%d\n",k);}elseprintf("查询元素不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本实验项目方案受“教育部人才培养模式创新实验区(X3108005)”项目资助)学 期: 2010秋季学期 任课教师: 实验题目: 查找算法设计与实现 姓 名: 王 辉 学 号: 154电子邮件:完成提交时间: 2010 年 12 月 27 日云南大学软件学院2010学年 秋季学期《数据结构实验》成绩考核表学号: 姓名: 本人承担角色:云南大学软件学院 数据结构实验报告综合得分:(满分100分)指导教师:年月日(注:此表在难度为C时使用,每个成员一份。
)(下面的内容由学生填写,格式统一为,字体: 楷体, 行距: 固定行距18,字号: 小四,个人报告按下面每一项的百分比打分。
难度A满分70分,难度B满分90分)一、【实验构思(Conceive)】(10%)1 哈希表查找。
根据全年级学生的姓名,构造一个哈希表,选择适当的哈希函数和解决冲突的方法,设计并实现插入、删除和查找算法。
熟悉各种查找算法的思想。
2、掌握查找的实现过程。
3、学会在不同情况下运用不同结构和算法求解问题。
4 把每个学生的信息放在结构体中:typedef struct //记录{NA name;NA tel;NA add;}Record;5 void getin(Record* a)函数依次输入学生信息6 人名折叠处理,先将用户名进行折叠处理折叠处理后的数,用除留余数法构造哈希函数,并返回模值。
并采用二次探测再散列法解决冲突。
7姓名以汉语拼音形式,待填入哈希表的人名约30个,自行设计哈希函数,用线性探测再散列法或链地址法处理冲突;在查找的过程中给出比较的次数。
完成按姓名查询的操作。
将初始班级的通讯录信息存入文件。
二、【实验设计(Design)】(20%)(本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系)1抽象数据类型的功能规格说明和结构体:#include<stdio.h>#include<stdlib.h>#include<string>#include <windows.h>#define MAXSIZE 20 //电话薄记录数量#define MAX_SIZE 20 //人名的最大长度#define HASHSIZE 53 //定义表长#define SUCCESS 1#define UNSUCCESS -1#define LEN sizeof(HashTable)typedef int Status;typedef char NA[MAX_SIZE];typedef struct //记录{NA name;NA tel;NA add;}Record;typedef struct //哈希表{Record *elem[HASHSIZE]; //数据元素存储基址int count; //当前数据元素个数int size; //当前容量}HashTable;2 主函数与各子函数的调用关系:(通过switch(num)函数按不同功能要求分别调用相关函数)int main(int argc, char* argv[]){system("color 61");int c,flag=1;HashTable *H;H=(HashTable*)malloc(LEN);for(int i=0;i<HASHSIZE;i++)H->elem[i]=NULL;H->size=HASHSIZE;H->count=0;Record a[MAXSIZE];while (1){printf("\n ★☆★☆★☆★☆★☆wang hui★☆★☆★☆★☆★☆★☆");printf("\n ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★");printf("\n ★☆★☆我的未来不是梦★☆★☆");printf("\n ★☆★☆无聊中郁闷死★☆★☆");printf("\n ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★");printf("\n ┏━━━━━━━━━━━━━┓");printf("\n ★┃欢迎欢迎欢迎欢迎欢迎欢迎┃★");printf("\n 〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓"); printf("\n ★★★★★★★哈希表的设计与实现★★★★★★");printf("\n 【】. 添加用户信息");printf("\n 【】. 读取所有用户信息");printf("\n 【】. 以姓名建立哈希表(再哈希法解决冲突) ");printf("\n 【】. 以电话号码建立哈希表(再哈希法解决冲突) ");printf("\n 【】. 查找并显示给定用户名的记录");printf("\n 【】. 查找并显示给定电话号码的记录");printf("\n 【】. 清屏");printf("\n 【】. 保存");printf("\n 【】. 退出程序");printf("\n 温馨提示:");printf("\n Ⅰ.进行操作前请先输出");printf("\n Ⅱ.进行操作前请先输出");printf("\n ★★★★★★★〓〓〓〓〓〓〓〓〓★★★★★★");printf("\n");printf("请输入一个任务选项>>>");printf("\n");int num;scanf("%d",&num);switch(num){case 1:getin(a);break;case 2:ShowInformation(a);break;case 3:CreateHash1(H,a); /* 以姓名建立哈希表*/break;case 4:CreateHash2(H,a); /* 以电话号码建立哈希表*/break;case 5:c=0;SearchHash1(H,c);break;case 6:c=0;SearchHash2(H,c);break;case 7:Cls(a);break;case 8:Save();break;case 9:return 0;break;default:printf("你输错了,请重新输入!");printf("\n");}}system("pause");return 0;}三、【实现描述(Implement)】(30%)(本部分应包括:抽象数据类型具体实现的函数原型说明、关键操作实现的伪码算法、函数设计、函数间的调用关系,关键的程序流程图等,给出关键算法的时间复杂度分析。
)1 主函数打印和主子函数调用:int main(int argc, char* argv[]){system("color 61");int c,flag=1;HashTable *H;H=(HashTable*)malloc(LEN);for(int i=0;i<HASHSIZE;i++)H->elem[i]=NULL;H->size=HASHSIZE;H->count=0;Record a[MAXSIZE];while (1){printf("\n ★☆★☆★☆★☆★☆申平★☆★☆★☆★☆★☆★☆");printf("\n ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★");printf("\n ★☆★☆我的未来不是梦★☆★☆");printf("\n ★☆★☆无聊中郁闷死★☆★☆");printf("\n ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★");printf("\n ┏━━━━━━━━━━━━━┓");printf("\n ★┃欢迎欢迎欢迎欢迎欢迎欢迎┃★");printf("\n 〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓"); printf("\n ★★★★★★★哈希表的设计与实现★★★★★★");printf("\n 【】. 添加用户信息");printf("\n 【】. 读取所有用户信息");printf("\n 【】. 以姓名建立哈希表(再哈希法解决冲突) ");printf("\n 【】. 以电话号码建立哈希表(再哈希法解决冲突) ");printf("\n 【】. 查找并显示给定用户名的记录");printf("\n 【】. 查找并显示给定电话号码的记录");printf("\n 【】. 清屏");printf("\n 【】. 保存");printf("\n 【】. 退出程序");printf("\n 温馨提示:");printf("\n Ⅰ.进行操作前请先输出");printf("\n Ⅱ.进行操作前请先输出");printf("\n ★★★★★★★〓〓〓〓〓〓〓〓〓★★★★★★");printf("\n");printf("请输入一个任务选项>>>");printf("\n");int num;scanf("%d",&num);switch(num){case 1:getin(a);break;case 2:ShowInformation(a);break;case 3:CreateHash1(H,a); /* 以姓名建立哈希表*/break;case 4:CreateHash2(H,a); /* 以电话号码建立哈希表*/break;case 5:c=0;SearchHash1(H,c);break;case 6:c=0;SearchHash2(H,c);break;case 7:Cls(a);break;case 8:Save();break;case 9:return 0;break;default:printf("你输错了,请重新输入!");printf("\n");}}system("pause");return 0;}2键盘输入各人的信息:void getin(Record* a) //键盘输入各人的信息{system("cls");printf("输入要添加的个数:\n");scanf("%d",&NUM_BER);int i;for(i=0;i<NUM_BER;i++){printf("请输入第%d个记录的用户名:\n",i+1);scanf("%s",a[i].name);printf("请输入%d个记录的电话号码:\n",i+1);scanf("%s",a[i].tel);printf("请输入第%d个记录的地址:\n",i+1);scanf("%s",a[i].add); //gets(str2);??????}}3显示输入的用户信息和人名的折叠处理:void ShowInformation(Record* a) //显示输入的用户信息{system("cls");int i;for( i=0;i<NUM_BER;i++)printf("\n第%d个用户信息:\n 姓名:%s\n 电话号码:%s\n 联系地址:%s\n",i+1,a[i].name,a[i].tel,a[i].add);}void Cls(Record* a){printf("*");system("cls");}long fold(NA s) //人名的折叠处理{char *p;long sum=0;NA ss;strcpy(ss,s); //复制字符串,不改变原字符串的大小写strupr(ss); //将字符串ss转换为大写形式p=ss;while(*p!='\0')sum+=*p++;printf("\nsum====================%d",sum);return sum;}5哈希函数, 先将用户名进行折叠处理, 折叠处理后的数,用除留余数法构造哈希函数并返回模值; 把字符串转换成整型数,用除留余数法构造哈希函数并返回模值:int Hash1(NA str) //哈希函数{long n;int m;n=fold(str); //先将用户名进行折叠处理m=n%HASHSIZE; //折叠处理后的数,用除留余数法构造哈希函数return m; //并返回模值}int Hash2(NA str) //哈希函数{long n;int m;n = atoi(str); //把字符串转换成整型数.m=n%HASHSIZE; //用除留余数法构造哈希函数return m; //并返回模值}6冲突处理函数,采用二次探测再散列法解决冲突:Status collision(int p,int &c) //冲突处理函数,采用二次探测再散列法解决冲突{int i,q;i=c/2+1;while(i<HASHSIZE){if(c%2==0){c++;q=(p+i*i)%HASHSIZE;if(q>=0) return q;else i=c/2+1;}else{q=(p-i*i)%HASHSIZE;c++;if(q>=0) return q;else i=c/2+1;}}return UNSUCCESS;}void benGetTime();void CreateHash1(HashTable* H,Record* a) //建表,以人的姓名为关键字,建立相应的散列表{system("cls"); //若哈希地址冲突,进行冲突处理benGetTime();int i,p=-1,c,pp;for(i=0;i<NUM_BER;i++){c=0;p=Hash1(a[i].name);pp=p;while(H->elem[pp]!=NULL) {pp=collision(p,c);if(pp<0){printf("第%d记录无法解决冲突",i+1); //需要显示冲突次数时输出continue;} //无法解决冲突,跳入下一循环}H->elem[pp]=&(a[i]); //求得哈希地址,将信息存入H->count++;printf("第%d个记录冲突次数为%d。