无机及分析化学 第一章气体、溶液和胶体
大学课件无机及分析化学-第一章气体溶液和胶体

1.溶液的蒸气压下降
第一章第二节
一定温度下,将纯溶剂放入密闭容器中,当溶剂蒸
发为气态溶剂的速度与气态溶剂凝聚成液态的速度相等
时,达到相平衡。此时
的气体称为饱和蒸气,
溶
其所具有的压力称为该
液 蒸
温度下液体的饱和蒸气
气 压
压(简称蒸气压)。 若在纯溶剂中加入
通常所说的溶液都是指液态溶液。
溶液由溶质和溶剂组成,被溶解的物质叫溶质,溶 解溶质的物质叫溶剂。
常把含量较少的组分称为溶质,含量较多的组分称 为溶剂。
一、溶液浓度的表示法
第一章第二节
1. 物质的量浓度 单位体积的溶液中所含溶质B的物质的量称为溶质B
的物质的量浓度。用符号cBcB表nV示B ,常用单位mol·L-1 。
ppb(十亿分浓度):表示溶质的质量占溶液质量 的十亿分之几,即每kg溶液中所含溶质的g数。如:
1ppb:1g/1,000,000,000g溶液=1g溶质/1kg溶液。 8ppb:8g/1,000,000,000g溶液=8g溶质/1kg溶液。
例 题 1-1
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
解: mA 20.40 0.40 20.00g
nB
0.40 M
(M 为相对分子质量)
bB
nB mA
0.40/M 20.00 103
20 M
Tf =Kf bB
即 0.207=1.86 20 M =180.0 M
3.溶液的凝固点下降
无机及分析化学 第一章课件

2、相:体系中物理性质和化学性质完全相同的一 部分称为相
(1)单相体系(均相体系):只有一个相的体系
(2)多相体系:有两个或两个以上相的体系
粗分散系 多相体系 胶体分散系
分 散 系
分子、离子分散系——单相体系
1-2-2 稀溶液的通性—依数性(colligative properties )
稀溶液的蒸气压、沸点、凝固点和渗透压等
P PB B
*
P PB P PB 1 B PB A
* * *
P—溶液的蒸气压 ,PB*—纯溶剂的蒸气压, χB—溶剂的摩尔分数, χA—溶质的摩尔分数
拉乌尔定律:一定温度下,难挥发非电解质稀溶液的蒸气压下降 与溶质的摩尔分数成正比。(此定律只适用于稀溶 液,溶液越稀,越符合定律)
理想气体状态方程式
PV nRT m M
R的取值(与P、V、T的单位有关)
R 8 . 314 J mol
1
RT
K
1
( Pa m
1
3
mol
1
K
1
, KPa L mol
1
K
1
)
0 . 08206 atm L mol
62360 mmHg ml mol
渗透。可用于海水淡化、工业废水及污水处理、溶液的浓缩等 方面。
范特霍夫(Van`t Hoff)综合实验结果,指出: V nRT
cRT
对很பைடு நூலகம்的溶液,
bRT
1-3 胶体溶液 colloid
1-3-1 溶胶的制备
1、分散法 研磨法、超声波法、胶溶法、电弧法 2、凝聚法 物理凝聚法、化学凝聚法
无机及分析化学课件第四版第一章

电动电势
ζ是衡量胶粒所带净电荷多少 的物理量,吸附正离子为正,
负离子则为负
电解质对电 动电势影响 很大
1.3.4 溶胶的稳定性和聚沉
溶胶是多相、高分散系统、表面能很大,是热 力学不稳定系统。
✓ 布朗运动 为何往往能稳定存在? ✓ 胶粒带电
✓ 溶剂化作用
溶胶的稳定性可用ζ的绝对值来衡量,越大,胶体所带 电荷量越多,扩散层后,溶剂化层也厚,溶胶也越稳定
这部分中学计算,训练较多,在此不再赘述。
1.1.2 道尔顿理想气体分压定律
1 分压的概念
组分气体: 理想气体混合物中每一种气体叫做组分气体。
分压: 组分气体B在相同温度下占有与混合气体相同
体积时所产生的压力,叫做组分气体B的分压。
N2,O2
2L容器内盛1L O2,1L N2
PN2,PO2: 组分气体单独占据容器时所产生的压力。
实验表明,难挥发非电解质溶液的 沸点总是高于纯溶剂的沸点。这一 现象称为溶液的沸点升高(boiling point elevation)。
溶液的沸点升高(△Tb) =溶液的沸点(Tb) -纯溶剂的沸点(Tb0)
即: △Tb=Tb- Tb0
难挥发性非电解质稀溶液的沸点升高的原因是溶液 的蒸气压低于纯溶剂的蒸气压。
Δp = pBo xA =K b
ΔTb = Kb b ΔTf = Kf b Π = cRT
1.3 胶体溶液
胶体:是一种物质以一定的分散程度 存在的状态。
胶体分散系
胶体溶液(溶胶)是由小 分子、原子或离子聚集成 较大颗粒而形成的多相体 系。
高分子溶液:是由一些高分子 化合物所组成的溶液。
分子或离子分散系
结果,对于难挥发性的非电解质稀溶液,得出如 下规律:
无机及分析化学第一章 气体、溶液和胶体

设有一混合气体,有 i个组分,pi和ni分别表示各组 分的分压力和物质的量,V为混合气体的总体积,则
pi=(ni/V) ·RT p=pi=(ni/V)·RT =(n/V)·RT pi/p=ni/n pi = ( ni/n )·p
第二节 溶 液
第一章第二节
广义地说,两种或两种以上的物质均匀混合而且彼 此呈现分子(或离子或原子)状态分布者均称为溶液, 溶液可以气、液、固三种聚集状态存在。
ppb(十亿分浓度):表示溶质的质量占溶液质量 的十亿分之几,即每kg溶液中所含溶质的g数。如:
1ppb:1g/1,000,000,000g溶液=1g溶质/1kg溶液。 8ppb:8g/1,000,000,000g溶液=8g溶质/1kg溶液。
例 题 1-1
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
LOGO
无机及分析化学第一章 气体、溶液和胶体
化学学科的分类
1. 无机化学 2. 分析化学 3. 有机化学 4. 物理化学 5. 高分子化学
化学学科的重要性
化学学科与其它学科的相互渗透,形成新 的学科,如生物化学、环境化学、环境分析化 学、食品化学、农药化学、土壤化学、植物化 学、配位化学、放射化学等。
第一章第二节
在100 mL水中,溶解17.1 g蔗糖(C12H22O11),溶液 的密度为1.0638 g ·mL1,求蔗糖的物质的量浓度、质 量摩尔浓度、摩尔分数各是多少?
解:
( 2 )b ( C 1 2 H 2 2 O 1 1 )= n ( C m 1 ( 2 H H 2 2 O 2 O ) 1 1 ) 1 0 0 0 .0 1 5 0 3 0 .5 m o lk g 1
大学无机第1章 气体、溶液和胶体

第1章 气体、溶液和胶体一、 教学要求1.了解理想气体状态方程,气体分压定律;2.了解有关溶液的基本知识,并能进行溶液浓度的有关计算;3.掌握稀溶液的四个依数性及其应用;4.了解胶体溶液的基本性质,了解吸附的基本规律。
掌握胶团的组成和结构,理解溶胶的双电层结构和溶胶稳定性之间的关系,掌握胶体的保护及破坏,熟练写出胶团结构式;5.了解表面活性物质和乳状液的基本概念。
【重点】:1.理想气体状态方程式及分压定律的应用和相关计算;2.溶液浓度的表示法,各浓度之间的相互换算;3.稀溶液依数性的含义,各公式的适用范围及进行有关的计算;4.胶团结构和影响溶胶稳定性和聚沉的因素。
【难点】:1.稀溶液依数性的原因;2. 胶团结构和影响溶胶稳定性和聚沉的因素。
二、重点内容概要在物质的各种存在状态中,人们对气体了解得最为清楚。
关于气体宏观性质的规律,主要是理想气体方程,混合气体的分压定律。
1. 理想气体状态方程所谓理想气体,是人为假设的气体模型,指假设气体分子当作质点,体积为零,分子间相互作用力忽略不计的气体。
理想气体状态方程为:PV = nRT① RT M m pV = ② RT Mp ρ= 此二式可用于计算气体的各个物理量p 、V 、T 、n ,还可以计算气体的摩尔质量M 和密度ρ。
原则上理想气体方程只适用于高温和低压下的气体。
实际上在常温常压下大多数气体近似的遵守此方程。
理想气体方程可以描写单一气体或混合气体的整体行为,它不能用于同固、液共存时的蒸气。
2.分压定律混合理想气体的总压力等于各组分气体分压力之和。
分压是指在与混合气体相同的温度下,该组分气体单独占有与混合气体相同体积时所具有的压力。
∑i321p p p p p =+++= 还可以表述为: i i px p =3.溶液浓度的表示方法(1)质量分数 ωB =m m B (2)质量浓度 B B m Vρ= (3)物质的量浓度 B B n c V = (4)质量摩尔浓度 AB B =m n b (5)物质的量分数(摩尔分数)BA A AB A B B n n n x n n n x +=+= 所以:x A + x B = 1,若将这个关系推广到任何一个多组分系统中,则有:i i 1x=∑质量分数ωB 和质量摩尔浓度B b 与物质的量浓度B c ,可用溶液的密度ρ为桥梁相互换算。
[无极及分析化学]各章知识点
![[无极及分析化学]各章知识点](https://img.taocdn.com/s3/m/6a2d240a16fc700abb68fc25.png)
3.掌握运用盖斯定律进行化学反应自由能变(参 考状态单质的标准摩尔自由能 = 零、反应自由能 由物质的生成自由能求得)。 4.掌握利用反应焓变、熵变、自由能变等热力学、 数据判断化学反应的方向、反应自发进行的温度 (低温、高温、任何温度)、反应是否自发可用温 度来调整。
5.掌握标准反应平衡常数的表达、利用已知 反应平衡常数求其他反应的平衡常数。 6.掌握化学平衡的移动;掌握标准自由能变 与标准平衡常数之间的换算;浓度、压力、温 度对化学平衡的影响。
第二章 化学反应的一般原理
一 、基本概念 5.化学反应速率(化学反应速率的概念、化学反 应速率方程式、反应速率(碰撞、过渡态)理论、 活化能、温度、催化剂对反应速度的影响) 6.化学反应条件的优化
二 计算
1.掌握运用盖斯定律进行化学反应焓变的计 算(参考状态单质的标准摩尔生成焓=零、反应 焓由物质的生成焓或燃烧焓求得) 2.熵(熵的变化规律、反应或过程前后熵的 变化)
二 、计算 1.分步沉淀 2. 定量分离的条件 3. 沉淀的溶解的平衡计算
第六章 氧化还原平衡与氧化还原滴定法
一、基本概念(术语) 1.电极电位 (条件、标准)。 2. 原电池写法(给定化学反应式能分解成正、 负极,并写出原电池的表示式)。 3. 判断氧化和还原反应进行的方向(用标准电 极电位的判断)。 4. 氧化和还原反应的平衡常数。
14. 共价键的特点共价化合物的特点 15.共价键的类型 16 . 杂化轨道和化合物的构型 17. 分子间的力(色、取、诱及氢键 18. 离子的极化 (极化力和变形性、对 晶体键型的影响、对化合物的影响)
第八章
配位化合物与配位滴定
一.基本概念(术语) 1.配合物的组成和命名 2. 配合物中心离子的杂化轨道类型 3. 内轨和外轨配合物,内轨和外轨配合物 合物与磁矩的关系. 4. 高自旋、低自旋配合物 5. 配合平衡的移动(酸度、沉淀、氧化 还原其的影响)
无机及分析化学 第一章 气体、溶液和胶体

1.4.1 溶液蒸汽压的下降
液体的蒸发
一定温度下,敞口容 器中液体将不断蒸发 至没有液体留下。
一定温度下,密 闭容器中的液体 随着蒸发进行, 最终将达到液体 蒸发与气体凝结 的动态平衡状态, 蒸气压力不再变 化。
a 敞口容器
b 密闭容器中
液体的饱和蒸汽压 在一定温度下,液体与其蒸气平衡时 的蒸气压力为该温度下的液体的饱和蒸气压,简称蒸气压。
V/T=恒量 (n、P 恒定)
阿伏加德罗定律:在相同的温度与相同的压力下,相同体积的 气体所含气体的分子数相同或所含气体的物质的量相同,其数 学表达式为
na=nb (Ta=Tb,pa=pb,Va=Vb)
9
1.2.1 理想气体状态方程
以上三个定律的适用条件是压力要较低,温度不 能太低,即对稀薄气体适用(或理想气体)。
多相体系
均相体系
常见实例
泥浆
氢氧化铁溶胶 蛋白质水溶液 葡萄糖水溶液
8
1.2 气体
气体的基本特性是扩散性和可压缩性。
波义耳定律:一定量气体,在温度恒定时,它的压力和体积的 乘积为恒量,其数学表达式为
pV=恒量 (n、 T恒定)
查理-盖吕萨克定律:他的现代表述是,一定量的气体当压力 恒定时,它的体积与热力学温度成正比,其数学表达式为
35
溶液的沸点升高现象
难挥发非电解质稀溶液的蒸气压比纯溶剂要低,所以在 达到溶剂沸点时,溶液不能沸腾。为了使溶液沸腾,就必须 使溶液的温度升高,加剧溶剂分子的热运动,以增加溶液的 蒸气压。当溶液的蒸气压与外压相等时,溶液开始沸腾。显 然此时溶液的温度应高于纯溶剂的沸点。
拉乌尔定律的适用范围:
非电解质 稀 溶液
33
溶质的独立质点数:
无机及分析化学——第一章 气体和溶液..

1.2.2 稀溶液的通性
★ 溶液
(1) 溶液的一般概念 分子或离子分散体系 单相 按聚集状态:气态溶液、液态溶液、固态溶液 (2) 溶解过程与溶液的形成 溶解:溶质均匀分散于溶剂中的过程。 是个既有化学变化,又有物理变化的复杂过程。
常伴随:颜色变化,体积变化,能量变化。
(3) 溶解度的概念 单位溶剂中最多能溶解的溶质的量——溶解度 溶解度与温度、压力等因素有关。 (4) 相似相溶原理 溶剂与溶质的分子结构相似,就能较好地相互溶解。
体来说,只要温度不是太低(高温,高于273K),压力不
是太高(低压 , 低于数百 kPa ),都可以近似用理想气体 状态方程作有关p、V、T、n 的计算。
2. 理想气体状态方程
理想气体的温度(T)、压力(p)、体积(V)和物质的 量(n)之间, 具有如下的方程式关系: pV = nRT 在SI制中,p—Pa,V—m3,T—K,n—mol。 标准状况(p=101.325 kPa,T=273.15 K)下,1 mol 气 体的标准摩尔体积为 22.414×10-3 m3 ,摩尔气体常数 R 的 单位及数值为: pV 1.01325 105 Pa 22.414 103 m3
自发有序仍能流动的状态(有序流体)。
等离子态—物质原子内的电子在高温下脱离原子核的吸引 而形成带负电的自由电子和带正电的离子共存
的状态。由于此时物质正、负电荷总数仍然相
等,因此叫做等离子态(又叫等离子体)。
1.1
气
体
描述气体状态的物理量
物理量 压力 体积 温度 p V T 单 位
帕斯卡 Pa (N· m-2 ) 立方米 (m3) 开尔文 (K) 摩尔 (mol)
水
蔗 糖 溶 液
无机及分析化学第一章溶液和胶体习题答案

1 《无机及分析化学》教材习题解答第一章 溶液和胶体1-1 一种或几种物质分散成微小的粒子散布在另一种物质中所构成的系统称为分散系;分散系按照分散质粒子大小可分为三类:分子离子分散系、胶体分散系和粗分散系;按照物质聚集状态分为:固液、液液、气液等。
1-2 不适用。
实验证明,引入校正系数,拉乌尔定律就可以用于电解质溶液依数性的计算。
阿仑尼乌斯提出电解质溶液的电离学说,用于解释电解质溶液对拉乌尔定律的偏离行为,如果进行计算须引入校正系数。
他认为电解质溶于水后可以电离成阴、阳离子,而使溶液中粒子总数增加导致了校正系数总是大于1,故不适用。
1-3 沸点不衡定,因为沸腾溶液的蒸气压必须等于外界大气压,由于溶剂的蒸发或外界气压的变化,所以沸点不衡定;凝聚温度不衡定,从水的相图气液平衡曲线可知,蒸气的凝聚温度是随蒸气的蒸气压下降而下降的。
1-4 不对,渗透现象停止,说明半透膜两边粒子的渗透速度相等,渗透达到了平衡。
1-5 溶胶稳定性因素有:胶粒带电、动力学和溶剂化膜;聚沉方法有:加入强电解质、加入带相反电荷的溶胶、加热;电解质对溶胶的聚沉作用取决于与胶粒所带相反电荷的离子,离子的电荷越高,对溶胶的聚沉能力越强。
1-6 溶于水后能显著降低水的表面自由能的物质称为表面活性剂;其分子中含有极性基团和非极性基团,极性基团亲水为亲水基,非极性基团亲油为疏水基。
当表面活性物质溶于水后,分子中亲水基进入水相,疏水基则进入气相成油相这样表面活性剂分子就浓集在两相界面上,形成定向排列的分子膜,使相界面上的分子受力不均匀的情况得到改善,从而降低了水的表面自由能。
1-7 一般说来亲水性乳化剂有利于形成O/W 型乳状液,亲油性乳化剂有利于形成W/O 型乳状液,亲水性乳化剂有钾、钠肥皂,蛋白质,动物胶等都形成O/W 型乳状液,亲油性乳化剂有高价金属离子肥皂、高级醇类、高级酸类等形成W/O 型乳状液。
1-8 ①ω=003.12173.3=0.2644;②b=()3443.58173.310173.3003.12-⨯-=6.149mol.kg -1;③c=3443.58173.31000.10-⨯=5.430mol.L -1;④x(NaCl)=015.18173.3003.12443.58173.3443.58173.3-+=0.099721-9 由题意可知:⊿t f (尿素)=⊿t f (未知) ∴K f b(尿素)= K f b(未知) , 即b(尿素)= b(未知)()100010008.42200100006.605.1⨯=⨯未M 则有M(未)=342.74g..mol -11-10 ⊿t f =K f b 1.30=6.8×0.20100000.1⨯M 则有M ≈262.54g..mol -1 即M(S x )=262.54 故其分子式近似为S 8。
无机及分析化学课件第四版第一章气体和溶液

21世纪化学四大难题:
1. 化学反应理论——建立精确有效而又普遍适用得 化学反应 多体量子理论和统计理论;
2、 结构与性能得定量关系; 3、 生命现象得化学理论——生命化学难题; 4、 纳米尺度难题。
四、学习化学得重要性及必要性
数、理——化学——生物
20世纪发明了七大技术:
信息技术
认知科学
生物技术 核科学和核武器技术 航空航天和导弹技术 激光技术 纳米技术
科学原子论:道尔顿于1808年发表《化学哲学新体系》, 提出原子论,其要点为:
●物质由不可分割得原子组成; ●同种元素得原子其形状、质量及性质都相同,不同元素得
原子,其形状、质量及性质都不相同; ●两种元素得化合作用就是一种元素得一定数目得原子与
另一种元素得一定数目得原子结合形成复杂原子。
此学说意义重大: ●给化学奠定了唯物主义基石—原子。她得原子说把古代
1、什么就是化学?
化学就是在原子和分子层次上研究物质得组成、 结构、性质以及物质之间相互转化得科学。 研究层次:原子和分子 研究内容:
物质得组成、结构、性质与相互转化 核心与特征:合成新物质,对其性质进行表征,开发 其新得应用并探讨其中得机理。
2 、研究化学得目 得
人类生活得各个方面,社会发展得各种需要都与化学息息相关。 (1)化学对我们得衣食住行贡献巨大。 (2)化学对于实现农业、工业、国防和科学技术现代化具 有重要作用。 (3)促进其她基础学科和应用科学得发展和交叉学科得形 成。如:环境化学、能源化学、材料化学、地球化学 正如[美]Pimentel G C在《化学中得机会---今天和明天》一 书中指出得“化学就是一门中心学科,她与社会发展各方面得需 要都有密切关系。”
这就是唯物得,同时她又认为万物得本源就是四 种原始性质:冷、热、干、湿。元素由这些原始性 质依不同比例组合而成。
无机及分析化学 第一章 气体和溶液

学习要求
掌握理想气体状态方程及其应用。
掌握道尔顿分压定律 理解稀溶液的依数性及其应用 了解溶胶的结构、性质、稳定性及聚沉作用 了解大分子溶液与凝胶
1.1 气体
一、理想气体状态方程 1、理想气体 分子本身不占体积 分子间无相互作用力
为研究气体性质的方便而假设的状态,实 际不存在,但研究中在温度不太低,压强不太 大的情况下,可将实际气体近似地看作理想气 体。
1.2 溶液
3.分散系的分类 按照分散相颗粒的大小(直径d不同),可 将分散系分为三类。
二、稀溶液的通性 稀溶液的通性:稀溶液的性质中,与溶质的 本性无关只与溶液中所含溶质粒子数的多少 有关的性质,叫稀溶液的通性,又称稀溶液 的依数性。
1、溶液的蒸气压下降
相同的温度下,当把难挥发的非电解质 溶于溶剂形成稀溶液时,稀溶液的蒸气压比 纯溶剂的蒸气压低,其原因是溶剂的部分表 面被溶质占据,因此单位时间逸出液面的溶 剂分子数相应减少,(如图)达到平衡时,溶 液的蒸气压必然低于纯溶剂的蒸气压,这叫 溶液的蒸气压下降。
要施加的压力。
1.3 胶体溶液
一、溶胶的制备和性质 1、制备方法:分散法、凝聚法 2、性质: 动力性质——布朗运动:胶粒不断作不规则运 动。 光学性质——丁铎尔现象:光的散射。 电学性质——电泳。
பைடு நூலகம்
二、胶团结构和电动电势 1、AgNO3与KI制备AgI 溶胶的胶团结构示意图。
2、电动电势
三、溶胶的稳定性和聚沉 1、溶胶稳定性原因:布朗运动、胶粒带电、 溶剂化作用 2、聚沉:胶粒相互碰撞将导致颗粒聚集变大, 最后以沉淀形式析出,这种现象称为聚沉。
2、溶液的沸点升高和凝固点下降 (1)溶液的沸点升高:在纯溶剂中加入难挥 发非电解质后,溶液的沸点总是高于纯溶剂 的沸点。 (2)凝固点下降:在纯溶剂中加入难挥发非 电解质后,溶液的凝固点总是低于纯溶剂的 凝固点。
无机及分析化学——气体和溶液

在水中加入难挥发的溶质后,单位时间内逸
出水面的水分子数减少,平衡时,溶液液面
上的蒸汽压(P溶液)一定小于纯溶剂的饱和
蒸汽压(P0s): P溶液< P0s
大量实验
证明P溶液与溶质的摩尔分数XB有关。
7
第一章 气体和溶液
主目录 上一页 下一页
二、稀溶液的依数性(2)
拉乌尔定律(Raoult):溶液蒸汽压下降与溶质的摩尔分数 成正比,溶液越稀越严格服从该定律。若A表示溶质,B表 示溶剂,其数学形式为:
1、当λ入射光<粒子直径d时,发生光反射。观察不到上述现象。 2、当λ入射光>粒子直径d时,发生光散射,每个粒子成为一个小
光源。可见光波长=400-760nm,胶体粒子直径d=1-100nm, 会发生散射,可观察到上现象。
3、电学性质—电泳: 在外电场作用下,胶体粒子在分散介 质中的移动叫电泳。这一现象说明胶体粒子带电。
P溶液 PB xB PB (1 xA) PB PB xA
PB P溶液 PB xA P PB xA
P PB xA 蒸汽压下降的值可由该式算出
例如有 b mol溶质溶解于1Kg(=1000g/18g=55.6mol)纯水中,
则ΔP为
P PB xA
PB
nA nA nB
PB
相对分子量 )
2.PMr
m V
RT
RT(
相对密度)
2
第一章 气体和溶液
主目录 上一页 下一页
国际单位制(SI)词头
中文 国际 法文 倍数 中文 国际 法文
倍数 符号 符号 符号
符号 符号 符号
1018 艾 E exa 10-1 分 d deci
1015 拍 P peta 10-2 厘 c centi
《无机及分析化学》教学课件-气体、溶液和胶体

10
p p1 p2 p3 ……
分压定律的 一种表达
p
pi
ni V
RT
pi
p
ni
RT V
n RT V
pi ni pn
xi: 摩尔分数
pi
ni n
p
xi
ni n
pi xi p
xi ?
2020/8/4
Template copyright 2005
2020/8/4
Template copyright 2005
14
冰和水两相体系
2020/8/4
Template copyright 2005
15
表1 按分散质颗粒大小分类的分散系
颗粒直径大小 类 型
主要特征
实例
小于1nm(10–9) 分子离子 分散系
第一章 气体、溶液和
胶体
制作: 理学院化学系
➢气 体 ➢溶 液 ➢ 溶液的依数性 ➢胶 体 ➢练ight 2005
2
第一节 气 体
✓ 理想气体状态方程式 ✓ 道尔顿分压定律
2020/8/4
Template copyright 2005
16
表2 按物质聚集状态分类的分散系
分散剂
液 固 气
分散质
气 液 固 气 液 固 气 液 固
实例
肥皂泡沫 牛奶 Fe(OH)3溶胶、泥浆水 泡沫塑料 珍珠 有机玻璃 空气
云、雾 烟、尘
2020/8/4
Template copyright 2005
17
分子分散系 (d<1 nm)
致
2020/8/4
Template copyright 2005
东南大学无机及分析化学课件资料

同理,液-液、液-固、固-固界面
上存在界面张力。
g
A
l
B
2022/4/19
17
1.1.3 固 体
固体: 1、晶体 2、非晶体
晶体与非晶体的差异:
• 晶体具有规则的几何形状,非晶体则没有。 • 晶体具有固定的熔点,非晶体无固定的熔点。 • 晶体显各向异性,非晶体显各向同性。
a 、b 称为范德华常数,a是气体分子间力修正常数,b是气体
分子体积修正常数。
产生偏差的主要原因是: ①气体分子本身的体积的影响; ②分子间力的影响。
2022/4/19
12
1.1.1 气 体
问题: 真实气体在什么样的特定状态下接近于理想气体的 状态呢?
答案: 高温且低压!
为什么?请思考!
因为在上述条件下,气体分子间的距离相当大。 一方面使气体分子自身的体积与气体体积相比 可以忽略不计。 另一方面也使分子之间的作用力显的微不足道。
“过热”液体:温度高于沸点的液体称为过热液体, 易产生爆沸。
蒸馏时一定要加入沸石或搅拌, 以引入小气泡, 产生气化中心, 避免爆沸。
2022/4/19
15
1.1.2 液 体
二、 蒸气压和温度的关系
液体沸腾时的温度与气液平衡时的蒸气压有直接关系,
研究表明,蒸气压是温度的函数 p = f (T):
lg p = A + B T
所具有的压力称为饱和蒸气压,简称蒸气压。
临界温度: 气体冷却到某一温度Tc或更低时才能用加压的办法
使气体液化。
2022/4/19
14
例:水的沸点为 100 oC, 但在高山上, 由于大气压 降低, 沸点较低, 饭就难于煮熟。
无机及分析化学-第1章- 物质的聚集状态

由于 所以
xA+ xB= l,即 xA= lxB, p = p0(1xB)= p0p 0·B x
p0 p = p 0·B x p = p0 p = p 0·B x
p—溶液蒸气压的下降值,单位为Pa; xB —溶质的摩尔分数。 结论:在一定温度下,难挥发非电解质稀溶液的蒸气压的 下降值与溶质的摩尔分数成正比,而与溶质的性质无关。 ——拉乌尔定律
稀溶液渗透压与浓度、温度的关系 П×V = nB×R×T 即 П= cB×R×T П—溶液的渗透压,单位为Pa; cB—溶液的浓度,单位为mo1· 1; L‾ R—气体常数,为8.31 kPa·L·mol‾1·K‾1; T—体系的温度,单位为K 。 在定温下,溶液的渗透压与溶质的浓度成正比。 溶液愈稀,公式愈准确 。
1.3.2 溶胶的性质
胶 体 溶 液 的 性 质
溶胶的光学性质
溶胶的动力学性质
胶粒与扩散层中的反号离子,形成一个电中性的胶团。
1.3.1 胶团结构
例:AgNO3 + KI→KNO3 + AgI↓ ,过量的 KI 作稳定剂
胶团的结构表达式 :
[(AgI)m . nI- .(n-x)K+]x- .xK+
胶核 胶粒 胶团
1.3.1 胶团结构
例:AgNO3 + KI→KNO3 + AgI↓,过量的 AgNO3 作稳 定剂, 胶团的结构表达式:
[(AgI)m . nAg+ .(n-x)NO3-]x+ .xNO3胶核 胶粒 胶团
胶团结构式
氢氧化铁
{(Fe(OH)3)m· nFeO+· (nx)Cl‾}x+· xCl‾
三硫化二砷
{(As2S3)m· nHS‾· x)H+})m· nHSiO3‾· x)H+}x‾· + (n xH
无机及分析化学计算公式1-4章节

无机及分析化学计算公式第一章:溶液和胶体理想气体方程:PV=nRT,其中T为开尔文温度表示物质的量浓度:C a=n aV质量摩尔浓度:b a=n am b,其中n a为溶质的量,m b为溶剂的质量质量分数:w a=m am,m a为溶质的质量,m为溶液的质量摩尔分数:x b=n bn,n b为b溶质的物质的量,n为总体物质的量拉乌尔定律:p=p0x b,p为稀溶液的蒸汽压,p0为同种情况下溶剂的饱和蒸汽压,x b为溶剂的摩尔分数沸点和凝固点的计算:k b和k f为沸点和凝固点常数,b B为溶剂的质量摩尔分数沸点:∆T b=k b b B凝固点:∆T f=k f b B渗透压公式:π=cRT第二章:化学反应基本原理反应进度:ξ=∆n b v b∆n b:反应中任意物质的变化量v b:化学计量系数,反应物为负值,生成物为正值热力学第一定律:△U =Q + W焓:H =U +pV吉布斯函数:G =H −TS ,T 为开尔文温度,S 为熵∆G <0,过程可正向自发进行; ∆G = 0,系统处于平衡态; ∆G >0,过程正向不能自发进行 标准平衡常数:① 气相反应,物质的分压用相对分压(p /p)表示2SO 2(g ) + O 2(g ) = 2SO 3(g )K θ=② 液相反应,物质的浓度用相对浓度(c /c) 表示 K θ=第三章:化学分析概论 采样公式:m =Kd a m :采取试样的最低质量/kg d : 试样中最大颗粒的直径/mmK, a : 经验常数, K值在0.02~ 0.15,a 值在1.8 ~ 2.5{p (SO 2)/p Ө}2 {p (O 2)/p Ө}2HAc= H + + Ac -{c (H +)/c Ө}⋅ {c (Ac -)/c Ө}其中X 为测量值,T 为真实值 绝对误差:E a =X −T 相对误差:E r =E a T×100%di 为偏差,X i 为测量值,X 为平均值 平均值:X =X 1+X 2+⋅⋅⋅+X nn绝对偏差:d =X i −X 相对偏差:d r =X ×100%平均偏差:d =|d 1|+|d 2|+⋅⋅⋅+|d n |n=∑|d i |n i=1n相对平均偏差:r =dX×100%μ为总体平均值 总体标准偏差:σ=√∑(X i −μ)2n i=1n相对标准偏差:s r =X×100%第四章:酸碱平衡 解离度:α=√K a θ/c 0 一元酸的型体分布:δ(A -)=K aθc(H +)+K aθ二元酸的型体分布:δ(A 2−)=K a 1θK a 2θ2+a 1θ+a 1θa 2θ三元酸的型体分布:δ(A3−)K a 1θK a 2θK a 3θc 3(H +)+K a 1θc 2(H +)+K a 1θK a 2θc(H +)+K a 1θK a 2θK a 3θ一元弱酸的酸度计算[弱碱同理]:若c 0K a θ≥20K w θ,c 0/K a θ≥500,则c(H +)=√c 0K a θ 若c 0K a θ≥20K w θ,c 0/K a θ<500则,c(H +)=−K a θ+√K aθ2+4c 0K a θ2若c 0K a θ<20K w θ,c 0/K a θ≥500则,c(H +)=√c 0K a θ+K wθ两性物质酸度计算:c 0K a2θ≥20K w θ,c 0<20K a 1θ则c(H +)=√c 0K a1θK a 2θK a 1θ+c 0c 0K a 2θ≥20K w θ,c 0≥20K a 1θ则c(H +)=√K a 1θ×K b 1θ c 0K a 2θ<20K w θ,c 0≥20K a 1θ,则c(H +)=√K a 1θ(c 0K a 2θ+K w θ)c 0缓冲溶液pH 的计算: pH =pK aθ− lg c ac b,其中c a 为共轭酸浓度,c b 为共轭碱浓度缓冲溶液的缓冲范围:pH =pK a θ±1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设需取用浓硫酸的体积为V, 则:
M
V
H2SO
4
cV
'
V
cV
'M
H2SO4
0.10mol L-1 500 103L 98.0g mol-1 1.84 103g L1 0.96
2.8103L
配置溶液时,首先量取浓硫酸2.8 mL,将其缓缓加入约 400 mL的蒸馏水中,然后在容量瓶中定容至500 mL。
22
几 种 液 体 的 蒸 气 压 曲 线
①蒸气压是液体的重 要性质; ②蒸气压随温度升高 而增大。
23
溶液的蒸气压下降
在纯溶剂中加入一定量的 难挥发溶质后,溶剂的表面就 会少量地被溶质粒子所占据, 溶剂的物质的量分数下降,在 单位时间、单位面积内逸出液 面进入气相的溶剂分子数目要 比纯溶剂少。在达到平衡状态 时,溶液的蒸气压就要比相同 温度下纯溶剂的饱和蒸气压低, 这种现象称为溶液的蒸气压下
解:查表1-4,水的沸点为373.15K, 其沸点升高常数Kb=0.52 Kkgmol-1。
Tb
K bbB
Kb
m(C12H O 22 11) M (C12H O 22 11)m(H2O)
0.52K kg
mol 1
68.4g 342 g mol 1 1.00kg
0.10K
Tb Tb (H2O) Tb 373 .15K 0.10K 373.25K
碘化银、氢 氧化铁、硫 化砷溶胶
蛋白质、核 氯化钠、葡萄糖水
酸水溶液
溶液
6
1.2 气体
气体的特性是扩散性和可压缩性。
1.2.1 理想气体状态方程
理想气体 分子本身不占有体积、分子间没有 相互作用力的气体称为理想气体。
①抽象模型,理想气体在实际中并不存在; ②高温、低压情况下实际气体可近似看做理
想气体。
使用物质的 量浓度时应 指明物质的 基本单元。
14
1.3.2 质量摩尔浓度
质量摩尔浓度 单位质量溶剂中所含溶质B的物质的量。
bB
nB mA
(1-7)
mA为溶剂的质量,SI单位为kg; ①质量摩尔浓度与
bB的单位为molkg-1。
温度无关; ②使用质量摩尔浓
度时应指明物质的
基本单元。
15
Question 例1-3 将0.270 g KCl晶体溶于100 g水中,
21
1.4.1 溶液蒸汽压的下降
液体的蒸发
一定温度下,敞口容 器中液体将不断蒸发 至没有液体留下。
一定温度下,密 闭容器中的液体 随着蒸发进行, 最终将达到液体 蒸发与气体凝结 的动态平衡状态, 蒸气压力不再变 化。
a 敞口容器
b 密闭容器中
液体的饱和蒸汽压 在一定温度下,液体与其蒸气平衡时 的蒸气压力为该温度下的液体的饱和蒸气压,简称蒸气压。
Tb/K 373.15 353.35 351.65 329.65 334.45 307.55
Kb/ Kkgmol-1 0.52 2.53 4.88 1.71 3.63 2.16
29
Question 例1-5 68.4g蔗糖(C12H22O11, M=342 gmol-1)溶于 1000g水中,计算该溶液的沸点。
A
ωB的SI单位为1 。
(1-8)
物质的量浓度与质量分数间的换算:
cB
nB V
mB M BV
mB
M Bm
B
MB
(1-9)
17
Question
例1-4 已知浓硫酸的密度ρ= 1.84 gmL-1, 硫酸 的质量分数为96.0 %,若配置500 mL c(H2SO4)=0.10 molL-1的稀硫酸,应取浓硫酸多 少毫升?
kPa时,密度ρ=2.55 g·L-1,由化学分析结果可知
该化合物中碳原子数与氢原子数之比为1:1。试
解:
确定该化合物的分子式。
设该化合物的摩尔质量为M,质量为m, 组成为(CH)x。
根据理想气体状态方程:pV = nRT
得: pV m RT M
故: M mRT ρRT
pV
p
由:
2.55
10
3
i 1
(1-3)
10
水的饱和蒸汽压
水在不同温度下的饱和蒸气压
温度 /℃ 0 5 11 12 13 14 15 16 17
压力 /kPa 0.61 0.87 1.31 1.40 1.49 1.60 1.71 1.81 1.93
温度 /℃ 18 23 29 30 31 32 33 34 35
压力 /kPa 2.07 2.81 4.00 4.24 4.49 4.76 5.03 5.32 5.63
溶液的沸点升高现象
难挥发非电解质稀溶液的蒸气压比纯溶剂要低,所以在 达到溶剂沸点时,溶液不能沸腾。为了使溶液沸腾,就必 须使溶液的温度升高,加剧溶剂分子的热运动,以增加溶 液的蒸气压。当溶液的蒸气压与外压相等时,溶液开始沸 腾。显然此时溶液的温度应高于纯溶剂的沸点。
27
p
p=101.325kPa
沸点升高示意图
p< pΘ
溶剂 溶液
Tb′ Tb
T
难挥发物质的溶液的沸点总是高于纯溶剂的沸点,
对于难挥发非电解质的稀溶液:
△Tb = Tb – Tb′ = kbbB
(1-15)
kb称为溶剂的沸点升高常数,单位为K·kg·mol-1。
28
表1-4 几种常见溶剂的Tb和Kb
溶剂
水(H2O) 苯(C6H6) 四氯化碳(CCl4) 丙酮(CH3COCH3) 三氯甲烷(CHCl3) 乙醚(C2H5OC2H5)
18
1.3.4 物质的量分数
物质的量分数 B的物质的量与混合物总的物质的量之比。
xB
nB nB nA n总
A
xB的量纲为1。
(1-11)
两组分体系中: xA + xB=1
多组分体系中: xi 1
i
19
稀溶液中浓度换算的近似处理
i)两组分溶液,溶质B含量较少时:
cB
nB
m
nB
mA mB
法收集氮气150 mL。求在273K,101.3 kPa下该 气体经干燥后的体积。 解: 查表1-3得,290K(17℃)时水的饱和蒸汽压为1.93k Pa。
根据分压定律: p(N2)=p(总)-p(H2O)=99.3 kPa -1.93 kPa =97.4 kPa
设氮气干燥后的体积为V′,压力为 p′,温度为T ′,则:
降。
24
拉乌尔定律(Roult’s Law ) 表述1
一定温度下,稀溶液的蒸气压等 于纯溶剂饱和蒸气压与溶液中溶剂 的物质的量分数的乘积。
p p0 xA
(1-12)
两组分体系中: xA xB 1
p p0 xA p0 (1 xB ) p0 p0 xB
拉乌尔(Raoult F M, 1830-1901),法国化 学家,主要从事溶液 的性质研究。
温度 /℃ 40 65 95 96 97 98 99 100 101
压力 /kPa 7.37 25.00 84.54 87.67 90.94 94.30 97.75 101.32 105.00
水的饱和蒸汽压 只与温度有关。
11
Question 例1-2 在290 K,99.3 kPa的气压下,用排水集气
项目
分散相粒径 /nm
分散相 稳定性
扩散及透过性
相态
粗分散系
胶体分散系
小分子或离子分散
溶胶
高分子溶液
系
>100
1~100
<1
分子大集合体 分子小集合体 高分子
小分子或离子
不稳定
较稳定
稳定
扩散很慢,颗 粒不能透过滤
纸
扩散慢,颗粒不能透过半透 扩散快,颗粒能透
膜
过半透膜
多相体系
均相体系
主要实例
泥浆、乳汁
30
溶液的凝固点下降
凝固点
在p=101.325kPa的空气中,纯液体与其固相平衡的温度就 是该液体的正常凝固点,也称为液体的冰点或固体的熔点。
溶液的凝固点降低
向一纯溶剂与其固相共存的平衡体系中加入溶质,则会 引起溶剂的蒸气压下降,导致平衡破坏。对于固相,由于 与之平衡的蒸气压要高于此时溶液的蒸气压,所以,此时 必然有固相溶剂融化,降低溶液的浓度,以抵消加入溶质 后所引起的液相蒸气压下降作用。而固相溶剂在融化中要 吸收大量的热,所以在重新达到平衡过程中,整个系统的 温度要降低,进而引起固相溶剂和溶液上方蒸气压的下降。 该现象被称为溶液的凝固点降低。
7
理想气体状态方程 理想气体的压力p、体积V、 温度T、和物质的量n之间存在确定的函数关系。
pV = nRT
(1-1)
p为气体压力,单位:Pa; V为气体体积,单位:m3; T为气体温度,单位:K;
n为气体的物质的量,单位:mol;
R为摩尔气体常数,取值8.314 Jmol-1K-1 。
8
Question 例1-1 某碳氢化合物的蒸汽,在100℃及101.325
第一章 气体、溶液和胶体
1
学习要求
1.了解分散系的种类及主要特征。 2.掌握理想气体状态方程、道尔顿分压定
律及二者的应用。 3.掌握蒸气压下降、沸点升高和凝固点降
低、渗透压等稀溶液的通性及其重要应用。 4.熟悉胶体的基本概念、结构和重要性质
等。 5.了解高分子溶液、表面活性物质、乳浊
液的基本概念和重要特征。
表述2
p0 p p0xB
p p0 xB (1-13)
一定温度下,难挥发非 电解质稀溶液的蒸气压 下降值与溶质的物质的 量分数成正比。