阻火器的选用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻火器的选用
1 阻火器的作用及工作原理
1.1 阻火器的作用
阻火器是用来阻止易燃气体、液体的火焰蔓延和防止回火而引起爆炸的安全装置。通常装在输送或排放易燃易爆气体的储罐和管线上。作用是防止外部火焰窜入存有易燃易爆气体的设备、管道内或阻止火焰在设备、管道间蔓延。阻火器是应用火焰通过热导体的狭小孔隙时,由于热量损失而熄灭的原理设计制造。阻火器的阻火层结构有砾石型、金属丝网型或波纹型。
石油化工装置的设计中,阻火器是用于阻止可燃气火焰继续传播的安全装置,自1928 年首先应用于石油工业以来,由于其简便易行而被石油及化工装置大量采用。国内石油化工装置中,阻火器应用已很普通,但在装置设计中,尤其是在线(管道) 阻火器选型中的某些细节问题还容易被忽视。
1.2 阻火器的工作原理
关于阻火器的工作原理,目前主要有两种观点:一是基于传热作用;一是基于器壁效应。
1、传热作用
燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰。设计阻火器内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。
2、器壁效应
燃烧与爆炸并不是分子间直接反应,而是受外来能量的激发,分子键遭到破坏,产生活化分子,活化分子又分裂为寿命短但却很活泼的自由基,自由基与其它分子相撞,生成新的产物,同时也产生新的自由基再继续与其它分子发生反应。当燃烧的可燃气通过阻火元件的狭窄通道时,自由基与通道壁的碰撞几率增大,参加反应的自由基减少。当阻火器的通道
窄到一定程度时,自由基与通道壁的碰撞占主导地位,由于自由基数量急剧减少,反应不能继续进行,也即燃烧反应不能通过阻火器继续传播。
2 阻火器的分类
2.1 按性能分类
1、阻爆燃型阻火器:用于阻止亚声速传播的火焰蔓延。
2、阻爆轰型阻火器:用于阻止声速和超声速传播的火焰蔓延。
2.2 按使用场所分类
1、放空阻火器:安装在储罐(或槽车)的放空管道上,用以防止外部火焰传入储罐(或槽车)内,分为管端型和普通型。
(1)管端型:一端与大气相通,为防止灰尘和雨水进入阻火器内部,顶部安装由温度
控制开启的防风雨帽。管端型放空阻火器为阻爆燃型。
(2)普通型:两端与管道相连,通过下游管道与大气相通。分为阻爆燃型和阻爆轰型。2、管道阻火器:安装在密闭管路系统中,用以防止管路系统一端的火焰蔓延到管路系统的另一端。分为阻爆燃型和阻爆轰型。
2.3 按结构分类
1、充填型阻火器:又称填料型阻火器。
2、板型阻火器:有平行板型和多孔板型两种。
3、金属网型阻火器:这种类型的阻火器熄灭火焰的能力有限,目前已很少使用。
4、液封型阻火器:这类阻火器的特点是可以用于含有少量固体粉粒的物料体系。
5、波纹型阻火器。
以上5种类型的阻火器在工业实践过程中,波纹型阻火器由于其稳定的性能而得到广泛的应用。本规定以波纹型阻火器为例来说明阻火器的选用、安装和维护。
3 阻火器的设置
3.1 放空阻火器的设置
1、石油油品储罐阻火器的设置按《石油库设计规范》(GBJ74-84)规定执行。
2、化学油品的闪点≥43℃的储罐(和槽车),其直接放空管道(含带有呼吸阀的放空管道)上设置阻火器。
3、储罐(和槽车)内物料的最高工作温度大于或等于该物料的闪点时,其直接放空管道(含带有呼吸阀的放空管道)上设置阻火器。最高工作温度要考虑到环境温度变化、日光照射、加热管失控等因素。
4、可燃气体在线分析设备的放空汇总管上设置阻火器。
5、进入爆炸危险场所的内燃发动机排气口管道上设置阻火器。
3.2 管道阻火器的设置
1、输送有可能产生爆燃或爆轰的爆炸性混合气体的管道(应考虑可能的事故工况),在接收设备的入口处设置管道阻火器。
2、输送能自行分解爆炸并引起火焰蔓延的气体物料的管道(如乙炔),在接收设备的人口或由试验确定的阻止爆炸最佳位置上,设置管道阻火器。
3、火炬排放气进入火炬头前应设置阻火器或阻火装置。
4、其它应设置管道阻火器的场合。
4阻火器的选用
4.1 阻火器的选用步骤
1、根据使用场所决定采用放空阻火器还是管道阻火器。
2、确定采用阻爆燃型阻火器还是阻爆轰型阻火器。
火焰波在管道内的传播速度不仅与介质种类、所在管道的温度、压力有关外,还与阻火器与点火源之间的距离、安装位置、阻火器与点火源间的管道形状有关。因此选用的阻火器阻火元件的通道直径要能阻止这种情况下的火焰蔓延,这就需要确定是采用阻爆燃型还是阻爆轰型阻火器,通常由试验或根据经验来确定。
3、根据介质在实际工况条件下的MESG值来选用合适规格的阻火器。
(1)最大实验安全间隙MESG值
火焰通过阻火元件的细小通道并在通道内降温。当火焰被分割小到一定程度时,经通道移走的热量足以将温度降到可燃物燃点以下,使火焰熄灭。或由器壁效应解释,当通道窄到一定程度时,自由基与管道壁的碰撞占主导地位,自由基大量减少,燃烧反应不能继续进行。因此,把在一定条件下(0.1 MPa,20 ℃)刚好能够使火焰熄灭的通道尺寸定义为“最大实验安全间隙”(缩写为MESG:Maximum Experimental Safe Gap)。阻火元件的通道尺寸是决定阻火器性能的关键因素,不同气体具有不同的MESG值。因此,在选择阻火器时,应根据可燃气体的组成确定其MESG值。在具体选择时,又根据MESG值将气体划分为几
国标《爆炸性环境用防爆电气设备通用要求》GB 3836.1-83中,对爆炸性气体混合物
在选用阻火器时,即可在设计规定使用的规范中首先查出所用可燃气体的等级,然后根据该组气体对应的MESG 值来选择相应的阻火元件。
(2)混合气体MESG值的确定
在化工装置设计中,经常会遇到混合可燃性气体。在这种情况下,可根据混合气体的具体组成来确定选用依据。表3给出不同的可燃性气体混合后可能出现的几种情况以及选用建议。
对于混合可燃气体选取MESG时,应更加慎重。当可燃混合气体的组分之间有可能发生反应时,最安全的方法是将气体组成及操作条件提供给专业制造厂,由制造厂根据模拟实验确定MESG值。另外,虽然理论上选用所有可燃气体中MESG值最小的阻火器可能是安全的,但在实际应用中,还要考虑整个管路系统(尤其是管道阻火器)是否对该元件有压力降要求。因为MESG值越小,通过阻力越大,有可能需要扩大阻火器直径以达到工艺要求。