高层结构与钢结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层结构与钢结构
近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
最初的高层建筑设计是从钢结构的设计开始的。钢筋混凝土和受力外包钢筒系统运用起来是比较经济的系统,被有效地运用于大批的民用建筑和商业建筑中。50层到100层的建筑被定义为超高层建筑。而这种建筑在美国得广泛的应用是由于新的结构系统的发展和创新。
这样的高度需要增大柱和梁的尺寸,这样以来可以使建筑物更加坚固以至于在允许的限度范围内承受风荷载而不产生弯曲和倾斜。过分的倾斜会导致建筑的隔离构件、顶棚以及其他建筑细部产生循环破坏。除此之外,过大的摇动也会使建筑的使用者们因感觉到这样的的晃动而产生不舒服的感觉。无论是钢筋混凝土结构系统还是钢结构系统都充分利用了整个建筑的刚度潜力,因此不能指望利用多余的刚度来限制侧向位移。
在钢结构系统设计中,经济预算是根据每平方英寸地板面积上的钢材的数量确定的。图示1中的曲线A显示了常规框架的平均单位的重量随着楼层数的增加而增加的情况。而曲线B显示则显示的是在框架被保护而不受任何侧向荷载的情况下的钢材的平均重量。上界和下界之间的区域显示的是传统梁柱框架的造价随高度而变化的情况。而结构工程师改进结构系统的目的就是减少这部分造价。
钢结构中的体系:钢结构的高层建筑的发展是几种结构体系创新的结果。这些创新的结构已经被广泛地应用于办公大楼和公寓建筑中。
刚性带式桁架的框架结构:为了联系框架结构的外柱和内部带式桁架,可以在建筑物的中间和顶部设置刚性带式桁架。1974年在米望基建造的威斯康森银行大楼就是一个很好的例子。
框架筒结构:如果所有的构件都用某种方式互相联系在一起,整个建筑就像是从地面发射出的一个空心筒体或是一个刚性盒子一样。这个时候此高层建筑的整个结构抵抗风荷载的所有强度和刚度将达到最大的效率。这种特殊的结构体系首次被芝加哥的43层钢筋混凝土的德威特红棕色的公寓大楼所采用。但是这种结构体系的的所有应用中最引人注目的还要属在纽约建造的100层的双筒结构的世界贸易中心大厦。
斜撑桁架筒体:建筑物的外柱可以彼此独立的间隔布置,也可以借助于通过梁柱中心线的交叉的斜撑构件联系在一起,形成一个共同工作的筒体结构。这种高度的结构体系首次被芝加哥的John Hancock 中心大厦采用。这项工程所耗用的刚才量与传统的四十层高楼的用钢量相当。
筒体:随着对更高层建筑的要求不断地增大。筒体结构和斜撑桁架筒体被设计成捆束状以形成更大的筒体来保持建筑物的高效能。芝加哥的110层的Sears Roebuck 总部大楼有9个筒体,从基础开始分成三个部分。这些独立筒体中的终端处在不同高度的建筑体中,这充分体现出了这种新式结构观念的建筑风格自由化的潜能。这座建筑物1450英尺(442米)高,是世界上最高的大厦。
薄壳筒体系统:这种筒体结构系统的设计是为了增强超高层建筑抵抗侧力的能力(风荷载和地震荷载)以及建筑的抗侧移能力。薄壳筒体是筒体系统的又一大飞跃。薄壳筒体的进步是利用高层建筑的正面(墙体和板)作为与筒体共同作用的结构构件,为高层建筑抵抗侧向荷载提供了一个有效的途径,而且可获得不用设柱,成本较低,使用面积与建筑面积之比又大的室内空间。
由于薄壳立面的贡献,整个框架筒的构件无需过大的质量。这样以来使得结构既轻巧又经济。所有的典型柱和窗下墙托梁都是轧制型材,最大程度上减小了组合构件的使用和耗费。
托梁周围的厚度也可适当的减小。而可能占据宝贵空间的墙上镦梁的尺寸也可以最大程度地得到控制。这种结构体系已被建造在匹兹堡洲的One Mellon银行中心所运用。
钢筋混凝土中的各体系:虽然钢结构的高层建筑起步比较早,但是钢筋混凝土的高层建筑的发展非常快,无论在办公大楼还是公寓住宅方面都成为刚结构体系的有力竞争对手。
框架筒:像上面所提到的,框架筒构思首次被43层的迪威斯公寓大楼所采用。在这座大楼中,外柱的柱距为5.5英尺(1.68米)。而内柱则需要支撑8英寸厚的无梁板。
筒中筒结构:另一种针对于办公大楼的钢筋混凝土体系把传统的剪力墙结构与外框架筒相结合。该体系由柱距很小的外框架与围绕中心设备区的刚性剪力墙筒组成。这种筒中筒结构(如插图2)使得当前世界上最高的轻质混凝土大楼(在休斯顿建造的独壳购物中心大厦)的整体造价只与35层的传统剪力墙结构相当。
钢结构与混凝土结构的联合体系也有所发展。Skidmore ,Owings 和Merrill共同设计的混合体系就是一个好例子。在此体系中,外部的混凝土框架筒包围着内部的钢框架,从而结合了钢筋混凝土体系与钢结构体系各自的优点。在新奥尔良建造的52层的独壳广场大厦就是运用了这种体系。
钢结构是指在建筑物结构中钢材起着主导作用的结构,是一个很宽泛的概念。大部分的钢结构都包括建筑设计,工程技术、工艺。通常还包括以主梁、次梁、杆件,板等形式存在的钢的热轧加工工艺。上个世纪七十年代,除了对其他材料的需求在增长,钢结构仍然保持着对于来自美国、英国、日本、西德、法国等国家的钢材厂钢材的大量需求。
发展历史:早在Bessemer和Siemens-Marton(开放式炉)工艺出现以前,钢结构就已经有几十年的历史了。而直到此工艺问世之后才使得钢材可以大批生产出来供结构所用。对钢结构诸多问题的研究开始于铁结构的使用,当时很著名的研究对象是1977年在英国建造的横跨斯沃河的Coalbrook dale 大桥。这座大桥以及后来的铁桥设计再加上蒸汽锅炉、铁船身的设计都刺激了建筑安装设计以及连接工艺的发展。铁结构对材料的需求量较小是优胜于砖石结构的主要方面。长久以来一直用木材制作的三角桁架也换成铁制的了。承受由直接荷载产生的重力作用的受压构件常用铸铁制造,而承受由悬挂荷载产生的推力作用的受拉构件常用熟铁制造。
把铁加热到塑性状态,使之从卷状转化为扁平状与圆状之间的某一状态的工艺,早在1800年就得以发展了。随后,1819年角钢问世,1894年第一个工字钢被建造出来作为巴黎火车站的顶梁。此工字钢长17.7英尺)(5.4米)。
1851年英国的Joseph Paxtond为伦敦博览会建造了水晶宫。据说当时他已有这样的骨架结构构思:用比较细的铁梁作为玻璃幕墙的骨架。此建筑的风荷载抵抗力是由对角拉杆所提供的。在金属结构的发展历史中,有两个标志性事件:首先是从木桥发展而来的格构梁由木制转化为铁制;其次是锻铁制的受拉构件与铸铁制的受压构件受热后通过铆钉连接工艺的发展。
十九世纪五六十年代,Bessemer 与Siemens-Martin工艺的发展使钢材的生产能满足结构的需求。钢的受拉强度与受压强度都好于铁。这种新型的金属常被有想象力的工程师所利用,尤其倍受那些参与过英国、欧洲以及美国的道桥建设的工程师的喜爱。
其中一个很好的例子就是Eads大桥(也被称为路易斯洲大桥)(1867-1874)。在这座大桥中,每隔500英尺(152.5米)设有由钢管加强肋形成的拱。英国的Firth of Forth悬索桥设有管件支撑,直径大约为12英尺(3.66米),长度为350英尺(107)米。这些大桥以及其他结构在引导钢结构的发展,规范的实施,许用应力的设计方面起到了很重要的作用。1907年Quebec悬索大桥的偶然破坏揭露了二十世纪初期由于缺乏足够的理论知识,甚至是缺乏足够的理论研究的基础知识,而导致在应力分析方面出现了很多的不足。但是,这样的损坏却很少出现在金属骨架的办公大楼中。因为尽管在缺乏缜密的分析的情况下,这些建筑也表