广东省河源市中考数学试题(卷)

合集下载

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·凤庆期中) 下列说法正确的是()A . 若|a|=﹣a,则a<0B . 若a<0,ab<0,则b>0C . 式子3xy2﹣4x3y+12是七次三项式D . 若a=b,m是有理数,则2. (2分)下列运算中,计算正确的是()A . 3x2+2x2=5x4B . (﹣x2)3=﹣x6C . (2x2y)2=2x4y2D . (x+y2)2=x2+y43. (2分) (2017七上·腾冲期末) 下列图形中,∠1和∠2互为余角的是()A .B .C .D .4. (2分)已知3x=4y,则的值为()A .B .C .D .5. (2分)若分式的值为0,则x的值为()A . 4B . ﹣4C . ±4D . 36. (2分)空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A . 扇形统计图B . 条形统计图C . 折线统计图D . 频数分布直方图7. (2分)(2017·黔东南模拟) 若关于x的方程kx2+(k+1)x+1=0有两个相等的实数根,则次方程的解为()A . 1B . ﹣1C . 2D . ﹣28. (2分)如图,正方形ABCD的边长为2,其面积标记为S1 ,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 ,…按照此规律继续下去,则S2015的值为()A .B .C .D .9. (2分) (2016九上·温州期末) 如图,边长为1的小正方形构成的网格中,半径为2的⊙O的圆心O在格点上,则∠BDE的正切值等于()A .B .C .D . 210. (2分) (2017九上·巫溪期末) 下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分)计算:3﹣= ________12. (1分)已知,则=________13. (1分) (2017七下·江都月考) 一个多边形的内角和是1800°,这个多边形是________边形.14. (1分)(2019·湖南模拟) 已知一个几何体的三视图如图所示,则这个几何体的侧面积是________ .15. (1分) (2018八上·江都期中) 已知(2a+1)2+=0,则-a+b2018=________.16. (1分)(2017·黔南) 一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为________.17. (1分)已知18°的圆心角所对的弧长是 cm ,则此弧所在圆的半径是________cm .18. (1分) (2017七上·昆明期中) 某种圆形零件的尺寸要求是mm(φ表示其直径,单位是毫米),经检查,某个零件的直径是19.9mm,该零件________ (填“合格”或“不合格”)三、解答题(一) (共5题;共37分)19. (10分)(2019·重庆) 计算:(1) (a+b)2+a(a-2b)(2)20. (10分)(2011·扬州) 已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)21. (5分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第几次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?22. (5分)如图,某人由西向东行走到点A,测得一个圆形花坛的圆心O在北偏东60°,他继续向东走了60米后到达点B,这时测得圆形花坛的圆心O在北偏东45°,已知圆形花坛的半径为51米,若沿AB的方向修一条笔直的小路(忽略小路的宽度),则此小路会通过圆形花坛吗?请说明理由.(参考数据≈1.73,≈1.41)23. (7分)(2017·景德镇模拟) 现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关,否则不算过关.(1)过第1关是________事件(填“必然”、“不可能”或“不确定”,后同),过第4关是________事件;(2)当n=2时,计算过过第二关的概率(可借助表格或树状图).四、解答题(二) (共5题;共57分)24. (7分)(2017·江汉模拟) 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计m1(1)计算m=________;(2)在扇形统计图中,“其他”类所占的百分比为________;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.25. (15分)如图,一次函数y=x+m的图象与反比例函数y= 的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)连接OA,OB,求△OAB的面积;(3)结合图象直接写出不等式组0<x+m≤ 的解集.26. (10分) (2019八上·扬州月考) 如图,AB=CD,EC=BF,∠ECA=∠DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.27. (10分) (2018九下·江都月考) 如图,AB为⊙O的直径,点C在⊙O 上,点P是直径AB上的一点,(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.(1)点D在线段PQ上,且DQ=DC.求证:CD是⊙O的切线;(2)若sin∠Q= ,BP=6,AP=2,求QC的长.28. (15分)如图,平面直角坐标系xOy中,直线y=kx+2028与顶点为C的抛物线y= x2+2019相交于A(x1 , y1),B(x2 , y2)两点,其中x1=﹣1.(1)求k的值;(2)求证:点(y1﹣2019,y2﹣2019)在反比例函数y=的图象上;(3)小安提出问题:若等式x1•BC+y2•AC=m•AC恒成立,则实数m的值为2019.请通过演算分析“小安问题”是否正确.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一) (共5题;共37分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、四、解答题(二) (共5题;共57分)24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

广东省河源市2020年(春秋版)中考数学试卷A卷

广东省河源市2020年(春秋版)中考数学试卷A卷

广东省河源市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·襄城期中) ﹣2的相反数是()A . 2B . ﹣2C .D . ﹣2. (2分) (2015七下·绍兴期中) 下列计算中,正确的是()A . a•a2=a2B . 2a+3a=5aC . (2x3)2=6x3D . (x2)3=x53. (2分)(2014·崇左) 震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()A . 4.5×102B . 4.5×103C . 45.0×102D . 0.45×1044. (2分)(2019·瑞安模拟) 某市4月份第一周每天最高气温(℃)分别为:19,19,22,24,19,20,24,则该市这一周每天最高气温的众数和中位数分别是()A . 19,22B . 24,20C . 19,24D . 19,205. (2分) (2017九上·重庆期中) 在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A .B .C .D .6. (2分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A .B .C .D .7. (2分) (2016九上·滨海期中) 二次函数y= (x﹣2)2﹣1图象的顶点坐标是()A . (﹣2,﹣1)B . (2,﹣1)C . (﹣2,1)D . (2,1)8. (2分)(2018·哈尔滨) 如图,在菱形ABCD中,对角线AC、BD相交于点0,BD=8,tan∠ABD= ,则线段AB 的长为().A .B . 2C . 5D . 10二、填空题 (共8题;共8分)9. (1分)(2018·濠江模拟) 函数中自变量x的取值范围为________.10. (1分)(2016·张家界) 因式分解:x2﹣4=________.11. (1分) (2018八上·孟州期末) 如图,线段BD、CE相交于点A,DE BC.如果AB=4,AD=2,DE=1.5,那么BC的长为________.12. (1分)若点(2,1)在双曲线上,则k的值为________ .13. (1分)如果圆的半径为6,那么60°的圆心角所对的弧长为1 .14. (1分)(2019·下城模拟) 如图,过圆外一点P作⊙O的切线PC,切点为B,连结OP交圆于点A.若AP =0A=1,则该切线长为________.15. (1分)(2018·连云港) 如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A、B两点,⊙O经过A、B两点,已知AB=2,则的值为________.16. (1分) (2018九上·仁寿期中) 如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的长为__________。

河源市2020版中考数学试卷C卷

河源市2020版中考数学试卷C卷

河源市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的相反数是()A .B .C .D .2. (2分)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A .B .C .D .3. (2分) (2017八下·府谷期末) 把多项式x2﹣8x+16分解因式,结果正确的是()A . (x﹣4)2B . (x﹣8)2C . (x+4)(x﹣4)D . (x+8)(x﹣8)4. (2分)一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A . 155D . 1605. (2分) (2019七下·南海期末) 如图,若直线a∥b,AC⊥AB,∠1=34°,则∠2的度数为()A . 34°B . 56°C . 66°D . 146°6. (2分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A . 8B . 6C . 14D . 167. (2分)计算的结果为()A .B . -C . -1D . 28. (2分)不等式组的解集是()C .D .9. (2分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC 的长是()A . 4B . 3C . 5D . 4.510. (2分) (2019八下·东莞期中) 如图,AD=1,点M表示的实数是()A .B .C . 3D .二、填空题 (共6题;共15分)11. (1分) (2020七下·溧阳期末) 一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了________ .12. (1分) (2017八上·潮阳月考) 已知等腰三角形的两边长分别为x和y,且x和y满足|x﹣5|+(y﹣2)2=0,则这个等腰三角形的周长为________.13. (1分)(2019·云南) 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是________14. (1分) (2016·平房模拟) 有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为________.15. (1分)(2020·邵阳) 如图,线段,用尺规作图法按如下步骤作图.①过点B作的垂线,并在垂线上取;②连接,以点C为圆心,为半径画弧,交于点E;③以点A为圆心,为半径画弧,交于点D .即点D为线段的黄金分割点.则线段的长度约为________ (结果保留两位小数,参考数据:)16. (10分)如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.三、解答题 (共8题;共82分)17. (10分) (2019八上·福田期末) 计算下列各题:(1) ;(2) .18. (10分) (2019九下·锡山期中) 计算:(1) .(2)化简:(a+1)2-a(a+1)-1.19. (5分)(2017·濮阳模拟) 如图,在坡顶B处的同一水平面上有一座纪念碑CD垂直于水平面,小明在斜坡底A处测得该纪念碑顶部D的仰角为45°,然后他沿着坡比i=5:12的斜坡AB攀行了39米到达坡顶,在坡顶B 处又测得该纪念碑顶部的仰角为68°.求坡顶B到地面AE的距离和纪念碑CD的高度.(结果精确到1米,参考数据:sin68°=0.9,cos68°=0.4,tan68°=2.5)20. (16分)(2017·路南模拟) 从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出 =83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①②③④⑤甲成绩/分798682a83乙成绩/分8879908172根据以上信息,回答下列问题:(1) a=________(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于8221. (12分) (2018八上·龙岗期中) 如图,在平面直角坐标系中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,OA=12,OC=9,连接AC.(1)填空:点A的坐标:________;点B的坐标:________;(2)若CD平分∠ACO,交x轴于D,求点D的坐标;(3)在(2)的条件下,经过点D的直线交直线BC于E,当△CDE为以CD为底的等腰三角形时,求点E的坐标.22. (9分) (2019八上·吴江期末) 初二班同学从学校出发去某自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20分钟后乘坐小轿车沿同一路线出行大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变小轿车司机因路线不熟错过了景点入口,再原路提速返回,恰好与大客车同时到达景点入口两车距学校的路程单位:千米和行驶时间单位:分钟之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________千米,大客车途中停留了________分钟, ________千米;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.23. (10分)解下列方程组(1)(2).于E ,交AC延长线于F .求证:(1)△ADF∽△EDB;(2) CD2=DE•DF .参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共15分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共8题;共82分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。

广东省河源市2020年(春秋版)中考数学试卷B卷

广东省河源市2020年(春秋版)中考数学试卷B卷

广东省河源市2020年(春秋版)中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·侯马期中) 若(x+y﹣3)2与3|x﹣y﹣1|互为相反数,则yx的值是()A .B . 1C . 2D . 42. (2分)已知∠1=40°,则∠1的余角的度数是()A . 40°B . 50°C . 140°D . 150°3. (2分)(2017·湖州模拟) 支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()A . 4.73×108B . 4.73×109C . 4.73×1010D . 4.73×10114. (2分)(2017·齐齐哈尔) 下列算式运算结果正确的是()A . (2x5)2=2x10B . (﹣3)﹣2=C . (a+1)2=a2+1D . a﹣(a﹣b)=﹣b5. (2分) (2018七上·铁西期末) 由若干个完全相同的小立方块搭成一个几何体,这个几何体从左面和上面看到的形状如图所示,则小立方块的个数不可能是()A . 5B . 6C . 7D . 86. (2分)(2017·安徽模拟) 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④ 的最小值为3.其中正确的是()A . ①②③B . ②③④C . ①③④D . ①②③④7. (2分) 2012年春季,我省部分地区腮腺炎流行,卫生部门采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日到30日每天我省某市腮腺炎新增确诊病例数据图.将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28.其中正确的有()A . 0个B . 1个C . 2个D . 3个8. (2分)如图,在⊙O中,弦AC=2 cm,C为⊙O上一点,且∠ABC=120°,则⊙O的直径为()A . 2cmB . 4 cmC . 4cmD . 6cm9. (2分) (2016七下·黄陂期中) 如图,利用直尺和三角尺作平行线,其依据是()A . 同位角相等,两直线平行B . 内错角相等,两直线平行C . 同旁内角互补,两直线平行D . 两直线平行,同位角相等10. (2分)不等式组的解集为A . -2<x<4B . x<4或x≥-2C . -2≤x<4D . -2<x≤411. (2分) (2016八上·宜兴期中) 如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2 .A . 72B . 90C . 108D . 14412. (2分) (2016七上·阳新期中) 用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用棋子()A . 4n枚B . (4n﹣4)枚C . (4n+4)枚D . n2枚二、填空题. (共6题;共6分)13. (1分) (2016八下·余干期中) 若实数a、b满足,则 =________.14. (1分)函数y= 的自变量的取值范围是________.15. (1分) (2015八下·镇江期中) 在菱形ABCD中,如果∠A=60°,那么∠B=________°.16. (1分) 2015年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组,各组人数所占比例如图所示,已知青年组120人,则中年组的人数是________17. (1分) (2019九上·柳江月考) 如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC顺时针旋转a度,得到△A'BC',点A'恰好落在AC上,则∠ACC'=________。

广东省河源市中考数学试题(含答案)

广东省河源市中考数学试题(含答案)

2022年中考往年真题练习: 中考数学试题(广东河源卷)(本试卷满分120分, 考试时间100分钟)一、挑选题(本大题共5小题, 每小题3分, 满分15分)1.21⎪⎭⎫⎝⎛--=【】A.-2 B.2 C.1 D.-1【答案解析】C。

2.下列图形中是轴对称图形的是【】【答案解析】C。

3.为参加2022年中考往年真题练习: “河源市初中毕业生升学体育考试”, 小峰同学进行了刻苦训练,在投掷实心球时, 测得5次投掷的成绩(单位: m) 为: 8、8. 5、9、8. 5、9. 2.这组数据的众数和中位数依次是【】A.8. 64, 9 B.8. 5, 9 C.8. 5, 8. 75 D.8. 5, 8. 5【答案解析】D。

4.如图, 在折纸活动中, 小明制作了一张△ABC纸片, 点D、E分别在边AB、AC上, 将△ABC沿着DE折叠压平, A与A′重合.若∠A=75º, 则∠1+∠2=【】A.150ºB.210ºC.105ºD.75º【答案解析】A。

5.在同一坐标系中, 直线y=x+1与双曲线y= 1x的交点个数为【】A.0个B.1个C.2个D.不能确定【答案解析】A 。

二、 填空题(本大题共5小题, 每小题4分, 满分20分) 6.若代数式-4x 6y 与x 2n y 是 同类项, 则常数n 的 值为 ▲ . 【答案解析】3。

7.某市水资源十分丰富, 水力资源的 理论发电量约为775 000千瓦, 这个数据用 科学记数法表示为 ▲ 千瓦. 【答案解析】7. 75×105。

8.正六边形的 内角和为 ▲ 度. 【答案解析】720。

9.春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验, 这块正方形木板在 地面上形成的 投影可能是 ▲ (写出符合题意的 两个图形即可) . 【答案解析】正方形、 菱形(答案不唯一) 。

10.如图, 连接在一起的 两个正方形的 边长都为1cm, 一个微型机器人由点A 开始按ABCDEFCGA…的 顺序沿正方形的 边循环移动.①第一次到达点G 时, 微型机器人移动了 ▲cm ;②当微型机器人移动了2021cm 时, 它停在 ▲ 点.【答案解析】7;E 。

广东省河源市2021版中考数学试卷D卷

广东省河源市2021版中考数学试卷D卷

广东省河源市2021版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) |﹣3|的相反数是A . 3B . ﹣3C . ±3D .2. (2分) (2020七下·仁寿期中) 方程的解是()A .B .C .D .3. (2分)如图,将直角三角形ABC向右翻滚,下列说法正确的有()( 1 )①②是旋转;(2)①③是平移;(3)①④是平移;(4)②③是旋转.A . 1种B . 2种C . 3种D . 4种4. (2分) (2019八上·江阴开学考) 下列运算中,正确的是()A . a2+a2=2a4B . a2•a3=a6C . (-3x) 3÷(-3x)=9x2D . (-ab2) 2=-a2b45. (2分)在Rt△ABC中,∠C=90o , AB=13,AC=12,以B为圆心、6为半径的圆与直线AC的位置关系是()A . 相切B . 相交C . 相离D . 不能确定6. (2分) (2017八下·海淀期末) 在△ 中, 为斜边的中点,且,,则线段的长是()A .B .C .D .7. (2分) (2011七下·广东竞赛) 如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连接AE交CD于点M,连接BD交CE于点N,给出以下三个结论:①MN∥AB;② = + ;③MN≤ AB,其中正确结论的个数是()A . 0B . 1C . 2D . 38. (2分)(2020·旌阳模拟) 2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中错误的有()个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A . 1B . 2C . 3D . 49. (2分)(2017·湖州) 在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A .B .C .D .10. (2分)(2018·弥勒模拟) 如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A . 1B . 3C . 6D . 12二、填空题 (共6题;共8分)11. (1分)(2017·盘锦模拟) 函数中,自变量x的取值范围是________.12. (1分)(2017·营口模拟) 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为________.13. (1分)(2017·邵阳模拟) 把多项式2x2﹣4x+2分解因式的结果是________.14. (3分)如图,由△DEF平移得到△ABC,则平移的方向是________,平移的距离是________,若∠A=40°,∠F=65°,则∠B=________.15. (1分) (2020九上·杭州月考) 如图,已知顶点为的抛物线经过点,下列结论:① ;② ;③若点在抛物线上,则;④关于的一元二次方程的两根为和,其中正确的是________.16. (1分)(2020·绥化) 如图,正五边形内接于,点P为上一点(点P与点D ,点E不重合),连接、,,垂足为G ,等于________度.三、解答题 (共8题;共86分)17. (10分) (2020八上·西安期末)(1)(2)18. (5分) (2019八上·温州期末) 解不等式组,并把解表示在数轴上.19. (15分)(2017·安阳模拟) 如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2= 的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.20. (9分) (2020八上·禅城期末) 某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:(1)扇形统计图中,a=________;(2)根据以上统计图中的信息,①问卷得分的极差是________分;②问卷得分的众数是________分;③问卷得分的中位数是________分;(3)请你求出该班同学的平均分.21. (15分)(2014·梧州) 某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x千克(x>0),总费用为y 元,现有两种购买方式.方式一:若商家赞助厂家建设费11500元,则所购茶叶价格为130元/千克;(总费用=赞助厂家建设费+购买茶叶费)方式二:总费用y(元)与购买茶叶数量x(千克)满足下列关系式:y= .请回答下面问题:(1)写出购买方式一的y与x的函数关系式;(2)如果购买茶叶超过150千克,说明选择哪种方式购买更省钱;(3)甲商家采用方式一购买,乙商家采用方式二购买,两商家共购买茶叶400千克,总费用共计74600元,求乙商家购买茶叶多少千克?22. (10分) (2017九上·北海期末) 如图,直径为AB的⊙O交Rt△BCD的两条直角边BC、CD于点E、F,且,连接BF.(1)求证:CD为⊙O的切线;(2)当CF=1且∠D=30°时,求AD长.23. (10分)(2018·柳北模拟) 如图,已知矩形ABCD中,点P为AD边上的一个动点,O为对角线BD的中点,PO的延长线交BC于点E.(1)求证:;(2)若厘米,厘米,点P从点A出发,以的速度向D运动不与D重合设点P的运动时间为tmin,当t为何值时,四边形PBED是菱形.24. (12分)(2017·石家庄模拟) 如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC 交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=________,EN=________;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共86分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

广东省河源市2020年(春秋版)中考数学试卷D卷

广东省河源市2020年(春秋版)中考数学试卷D卷

广东省河源市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列计算中,正确的是().A . 3﹣2=B . =﹣3C . m6÷m2=m3D . (a﹣b)2=a2﹣b22. (2分)如图,是将正方体切去一块后的几何体,则它的俯视图是().A .B .C .D .3. (2分)下列说法正确的是()A . 随机抛掷一枚均匀的硬币,落地后反面一定朝上B . 从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C . 某彩票的中奖率为35%,说明买100张彩票,有35张获奖D . 打开电视,中央一套一定在播放新闻联播4. (2分)下列等式不一定成立的是()A . =(b≠0)B . a3•a﹣5=(a≠0)C . a2﹣4b2=(a+2b)(a﹣2b)D . (﹣2a3)2=4a65. (2分)将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是()A . , 1B . ﹣, 1C . ﹣,﹣1D . ,﹣16. (2分) (2016八上·乐昌期中) 观察下列图形,是轴对称图形的是()A .B .C .D .7. (2分) (2019八下·台州期中) 下列命题中,是真命题的是()A . 长分别为32,42,52的线段组成的三角形是直角三角形B . 连接对角线垂直的四边形各边中点所得的四边形是矩形C . 一组对边平行且另一组对边相等的四边形是平行四边形D . 对角线垂直且相等的四边形是正方形8. (2分)下列一组数:1,4,0,﹣,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A . 2个B . 3个C . 4个D . 5个二、填空题 (共10题;共10分)9. (1分) (2017八下·简阳期中) 已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).10. (1分)记者从市科技局获悉,2007年哈尔滨市将继续加大科技投入力度,科技经费投入总量达到1.395亿元,比上年增加近22%,为近年来增加比例最高的一次。

2024年广东省河源市中考数学二模试卷+答案解析

2024年广东省河源市中考数学二模试卷+答案解析

2024年广东省河源市中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.实数0,,,3中,最大的数是()A.0B.C.D.32.2024年2月15日24时,第二十五届哈尔滨冰雪大世界正式闭园,该届冰雪大世界共计运营61天,累计接待游客2710000人次,为海内外游客展示了中国东北地区的冰雪魅力.将“2710000”用科学记数法表示为()A. B. C. D.3.下列交通标志中,属于轴对称图形的是()A. B. C. D.4.如果等腰三角形的一个底角为,那么另外两个角的度数分别为()A.和B.和C.和D.和5.若是关于x的方程的解,则的值是()A. B.2 C.1 D.06.如图,四边形ABCD的对角线AC、BD交于点O,且互相平分,添加下列条件,仍不能判定四边形ABCD 为菱形的是()A. B.C. D.7.如图,PA,PB分别与相切A,B点,C为上一点,,则()A. B. C. D.8.点O、A、B、C在数轴上的位置如图所示,点O为原点,,,若点B所表示的数为b,则点C所表示的数为()A. B. C. D.9.已知一次函数和反比例函数,当时,x的取值范围为()A.或B.C.或D.10.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形面积为136,小正方形面积为16,则的值为()A. B. C. D.二、填空题:本题共5小题,每小题3分,共15分。

11.因式分解:__________.12.在平面直角坐标系中,点在y轴上,则______.13.罗浮山、丹霞山、西樵山和鼎湖山是广东四大名山,游客甲和游客乙都计划从这四大名山中任选一座进行游玩,则他们选择游玩同一座山的概率为______.14.如图所示,四边形ABCD为长方形,,已知,则______.15.如图,、、均为等边三角形,点O、A、B、C在同一条直线上,,,,则的值为______.三、解答题:本题共9小题,共75分。

广东省河源市中考数学试卷

广东省河源市中考数学试卷

广东省河源市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2016七上·龙海期末) ①如果两个数的和为1,则这两个数互为倒数;②如果两个数积为0,则至少有一个数为0;③绝对值是它本身的有理数只有0;④倒数是它本身的数是﹣1,0,1.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020八上·绵阳期末) 如图,在Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E,交 AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正确结论有()A . ①②③B . ①③④C . ①②③④D . ①②④3. (2分)(2019·聊城) 下列计算正确的是()A .B .C .D .4. (2分)已知样本数据101,98,102,100,99,则这个样本的标准差是()A . 0B . 1C .D . 25. (2分)九边形的内角和为()A . 1260°B . 1440°C . 1620°D . 1800°6. (2分)如图,当y<0时,自变量 x的范围是()A . x<-2B . x>-2C . x<2D . x>27. (2分) (2017八上·曲阜期末) 施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A . ﹣ =2B . ﹣ =2C . ﹣ =2D . ﹣ =28. (2分)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A . 球B . 圆柱C . 三棱柱D . 圆锥9. (2分)如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为()A .B .C . 5D . 610. (2分) (2017九下·六盘水开学考) 如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是().A . 1B . 2C .D .二、填空题 (共5题;共5分)11. (1分) (2017八上·扶沟期末) 计算:(﹣1)2017﹣|﹣7|+ ×(3.14﹣π)0+()﹣1=________.12. (1分)(2016·内江) 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.13. (1分)某商品的标价为200元,8折销售仍赚40元,则商品进价为________ 元.14. (1分)(2017·淮安模拟) 如图,三个小正方形的边长都为1,则图中阴影部分面积的和是________(结果保留π).15. (1分)如图是二次函数y=ax2+bx+c图象的一部分,图象经过点A(﹣3,0)对称轴为直线x=﹣1,给出以下5个结论:①abc>0;②b2>4ac;③2a+b=0;④a+bc>0;⑤若点B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1<y2 .其中正确的序号为________.三、解答题 (共9题;共71分)16. (5分)(2017·威海模拟) 解不等式组并写出它的所有非负整数解.17. (5分) (2017九上·虎林期中) 先化简,再求值,其中x=﹣2.18. (5分)随着国家“亿万青少年学生阳光体育运动”活动的启动,某区各所中小学也开创了体育运动的一个新局面.你看某校七年级(1)、(2)两个班共有100人,在两个多月的长跑活动之后,学校对这两个班的体能进行了测试,大家惊喜的发现(1)班的合格率为96%,(2)班的合格率为90%,而两个班的总合格率为93%,求七年级(1)、(2)两班的人数各是多少?19. (5分)(2017·城中模拟) 如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20. (6分)(2018·射阳模拟) 周末期间.小明和小军到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同.(1)小明选择“4室”的概率为________.(2)用树状图或列表的方法求小明和小华选择取同一间放映室看电影的概率.21. (5分)(2014·崇左) 中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.如图,某天该深潜器在海面下2000米的A点处作业,测得俯角为30°正前方的海底C点处有黑匣子信号发出.该深潜器受外力作用可继续在同一深度直线航行3000米后,再次在B点处测得俯角为45°正前方的海底C点处有黑匣子信号发出,请通过计算判断“蛟龙”号能否在保证安全的情况下打捞海底黑匣子.(参考数据≈1.732)22. (15分)(2017·诸城模拟) 为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?23. (10分) (2017九上·北京期中) 如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C 作⊙O的切线交AB的延长线于点D.(1)求证:CD=CB;(2)如果⊙O的半径为,求AB的长.24. (15分)(2017·杭州) 在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共71分)16-1、17-1、18-1、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。

真题汇总:2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

真题汇总:2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

2022年广东省河源市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )A .AE OE FC OF =B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF = 2、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( ) A .-2 B .2 C .-5 D .5 3、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( ) A .548510⨯ B .648.510⨯ C .74.8510⨯ D .0.48510⨯ ·线○封○密○外4 )AB C D 5、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A .雷B .锋C .精D .神6、等腰三角形的一个内角是100︒,则它的一个底角的度数是( )A .40︒B .80︒C .40︒或80︒D .40︒或100︒7、下列几何体中,俯视图为三角形的是( )A .B .C .D .8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③9、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( ) A .40︒B .80︒C .50︒D .45︒ 10、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( ) A .3B .4C .5D .12第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,晚上小亮在路灯下散步,在由A 点处走到B 点处这一过程中,他在点A ,B ,C 三处对应的在地上的影子,其中影子最短的是在 _____点处(填A ,B ,C ). ·线○封○密○外2、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在RR △RRR 中,∠RRR =90°,点A 在边BP 上,点D 在边CP 上,如果RR =11,RRR ∠RRR =125,13AB ,四边形ABCD 为“对等四边形”,那么CD 的长为_____________.3、直接写出计算结果:(1)(−1)2021+(−0.1)−1−(3−R )0=____;(2)(−512)101×(225)101=____;(3)(R R −1)2⋅R R +1÷R 2R −1=____;(4)102×98=____.4、写出一个比1大且比2小的无理数______.5、在平面直角坐标系中,直线l :R =R −1与x 轴交于点R 1,如图所示依次作正方形R 1R 1R 1R 、正方形R 2R 2R 2R 1、…、正方形R R R R R R R R −1,使得点R 1、2A 、R 3、…在直线1上,点R 1、R 2、3C 、…在y 轴正半轴上,则点R R 的坐标是________.三、解答题(5小题,每小题10分,共计50分)1、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表:量化积分统计表(单位:分)(1)请根据表中的数据完成下表(2)根据量化积分统计表中的数据,请在下图中画出笃行组量化积分的折线统计图. (3)根据折线统计图中的信息,请你对这两个小组连续八周的学习生活情况作出一条简要评价. 2、作图题:(尺规作图,保留作图痕迹)已知:线段a 、b ,求作:线段AB ,使2AB a b =-. ·线○封○密·○外3、在平面直角坐标系中,点A (a ,0),点B (0,b ),已知a ,b 满足248160a b b ++++=.(1)求点A 和点B 的坐标;(2)如图1,点E 为线段OB 的中点,连接AE ,过点A 在第二象限作AF AE ⊥,且AF AE =,连接BF 交x 轴于点D ,求点D 和点F 的坐标;:(3)在(2)的条件下,如图2,过点E 作EP OB ⊥交AB 于点P ,M 是EP 延长线上一点,且2ME PE OA ==,连接MO ,作45MON ∠=︒,ON 交BA 的延长线于点N ,连接MN ,求点N 的坐标.4、阅读下面材料:小钟遇到这样一个问题:如图1,()090AOB αα∠=︒<<︒,请画一个AOC ∠,使AOC ∠与BOC ∠互补.小钟是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠;因此,小钟找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)请参考小钟的画法;在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.并简要介绍你的作法; (2)已知()4560EPQ EPQ ∠︒<∠<︒和FPQ ∠互余,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠且EPA ∠比APQ ∠大β,请用β表示APQ ∠的度数. 5、小明根据学习函数的经验,对函数y =﹣|x |+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题. (1)如表y 与x 的几组对应值:①a = ;②若A (b ,﹣7)为该函数图象上的点,则b = ;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:·线○封○密○外①该函数有(填“最大值”或“最小值”),并写出这个值为;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.-参考答案-一、单选题1、B【分析】根据AD∥BC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD∥BC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴AE AO OE FC CO OF ==,故A 正确,不符合题意; ∵AD ∥BC , ∴△DOE ∽△BOF , ∴DE OE DO BF OF BO==, ∴AE DE FC BF =, ∴AE FC DE BF =,故B 错误,符合题意; ∵AD ∥BC , ∴△AOD ∽△COB , ∴AD AO DO BC CO BO ==, ∴AD OE BC OF =,故C 正确,不符合题意; ∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键. 2、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】·线○封○密·○外解:∵2250x x --=的两个根为1x 、2x , ∴122=()21x x -+-= 故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a. 3、C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:48500000科学记数法表示为:48500000=74.8510⨯.故答案为:74.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4、B【分析】相同就不能合并,从而可得答案.【详解】=故A不符合题意;=B不符合题意;=故C不符合题意;=故D不符合题意;故选B【点睛】本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.5、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.6、A【分析】由题意知,100°的内角为等腰三角形的顶角,进而可求底角.【详解】·线○封○密·○外解:∵在一个内角是100°的等腰三角形中,该内角必为顶角∴底角的度数为180100402︒-︒=︒故选A.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.7、C【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;8、B【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上,()2b a a ∴=-当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0,∵△=4-4×(-3)>0,∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键. 9、C 【分析】 在等腰三角形OCB 中,求得两个底角∠OBC 、∠OCB 的度数,然后根据三角形的内角和求得∠COB =100°;最后由圆周角定理求得∠A 的度数并作出选择. 【详解】 解:在OCB ∆中,OB OC =, OBC OCB ∴∠=∠;·线○封○密·○外40OCB ∠=︒,180COB OBC OCB ∠=︒-∠-∠,100COB ∴∠=︒; 又12A COB ∠=∠, 50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.10、B【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=, ∵点M 是线段AC 的中点,∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.二、填空题1、C【分析】如图所示,RR 、 RR 、RR 分别为点A ,B ,C 三处对应的在地上的影子,通过三角形相似,比较长度的大小,进而求得影子最短的值的点. 【详解】 解:如图RR 、RR 、RR 分别为点A ,B ,C 三处对应的在地上的影子由三角形相似可得RR RR =RR RR =RR RR =R ∵RR >RR ,RR >RR ∴RR 值最小 ∴RR 值最小 由题意可知,离路灯越近,影子越短 故答案为:C . 【点睛】 本题考查了相似三角形.解题的关键是建立比较长度的关系式. 2、13或12-√85或12+√85 【分析】 根据对等四边形的定义,分两种情况:①若CD =AB ,此时点D 在D 1的位置,CD 1=AB =13;②若AD =BC =11,此时点D 在D 2、D 3的位置,AD 2=AD 3=BC =11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答. ·线○封○密·○外【详解】解:如图,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,,∵RRR∠RRR=125x,∴AE=125在Rt△ABE中,AE2+BE2=AB2,x)2=132,即x2+(125解得:x1=5,x2=-5(舍去),∴BE=5,AE=12,∴CE=BC-BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,FD2∴CD2=CF-FD2=12-√85,CD3=CF+FD2=12+√85,综上所述,CD的长度为13、12-√85或12+√85.故答案为:13、12-√85或12+√85.【点睛】本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.3、-12 -1 a x 9996【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)(−1)2021+(−0.1)−1−(3−R)0=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)(−512)101×(225)101=·线○封○密·○外=(−512)101×(125)101=−(512)101×(125)101 =﹣(512×125)101=﹣1.故答案为:﹣1.(3)(R R −1)2⋅R R +1÷R 2R −1=a 2x ﹣2•a x +1÷a 2x ﹣1=a 2x ﹣2+x +1﹣(2x ﹣1)=a x .故答案为:a x .(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.4、故答案为:【点睛】本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.3.答案不唯一,如√2、√3等【分析】根据无理数的大小比较和无理数的定义写出范围内的一个数即可.【详解】解:一个比1大且比2小的无理数有√2,√3等,故答案为:答案不唯一,如√2、√3等.【点睛】本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一. 5、(2R −1,2R −1) 【分析】 根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“B n (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论. 【详解】 解:当y =0时,有x -1=0, 解得:x =1, ∴点A 1的坐标为(1,0). ∵四边形A 1B 1C 1O 为正方形, ∴点B 1的坐标为(1,1). 同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…, ∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…, ∴B n (2n -1,2n -1)(n 为正整数), ·线○封○密○外故答案为:(2R −1,2R −1)【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n (2n -1,2n -1)(n 为正整数)”是解题的关键.三、解答题1、(1)见解析(2)见解析(3)博学组的学生学习生活更好【分析】(1)根据平均数,中位数,众数,方差的定义求解即可;(2)根据题目所给数据画出对应的折线统计图即可;(3)可从众数和方差的角度作评价即可.(1) 解:由题意得博学组的平均数12131441516==148++⨯++, ∴博学组的方差()()()()()222221=121413144141415141614=1.258⎡⎤-+-+⨯-+-+-⎣⎦ 把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18, ∴笃行组的中位数1315==142+, ∵笃行组中13出现的次数最多,∴笃行组的众数为13,∴填表如下:在线段DA 上顺次截取DC =CB =b ,∴AB =AD -BC-CD =a -b-b=a-2b线段AB 为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3、(1)()4,0A -,()0,4B -;(2)D (-1,0),F (-2,4);(3)N (-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得40a +=,40b +=,通过求解一元一次方程,得4a =-,4b =-;结合坐标的性质分析,即可得到答案;(2)如图,过点F 作FH ⊥AO 于点H ,根据全等三角形的性质,通过证明AFH EAO ≌△△,得AH =EO =2,FH =AO =4,从而得OH =2,即可得点F 坐标;通过证明FDH BDO ≌△△,推导得HD =OD =1,即可得到答案;(3)过点N 分别作NQ ⊥ON 交OM 的延长线于点Q ,NG ⊥PN 交EM 的延长线于点G ,再分别过点Q 和点N 作QR ⊥EG 于点R ,NS ⊥EG 于点S ,根据余角和等腰三角形的性质,通过证明等腰Rt NOQ △和等腰Rt NPG △,推导得QNG ONP ≌△△,再根据全等三角形的性质,通过证明RMQ EMO ≌△△,得等腰Rt MON △,再通过证明NSM MEO ≌△△,得NS =EM =4,MS =OE =2,即可完成求解.【详解】(1)∵248160a b b ++++=, ∴()2440a b +++=.∵40a +≥,()240b +≥ ∴40a +=,()240b += ∴40a +=,40b += ∴4a =-,4b =-∴()4,0A -,()0,4B -. (2)如图,过点F 作FH ⊥AO 于点H ∵AF ⊥AE ∴∠FHA =∠AOE =90°, ∵AFH OAE EAO OAE ∠+∠=∠+∠ ∴∠AFH =∠EAO 又∵AF =AE , 在AFH 和EAO 中 90FHA AOE AFH EAO AF AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴AFH EAO ≌△△ ·线○封○密○外∴AH =EO =2,FH =AO =4∴OH =AO -AH =2∴F (-2,4)∵OA =BO ,∴FH =BO在FDH △和BDO △中90FHD BOD FDH BDO FH BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴FDH BDO ≌△△∴HD =OD∵2HD OD OH +==∴HD =OD =1∴D (-1,0)∴D (-1,0),F (-2,4);(3)如图,过点N 分别作NQ ⊥ON 交OM 的延长线于点Q ,NG ⊥PN 交EM 的延长线于点G ,再分别过点Q 和点N 作QR ⊥EG 于点R ,NS ⊥EG 于点S∴90OMN ONQ ∠=∠=︒∴90QNM ONM ∠+∠=︒,90MON ONM ∠+∠=︒∴45QNM MON ∠=∠=︒∴9045NQM QNM ∠=︒-∠=︒∴45NQM MON ∠=∠=︒∴等腰Rt NOQ △ ∴NQ =NO , ∵NG ⊥PN , NS ⊥EG ∴90GNP NSP ∠=∠=︒ ∴90GNS PNS ∠+∠=︒,90NPS PNS ∠+∠=︒ ∴GNS NPS ∠=∠ ∵2ME PE OA ==, ∴2PE = ∵点E 为线段OB 的中点 ∴122BE OB == ∴PE BE = ∴45EPB ∠=︒ ∴45NPS EPB ∠=∠=︒ ∴45GNS NPS ∠=∠=︒ ∴9045NGS GNS ∠=︒-∠=︒ ∴45NGS NPS ∠=∠=︒ ∴等腰Rt NPG △ ∴NG =NP , ·线○封○密·○外∵90GNP ONQ ∠=∠=︒∴90QNG QNP ONP QNP ∠+∠=∠+∠=︒∴∠QNG =∠ONP在QNG △和ONP △中NQ NO QNG ONP NG NP =⎧⎪∠=∠⎨⎪=⎩∴QNG ONP ≌△△∴∠NGQ =∠NPO ,GQ =PO∵2PE BE OE ===,EP OB ⊥∴PO =PB∴∠POE =∠PBE =90EPB ︒-∠=45°∴∠NPO =90°∴∠NGQ =90°∴∠QGR =90NGP ︒-∠=45°.在QRG △和OEP 中9045QRG OEP QGR POE GQ PO ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩∴QRG OEP ≌△△.∴QR =OE在RMQ 和EMO 中90MRQ MEO RMQ EMO QR OE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ∴RMQ EMO ≌△△ ∴QM =OM . ∵NQ =NO , ∴NM ⊥OQ ∵45MON ∠=︒ ∴等腰Rt MON △ ∴MN MO = ∵90NMS MNS MNS OME ∠+∠=∠+∠=︒ ∴MNS OME ∠=∠在NSM △和MEO △中 90NSM MEO MNS OME MN MO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴NSM MEO ≌△△ ∴NS =EM =4,MS =OE =2 ∴N (-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 4、 (1)图见解析,作法见解析 ·线○封○密·○外(2)1452β︒-或122.54β︒-【分析】(1)先通过分析明确射线OH 在AOB ∠的外部,作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH 即可得; (2)分①射线PF 在EPQ ∠的外部,②射线PF 在EPQ ∠的内部两种情况,先根据互余的定义可得90EPQ FPQ ∠+∠=︒,再根据角平分线的定义可得12APQ APF FPQ ∠=∠=∠,然后根据角的和差即可得.(1)解:AOH ∠与BOH ∠互余,90BOH AOH ∴+∠=∠︒,()090AOB αα∠=︒<<︒,∴射线OH 在AOB ∠的外部,先作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH ,如图所示:或(2)解:由题意,分以下两种情况:①如图,当射线PF 在EPQ ∠的外部时,EPQ ∠和FPQ ∠互余,90EPQ FPQ ∴∠+∠=︒, EPA ∠比APQ ∠大β, AP EPA Q β∴∠-=∠,即EPQ β∠=, 9090FPQ EPQ β∴∠=︒-∠=︒-, 射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 114522APQ APF FPQ β∴∠=∠=∠=︒-; ②如图,当射线PF 在EPQ ∠的内部时,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 12APQ APF FPQ ∴∠=∠=∠, EPQ ∠和FPQ ∠互余, 90EPQ FPQ ∴∠+∠=︒,90902EPQ FPQ APQ ∴∠=︒-∠=︒-∠,·线○封○密○外EPA ∠比APQ ∠大β,AP EPA Q β∴∠-=∠,APQ PQ P E A Q β∠--∴∠∠=,即2P EPQ A Q β=+∠∠,9022APQ APQ β∴︒-∠=+∠, 解得122.54APQ β∠=︒-,综上,APQ ∠的度数为1452β︒-或122.54β︒-.【点睛】本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.5、(1)①0;②±10;(2)见解析;①最大值,3;②92【分析】(1)①根据表中对应值和对称性即可求解;②将点A 坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y 轴对称,∵当x =-3时,y =0,∴当x =3时,a =0,故答案为:0;②将A (b ,-7)代入y =﹣|x |+3中,得:-7 =﹣|b |+3,即|b |=10,解得:b =±10,故答案为:±10;(2)解:函数y =﹣|x |+3的图象如图所示: ①由图象可知,该函数有最大值,最大值是3, 故答案为:最大值,3; ②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=. 【点睛】 本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键. ·线○封○密·○外。

广东省河源市2020年(春秋版)中考数学试卷C卷

广东省河源市2020年(春秋版)中考数学试卷C卷

广东省河源市2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)在,,0,,这四个数中,最小的实数是A .B .C . 0D .2. (2分) (2019八上·瑞安期末) 不等式的解集是()A .B .C .D .3. (2分)(2017·西安模拟) 下列计算正确的是()A . a2+a2=a4B . a8÷a2=a4C . (﹣a)2﹣a2=0D . a2•a3=a64. (2分)(2011·绍兴) 由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A .B .C .D .5. (2分) (2019九上·伍家岗期末) 已知一元二次方程x2+3x﹣4=0的两个根为x1、x2 ,则的值是()A . ﹣4B . ﹣2C . 4D . 26. (2分)若E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是()A . 一组对边平行而另一组对边不平行B . 对角线相等C . 对角线互相垂直D . 对角线互相平分二、填空题 (共6题;共8分)7. (3分) (2018七上·泸西期中) 计算:0+(-2)=________,-1-1 =________,2×(-1)=________ .8. (1分)把3x3﹣6x2y+3xy2分解因式的结果是________ .9. (1分)(2019·益阳) 在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是________..10. (1分)(2020·西藏) 如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于 EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=________.11. (1分) (2020九下·汉中月考) 如图,在x轴上方,平行于x轴的直线与反比例函数y= 和y=的图象分别交于A、B两点,连接OA、OB。

河源市2020版中考数学试卷D卷

河源市2020版中考数学试卷D卷

河源市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)﹣的倒数是()A . 2B . ﹣2C .D .2. (2分) 1纳米=0.000000001米,则2.5纳米用科学记数法表示为()A . 2.5×10-8米B . 2.5×10-9米C . 2.5×10-10米D . 2.5×109米3. (2分)(2018·南通) 下列说法中,正确的是()A . —个游戏中奖的概率是,则做10次这样的游戏一定会中奖B . 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,8,7,10,6,8,9的众数是8D . 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4. (2分)(2017·江北模拟) 分式有意义,则x的取值范围是()A . x≠2B . x≠﹣2C . x=2D . x=﹣25. (2分)下列各式计算正确的是()A . 2a2+a3=3a5B . (3xy)2÷(xy)=3xyC . (2b2)3=8b5D . 2x·3x5=6x66. (2分)一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为()A . 51B . 52C . 57D . 587. (2分)下列命题的逆命题是真命题的是()A . 直角都相等B . 钝角都小于180°C . 如果x2+y2=0,那么x=y=0D . 对顶角相等8. (2分)(2017·承德模拟) 方程的解为()A . x=B . x=C . x=﹣2D . 无解9. (2分)(2018·临沂) 2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A .B .C .D .10. (2分)已知圆锥侧面积为10πcm2 ,侧面展开图的圆心角为36º,圆锥的母线长为()A . 100cmB . 10cmC . cmD . cm11. (2分)若点A(1,y1)、B(2,y2)都在反比例函数y=(k<0),的图象上,则y1、y2的大小关系为()A . y1<y2B . y1≤y2C . y1>y2D . y1≥y212. (2分)如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有().A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)13. (1分)(2012·连云港) 某药品说明书上标明药品保存的温度是(20±2)℃,该药品在________℃范围内保存才合适.14. (1分)(2019·天门模拟) 分解因式: =________.15. (2分) (2015八下·萧山期中) 某组数据的方差计算公式为S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是________,该组数据的平均数是________16. (1分) (2018八上·南召期末) 如图,正方形的顶点,分别在轴,轴上,是菱形的对角线,若,,则点E的坐标是________.17. (1分) (2019八上·瑞安期中) 如图,在Rt△ABC中,∠ACB=90° ,AC=3,BC=6,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________.18. (1分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为________.三、解答题 (共8题;共82分)19. (5分)(2017·无棣模拟) 先化简,再求值:÷ ﹣,其中a= ﹣1.20. (10分)已知点A1(2,5)关于y轴的对称点A2 ,关于原点的对称点A3(1)求△A1A2A3的面积(2)如果将△A1A2A3沿着直线y=﹣5翻折可得到△B1B2B3 ,请写出B1 , B2 , B3的坐标.21. (10分) (2019八下·西湖期末) 某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.22. (12分)(2019·张家界) 为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是________人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于________度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.23. (10分)(2011·泰州) 如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.24. (15分)(2014·内江) 某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?25. (10分) (2019九下·包河模拟) 如图,AB是⊙O的直径,点C在⊙O上,EO⊥AB,垂足为O,EO交AC 于E,过点C作⊙O的切线CD交AB的延长线于点D.(1)求证:∠AEO+∠BCD=90°;(2)若AC=CD=3,求⊙O的半径。

2024届广东省河源市和平县市级名校中考联考数学试卷含解析

2024届广东省河源市和平县市级名校中考联考数学试卷含解析

2024届广东省河源市和平县市级名校中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°2.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.453.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C5D254.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,35.下列实数中,结果最大的是()A.|﹣3| B.﹣(﹣π)C.7D.36.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差7.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A.29B.34C.52D.418.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.9.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.1910.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()A.8374x yx y=-⎧⎨=+⎩B.8+473x yx y=⎧⎨=-⎩C.3+847x yx y=⎧⎨=-⎩D.8+374x yx y=⎧⎨=-⎩11.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x -1 0 1 3y13532953下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A.4个B.3个C.2个D.1个12.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,23)B.(﹣2,4)C.(﹣2,22)D.(﹣2,23)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式-2x+3>0的解集是___________________14.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.16.把多项式a3-2a2+a分解因式的结果是17.分解因式:a2b−8ab+16b=_____.18.已知整数k <5,若△ABC 的边长均满足关于x 的方程2x 3x 80k -+=,则△ABC 的周长是 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x 轴交于(1,0)A -、B 两点,与y 轴交于点C ; (1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.20.(6分)如图,已知⊙O 中,AB 为弦,直线PO 交⊙O 于点M 、N ,PO ⊥AB 于C ,过点B 作直径BD ,连接AD 、BM 、AP .(1)求证:PM ∥AD ;(2)若∠BAP=2∠M ,求证:PA 是⊙O 的切线; (3)若AD=6,tan ∠M=12,求⊙O 的直径.21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(8分)如图1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图2 是其工作示意图,AC是可以伸缩的起重臂,其转动点A 离地面BD 的高度AH 为 2 m.当起重臂AC 长度为8 m,张角∠HAC 为118°时,求操作平台C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)23.(8分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.24.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.25.(10分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.26.(12分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?27.(12分)计算:(1-n)03|+(-13)-1+4cos30°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.2、D【解题分析】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.3、A【解题分析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.详解:连接AC,由网格特点和勾股定理可知,2,22,10AB BC==,AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴tan∠ABC=21222ACAB==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.4、A【解题分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【题目详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.5、B【解题分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【题目详解】根据实数比较大小的方法,可得7<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【题目点拨】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 6、A 【解题分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【题目详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少, 故选A . 【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 7、D 【解题分析】解:设△ABP 中AB 边上的高是h .∵S △PAB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即PA +PB 的最小值为41.故选D .8、A 【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可. 【题目详解】解:∵AB ⊥BD ,CD ⊥BD ,EF ⊥BD , ∴AB ∥CD ∥EF ∴△ABE ∽△DCE , ∴,故选项B 正确,∵EF ∥AB ,∴,∴,故选项C,D正确,故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【解题分析】试题分析:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.10、D【解题分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【题目详解】由题意可得:8+3 74x yx y=⎧⎨=-⎩,故选D.【题目点拨】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.11、B【解题分析】(1)利用待定系数法求出二次函数解析式为y=-75x2+215x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【题目详解】(1)∵x=-1时y=-135,x=0时,y=3,x=1时,y=295,∴1352953a b ca b cc⎧-+-⎪⎪⎪++⎨⎪=⎪⎪⎩==,解得7 =52153 abc⎧-⎪⎪⎪⎨⎪=⎪⎪⎩=∴abc<0,故正确;(2)∵y=-75x2+215x+3,∴对称轴为直线x=-21572()5⨯-=32,所以,当x>32时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=32,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B .【题目点拨】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.12、D【解题分析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A ′与点B 重合,于是可得点A ′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60,得到△OA ′B ′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A ′与点B 重合,即点A ′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x<32【解题分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【题目详解】移项,得:-2x>-3,系数化为1,得:x<32,故答案为x<32.【题目点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14、1【解题分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【题目详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP :CQ=BC :AC=3:4,设PC=3x ,CQ=4x ,在Rt △CPQ 中,PQ=5x ,∵PD=PC=3x ,∴DQ=1x ,∵AQ=4-4x ,∴4-4x=1x ,解得x=23, ∴CP=3x=1;故答案为:1.【题目点拨】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.15、3【解题分析】试题分析:根据点D 为AB 的中点可得:CD 为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E 、F 分别为中点可得:EF 为△ABC 的中位线,根据中位线的性质可得:EF=AB=3. 考点:(1)、直角三角形的性质;(2)、中位线的性质16、()2a a 1-.【解题分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此, ()()2322a 2a a=a a 2a 1=a a 1-+-+-.17、b (a ﹣4)1【解题分析】先提公因式,再用完全平方公式进行因式分解.【题目详解】解:a 1b-8ab+16b=b (a 1-8a+16)=b (a-4)1.【题目点拨】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.18、6或12或1.【解题分析】根据题意得k≥0且(2﹣4×8≥0,解得k≥329. ∵整数k <5,∴k=4.∴方程变形为x 2﹣6x+8=0,解得x 1=2,x 2=4. ∵△ABC 的边长均满足关于x 的方程x 2﹣6x+8=0,∴△ABC 的边长为2、2、2或4、4、4或4、4、2.∴△ABC 的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【题目详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1c b =--;(2)223y x x =--;(3)12【解题分析】(1)把A (-1,0)代入y=x 2-bx+c ,即可得到结论; (2)由(1)得,y=x 2-bx-1-b ,求得EO=b 2,AE=b 2+1=BE ,于是得到OB=EO+BE=b 2+b 2+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D (b 2,-b-2),将D (b 2,-b-2)代入y=x 2-bx-1-b 解方程即可得到结论; (3)连接QM ,DM ,根据平行线的判定得到QN ∥MH ,根据平行线的性质得到∠NMH=∠QNM ,根据已知条件得到∠QMN=∠MQN ,设QN=MN=t ,求得Q (1-t ,t 2-4),得到DN=t 2-4-(-4)=t 2,同理,设MH=s ,求得NH=t 2-s 2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH 推出∠NMD=90°;根据三角函数的定义列方程得到t 1=53,t 2=-35(舍去),求得MN=53,根据三角函数的定义即可得到结论. 【题目详解】(1)把A (﹣1,0)代入2y x bx c =-+,∴1b c 0++=,∴c 1b =--;(2)由(1)得,2y x bx 1b =---,∵点D 为抛物线顶点, ∴b b EO AE 1BE 22==+=,, ∴b b OB EO BE 1b 122=+=++=+,当x 0=时,y b 1=--,∴CO b 1BO =+=,∴OBC 45∠=︒,∴EFB 904545EBF ∠∠=︒-︒=︒=,∴EF BE AE DF ===,∴DE AB b 2==+, ∴b D ,b 22⎛⎫-- ⎪⎝⎭, 将b D ,b 22⎛⎫-- ⎪⎝⎭代入2y x bx 1b =---得,22b b b 2b 122⎛⎫--=--- ⎪⎝⎭, 解得:1b 2=,2b 2=-(舍去),∴二次函数解析式为:2y x 2x 3=--;(3)连接QM ,DM ,∵QN ED ⊥,MP ED ⊥,∴QNH MHD 90∠∠==︒,∴QN //MH ,∴NMH QNM ∠∠=,∵QMN QMP 180∠∠+=︒,∴QMN QMN NMH 180∠∠∠++=︒,∵QMN MQN NMH 180∠∠∠++=︒,∴QMN MQN ∠∠=,设QN MN t ==,则()2Q 1t,t 4--,∴()22DN t 44t =---=,同理, 设MN s =,则2HD s =,∴22NH t s =-,在Rt ΔMNH 中,222NH MN MH =-,∴()22222t s t s -=-,∴22t s 1-=,∴NH 1=, ∴NH 1tan NMH MH t∠==, ∵2MH t 1tan MDH DH t t ∠===, ∴NMH MDH ∠∠=,∵NMH MNH 90∠∠+=︒,∴MDH MNH 90∠∠+=︒,∴NMD 90∠=︒;∵QN :DH 15:16=, ∴16DH t 15=,16DN t 115=+, ∵sin NMH sin MDN ∠∠=, ∴NH MN MN DN =,即1t 16t t 115=+, 解得:15t 3=,23t 5=-(舍去), ∴5MN 3=, ∵222NH MN MH =-, ∴4MH PH 3==, ∴47PK PH KH 133=+=+=, 当7x 3=时,20y 9=-, ∴720P ,39⎛⎫- ⎪⎝⎭,∴207CK 399=-=, ∴719tan KPC 733∠==, ∵PKC BOC 90∠∠==︒,∴KGC OBC 45∠∠==︒, ∴7KG CK 9==,CG =7714PG 399=-=, 过P 作PT BC ⊥于T ,∴PT GT PG CG 2====, ∴CT 2PT =, ∴PT PT 1tan PCF CT 2PT 2∠===. 【题目点拨】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.20、(1)证明见解析;(2)证明见解析;(3)1;【解题分析】(1)根据平行线的判定求出即可;(2)连接OA ,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x ,CM=2x ,根据相似三角形的性质和判定求出NC=12x ,求出MN=2x+12x=2.1x ,OM=12MN=1.21x ,OC=0.71x ,根据三角形的中位线性质得出0.71x=12AD=3,求出x 即可. 【题目详解】(1)∵BD 是直径,∴∠DAB=90°,∵PO ⊥AB ,∴∠DAB=∠MCB=90°,∴PM ∥AD ;(2)连接OA ,∵OB=OM ,∴∠M=∠OBM ,∴∠BON=2∠M ,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【题目点拨】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.21、(1)13(2)23.【解题分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.22、5.8【解题分析】过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,易得四边形AHEF 为矩形,则2,90EF AH HAF ==∠=︒,再计算出28CAF ∠=︒,在Rt ACF 中,利用正弦可计算出CF 的长度,然后计算CF+EF 即可.【题目详解】解:如图,过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,90FEH AFE ∴∠=∠=︒.又AH BD ⊥,90AHE ∴∠=︒.∴四边形AHEF 为矩形.2,90EF AH HAF ∴==∠=︒1189028CAF CAH HAF ∴∠=∠-∠=︒-︒=︒在Rt ACF 中,sin CF CAF AC∠=, 8sin 2880.47 3.76CF ∴=⨯︒=⨯=.3.762 5.8(m)CE CF EF ∴=+=+≈.答:操作平台C 离地面的高度约为5.8m .【题目点拨】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.23、(1)>;(2)当点P 位于CD 的中点时,∠APB 最大,理由见解析;(3)10米.【解题分析】(1)过点E 作EF ⊥AB 于点F ,由矩形的性质和等腰三角形的判定得到:△AEF 是等腰直角三角形,易证∠AEB =90°,而∠ACB <90°,由此可以比较∠AEB 与∠ACB 的大小(2)假设P 为CD 的中点,作△APB 的外接圆⊙O ,则此时CD 切⊙O 于P ,在CD 上取任意异于P 点的点E ,连接AE ,与⊙O 交于点F ,连接BE 、BF ;由∠AFB 是△EFB 的外角,得∠AFB >∠AEB ,且∠AFB 与∠APB 均为⊙O中弧AB 所对的角,则∠AFB =∠APB ,即可判断∠APB 与∠AEB 的大小关系,即可得点P 位于何处时,∠APB 最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【题目详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【题目点拨】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.24、(1)a=﹣12;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(2)或(32)s.【解题分析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点,∴C(0,1),∵点C在直线l2上,∴b=1,∴直线l2的解析式为y=ax+1,∵点B在直线l2上,∴2a+1=0,∴a=﹣12;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0,∴x=﹣1,由图象知,点Q在点A,B之间,∴﹣1<n<2(3)、解:如图,∵△PAC是等腰三角形,∴①点x轴正半轴上时,当AC=P1C时,∵CO⊥x轴,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②当P2A=P2C时,易知点P2与O重合,∴BP2=OB=2,∴2÷1=2s,③点P在x轴负半轴时,AP3=AC,∵A(﹣1,0),C(0,1),∴2∴AP32,∴BP3=OB+OA+AP32或BP3=OB+OA﹣AP3=32,∴(2)÷1=(2)s,或(32)÷1=(32)s,即:满足条件的时间t为1s,2s,或(232)s.点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.25、(2)AM=165;(2)AP=23π;(3)7≤d<4或3【解题分析】(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO 中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【题目详解】(2)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴AMAB=AB'AC,即AM4=45,∴AM=165;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴AP=60π4360⨯⨯=23π.(3)由(2)可知:△AOP为等边三角形,∴DN=GO=323∴CN=CD+DN=4+3.当点B′在直线CD上时,如图4所示,在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴22AB'AD-7,∴CB′=47.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,7≤d<4或3【题目点拨】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.26、软件升级后每小时生产1个零件.【解题分析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27、1【解题分析】根据实数的混合计算,先把各数化简再进行合并.【题目详解】原式=1【题目点拨】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.。

2019河源中考数学试卷真题

2019河源中考数学试卷真题

2019河源中考数学试卷真题一、选择题1. 几何语言的课代表是A. 点B. 线段C. 线D. 光2. 圆柱依次旋转逆或顺时针一周的实际是A. 圆柱形成的空间区域B. 圆的周长C. 圆柱的底面积D. 圆柱的体积3. 对于简单的平移,映射前后的两点的社会是A. 相等B. 平行C. 垂直D. 等距4. 如图,点P在一直径AB上,M是BC的中点,AC=2,BC=3,BP=1,则AP的长度为A. 2B. 3C. 4D. 5二、填空题1. 如右图,每一个方块的面积为1,那么图中的阴影部分的面积为__。

2. 平移可以保持图形的___和___不变。

3. 某个三角形中,AB=AC,其中∠ABC=80°,则∠BAC的度数为___°。

4. 一个数如果比它的2倍大5,那么这个数是___。

三、解答题1. 计算:15÷0.3+2.5×10-1解答:(答案)2. 如图1,ABCD是一个四边形,AC=BD,AD⊥BC,连接AC、BD交于点O,如图2所示,连接AC和BO的中点,分别为M、N,请问如何判断OM和NB是否平行?解答:(答案)四、应用题1. 小明今天上午在9:30到10:10之间做作业,他花了25分钟完成了2/5,12:00又开始做作业,花了x分钟完成1/4,若他总共用了75分钟做作业,请问x的值为多少?解答:(答案)2. 一箱鸡蛋有20个,如果4/5的鸡蛋都是整数个,那么这箱鸡蛋最多还剩下多少个整数鸡蛋?解答:(答案)五、证明题画一个正三角形ABC,通过AC的中点D,以BD为边向上构造一个等边三角形BDE,请证明:△ABD≌△BCE证明:(答案)六、实验题请结合实际情况回答以下问题:1. 如何设计一个简易的测量直线长度的实验?解答:(答案)2. 如何利用平行线的概念设计一个实验,证明直角三角形的两个锐角之和为90°?解答:(答案)以上是2019河源中考数学试卷真题的所有内容,希望能对你的学习有所帮助。

河源市中考数学考试试卷

河源市中考数学考试试卷

河源市中考数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分) (2020七上·卫辉期末) 数在数轴上的位置如图所示,把、、、按从小到大的顺序用“<”连接起来是()A .B .C .D .2. (3分) (2016七下·盐城开学考) 钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A . 634×104B . 63.4×105C . 6.34×106D . 6.34×1073. (3分)由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是()A . 6个B . 5个C . 4个D . 3个4. (3分)下列说法正确的是()A . x=4是不等式2x>-8的一个解B . x=-4是不等式2x>-8的解集C . 不等式2x>-8的解集是x>4D . 2x>-8的解集是x<-45. (3分)(2018·河南) 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A .B .C .D .6. (3分)如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值()A .B . 2C .D .7. (3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC 于点E.若BD+CE=2013,则线段DE的长为()A . 2014B . 2011C . 2012D . 20138. (3分)如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3m,同时梯子的顶端B下降至B’,那么BB’的长为A . 等于1mB . 大于1mC . 小于1mD . 以上答案都不对二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)9. (3分)(2017·黄冈) 计算:﹣6﹣的结果是________.10. (3分) (2017八上·兰陵期末) 在实数范围内因式分解:x3﹣2x2y+xy2=________.11. (3分)如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________12. (3分)如图,直线a∥b,∠1=125°,则∠2的度数为________13. (3分) (2020八下·重庆月考) 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD 于点E,CD=6,BC=8,则DE的长度为________.14. (3分) (2018九上·浙江月考) 如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.三、解答题(本大题共10小题,共78分) (共10题;共75分)15. (6分) (2017七上·静宁期中) 先化简,再求值:,其中x=﹣1,y=2.16. (6分) (2017九上·深圳期中) 在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动,有A、B两组卡片,每组各三张,A组卡片上分别写有0,1,2;B组卡片上分别写有-3,-1,1。

广东省河源市中考数学试卷

广东省河源市中考数学试卷

广东省河源市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) -5的相反数是()A . 5B . -5C . 1/5D . -1/52. (2分) (2017九下·睢宁期中) 2016年我省克服连续降雨等自然灾害影响,全年粮食总产达693.2亿斤,将693.2亿用科学记数法表示为()A . 6.932×1010B . 693.2×108C . 69.32×109D . 69.32×1073. (2分)(2017·东平模拟) 下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2017·香坊模拟) 下列运算正确的是()A . a2•a3=a6B . (a2)3=a5C . (2a+1)2=4a2+1D . (﹣2a2b)3=﹣8a6b35. (2分) (2019九上·白云期中) 方程2x2+6x﹣1=0的两根为x1、x2 ,则x1+x2等于()A . ﹣6B . 6C . ﹣3D . 36. (2分)(2017·玉林) 如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中矩形的个数共有()A . 5个B . 8个C . 9个D . 11个二、填空题 (共6题;共7分)7. (1分)反比例函数中自变量x的取值范围是________。

8. (1分) (2020八下·高新期末) 如图,AB∥CD,AB=AC,∠1=30°,则∠ACE的度数是________°。

9. (2分) (2019七上·九龙坡期中) 如果把“收入200元”记作+200元,那么“支出300元”记作________元.对3.4959四舍五入取近似数,精确到百分位是________.10. (1分) (2018七上·黄石月考) 用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体________.11. (1分)一组数据1、3、4、5、x、9的众数和中位数相同,那么x的值是________.12. (1分)(2016·衢州) 已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.三、解答题 (共11题;共116分)13. (10分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.14. (5分) (2017七下·滦县期末) 解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.15. (10分) (2016九上·常熟期末) 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.16. (6分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为________,并在图上标出此时点P的位置.17. (10分) (2020·宁波) 图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm, .(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:,, )18. (13分)(2019·东阳模拟) 某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.(1)参加考试的人数是________.扇形统计图中D部分所对应的圆心角的度数是________.把条形统计图补充完整;________(2)公司领导计划从考核人员中选一人交流考核意见,求所选人员考核为A等级的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率.(精确到0.01,=2.236)19. (10分)(2017·江西模拟) 随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q• )元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.20. (12分)在平面直角坐标系xOy中,直线l1:y= x+b与x轴交于点A,与y轴交于点B,且点C的坐标为(4,﹣4).(1)点A的坐标为________,点B的坐标为________;(用含b的式子表示)(2)当b=4时,如图所示.连接AC,BC,判断△ABC的形状,并证明你的结论;(3)过点C作平行于y轴的直线l2 ,点P在直线l2上.当﹣5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.21. (15分) (2016九上·南岗期中) ⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC 的长.22. (15分) (2017九上·临颍期中) 如图,抛物线y=(x﹣1)2+n与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),点D与C关于抛物线的对称轴对称.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线对称轴上的一动点,当△PAC的周长最小时,求出点P的坐标;(3)点Q在x轴上,且∠ADQ=∠DAC,请直接写出点Q的坐标.23. (10分)(2018·新乡模拟) 如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共7分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共116分)13-1、13-2、14-1、15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。

备考练习:2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

备考练习:2022年广东省河源市中考数学真题汇总 卷(Ⅱ)(含答案及解析)

2022年广东省河源市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、方程20x x -=的解是( ). A .0x = B .1x = C .10x =,21x = D .10x =,21x =- 2、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( ) A .的 B .祖 C .国 D .我3、下列说法中,正确的是( ) A .东边日出西边雨是不可能事件. B .抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7. ·线○封○密○外C .投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.D .小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.4、在 Rt ABC 中,90C =∠,如果,1A AC ∠α==,那么AB 等于( )A .sin αB .cos αC .1sin αD .1cos α52272π中无理数有( )A .4个B .3个C .2个D .1个6、若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )A .0m >B .m 1≥C .1mD .1m ≠7、已知正五边形的边长为1,则该正五边形的对角线长度为( ).A B C D8、下列问题中,两个变量成正比例的是( )A .圆的面积S 与它的半径rB .三角形面积一定时,某一边a 和该边上的高hC .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b9、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神10、如图,ABC中,AB AC==8BC=,AD平分4B C∠交BC于点D,点E为AC的中点,连接DE,则ADE的面积是()A.20 B.16 C.12 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.2、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚x人,小和尚x人,根据题意可列方程组为______.3、计算:√5÷√3×√3=___.4、若关于x的二次三项式x2−2(x+1)x+4是完全平方式,则k=____.5、单项式−x2x2的系数是______.·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,D 是边AB 的中点,过点B 作BE AC ∥交CD 的延长线于点E ,点N 是线段AC 上一点,连接BN 交CD 于点M ,且BM AC =.(1)若55E ∠=︒,65A ∠=︒,求CDB ∠的度数;(2)求证:CN MN =.2、解不等式组()41710853x x x x ⎧+≤+⎪⎨--⎪⎩<,并写出它的所有正整数解. 3、如图,已知△ABC .(1)请用尺规在图中补充完整以下作图,保留作图痕迹:作∠ACB 的角平分线,交AB 于点D ;作线段CD 的垂直平分线,分别交AC 于点E ,交BC 于点F ;连接DE ,DF ;(2)求证:四边形CEDF 是菱形.4、先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中a =,2b = 5、如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠A =120°,∠C =60°,AB =17,AD =12. (1)求证:AD =DC ;(2)求四边形ABCD 的周长.-参考答案- 一、单选题1、C【分析】先提取公因式x ,再因式分解可得x (x -1)=0,据此解之可得.【详解】 解:20x x -=, x (x -1)=0, 则x =0或x -1=0, 解得x 1=0,x 2=1, 故选:C . 【点睛】 本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键. ·线○封○密○外2、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、D【分析】根据概率的意义进行判断即可得出答案.【详解】解:A、东边日出西边雨是随机事件,故此选项错误;.B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.故选:D【点睛】此题主要考查了概率的意义,正确理解概率的意义是解题关键.4、D【分析】直接利用锐角三角函数关系进而表示出AB 的长.【详解】解:如图所示:∠A =α,AC =1, cosα=1AC AB AB =, 故AB =1cos α. 故选:D 【点睛】 此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键. 5、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. ·线○封○密·○外【详解】,是整数,属于有理数;227是分数,属于有理数;无理数有2π,共3个.故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:∵()251x m +=-∴2102510x x m ++-+=∴()2241042510b ac m =-=-⨯-+≥解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.7、C【分析】如图,五边形ABCDE 为正五边形, 证明,AB BCAE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB 设AF =x ,则AC =1+x ,再解方程即可. 【详解】 解:如图,五边形ABCDE 为正五边形, ∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°, ∴∠BGF =∠BFG =72°,72,ABG AGB,,,AF BF BG GC BG BF ,AF BF BG CG 1,AB AG,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BFACCB设AF =x ,则AC =1+x , 1,11xx210,x x ∴+-=解得:12x x ==经检验:x =·线○封○密○外15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键.8、C 【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意;1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.9、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D .【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.10、D【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD =BD ,再根据勾股定理得出AD 的长,从而求出三角形ABD 的面积,再根据三角形的中线性质即可得出答案; 【详解】 解:∵AB =AC ,AD 平分∠BAC ,BC =8, ∴AD ⊥BC ,142CD BD BC ===,∴10AD ,∴11·4102022ADCS CD BC ==⨯⨯=, ∵点E 为AC 的中点, ∴11201022ADE ADC S S ==⨯=, 故选:D 【点睛】 本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键. ·线○封○密○外二、填空题1、−12或0或32或4【分析】先利用方程有两根求解x ≥−12,结合已知条件可得−12≤x <5,再求解方程两根为x 1=1+√1+2x ,x 2=1−√1+2x ,结合两根为整数,可得1+2x 为完全平方数,从而可得答案.【详解】解:∵关于x 的方程x 2﹣2x ﹣2n =0有两根,∴△=(−2)2−4×1×(−2x )=4+8x ≥0,∴x ≥−12,∵x <5,∴−12≤x <5,∵x 2﹣2x ﹣2n =0,∴x =2±2√1+2x 2=1±√1+2x ,∴x 1=1+√1+2x ,x 2=1−√1+2x ,∵−12≤x <5,∴0≤2x +1<11,而两个根为整数,则1+2x 为完全平方数,∴2x +1=0或2x +1=1或2x +1=4或2x +1=9,解得:x =−12或x =0或x =32或x =4.故答案为:−12或0或32或4【点睛】本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键. 2、{x +x =1003x +13x =100 【分析】 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可. 【详解】 解:设大和尚x 人,小和尚x 人, ∵共有大小和尚100人, ∴x +x =100; ∵大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x +13x =100. 联立两方程成方程组得{x +x =1003x +13x =100. 故答案为:{x +x =1003x +13x =100.【点睛】 本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组. 3、√53 【分析】 先把除法转化为乘法,再计算即可完成. ·线○封○密·○外【详解】√5÷√3×1√3=√51√31√3=√53 故答案为:√53 【点睛】本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.4、﹣3或1【分析】根据x 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式x 2−2(x +1)x +4是完全平方式,∴x 2−2(x +1)x +4=22(2)44x x x -=-+或x 2−2(x +1)x +4=(x +2)2=x 2+4x +4, ∴−2(x +1)=4或−2(x +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键. 5、−12## 【分析】 单项式中的数字因数是单项式的系数,根据概念直接作答即可.【详解】·线○解:单项式−x 2x 2的系数是−12, 故答案为:−12【点睛】本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.三、解答题1、(1)120︒(2)证明见解析【分析】(1)先根据平行线的性质可得65ABE A ∠=∠=︒,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出B ADC DE ≅,再根据全等三角形的性质可得AC BE =,E ACD ∠=∠,从而可得BE BM =,然后根据等腰三角形的性质、对顶角相等可得E BME CMN ∠=∠=∠,从而可得ACD CMN ∠=∠,最后根据等腰三角形的判定即可得证.(1)解:∵AC BE ,65A ∠=︒,∴65ABE A ∠=∠=︒,∵55E ∠=︒,∴5565120CDB E ABE ∠=∠+∠=︒+︒=︒.(2)证明:∵AC BE ,∴A ABE ∠=∠,∵D 是边AB 的中点,∴AD BD =,在ADC 和BDE 中,A DBE AD BD ADC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BD ADC E ASA ≅,∴AC BE =,ACD E ∠=∠,∵BM AC =,∴BE BM =,∴E BME CMN ∠=∠=∠,∴ACD CMN ∠=∠,∴CN MN =.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.2、﹣2≤x <3.5,正整数解有:1、2、3【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.【详解】解:解不等式4(x +1)≤7x +10, 得:x ≥﹣2, 解不等式x ﹣583x -<,得:x <3.5, 故不等式组的解集为:﹣2≤x <3.5,·线○所以其正整数解有:1、2、3.【点睛】本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.3、(1)见解析(2)见解析【分析】(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE ,DF ;(2)根据垂直平分线的性质可得,EC ED FC FD ==,进而证明ECO ≌FCO 即可得CE CF =,进而根据四边相等的四边形是菱形,即可证明四边形CEDF 是菱形.(1)如图所示,,CD EF 即为所求,(2)证明:如图,设,CD EF 交于点OEF 垂直平分CD,EC ED FC FD ∴==在ECO 与FCO 中ECO FCO CO COCOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ECO ≌FCOCE CF ∴=CE ED DF FC ∴===∴四边形CEDF 是菱形【点睛】本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.4、ab ,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a ,b 的值代入化简后的式子即可解答本题.【详解】解:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭ 222+=a ab b a b a b ab --÷- 2()=a b ab a b a b ---=ab ;当a =2b ==(2431=-=【点睛】 本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握. 5、 (1)证明见解析; (2)70. 【分析】 (1)在BC 上取一点E ,使BE =AB ,连接DE ,证得△ABD ≌△EBD ,进一步得出∠BED =∠A ,利用等腰三角形的判定与性质与等量代换解决问题; (2)首先判定△DEC 为等边三角形,求得BC ,进一步结合(1)的结论解决问题. (1) 证明:在BC 上取一点E ,使BE =AB ,连结DE . ∵BD 平分∠ABC ,·线○·封○密○外∴∠ABD =∠CBD .在△ABD 和△EBD 中,AB BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBD (SAS );∴DE =AD =12,∠BED =∠A ,AB =BE =17.∵∠A =120°,∴∠DEC =60°.∵∠C =60°,∴∠DEC =∠C ,∴DE =DC ,∴AD =DC .(2)∵∠C =60°,DE =DC ,∴△DEC 为等边三角形,∴EC =CD =AD .∵AD =12,∴EC =CD =12,∴四边形ABCD 的周长=17+17+12+12+12=70.【点睛】此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.。

2023年广东省河源市中考数学试卷含答案解析

2023年广东省河源市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( ) A. 18B. 16C. 14D. 128.一元一次不等式组{x −2>1x <4的解集为( )A. −1<x <4B. x <4C. x <3D. 3<x <49.如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y =ax 2+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( ) A. −1 B. −2 C. −3 D. −4二、填空题:本题共5小题,每小题3分,共15分。

【难点解析】2022年广东省河源市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解)

【难点解析】2022年广东省河源市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解)

2022年广东省河源市中考数学三年高频真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列几何体中,俯视图为三角形的是( ) A .B .C .D . 2、根据以下程序,当输入3x =时,输出结果为( )A .1-B .9C .71D .81 3、Rt ABC △和Rt CDE △按如图所示的位置摆放,顶点B 、C 、D 在同一直线上,AC CE =,90B D ∠=∠=︒,AB BC >.将Rt ABC △沿着AC 翻折,得到Rt AB C '△,将Rt CDE △沿着CE 翻折,得Rt CD E '△,点B 、D 的对应点B '、D 与点C 恰好在同一直线上,若13AC =,17BD =,则B D ''的长度·线○封○密○外为().A.7 B.6 C.5 D.44、下列二次根式中,最简二次根式是()B C DA5、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.6、某物体的三视图如图所示,那么该物体形状可能是()A.圆柱B.球C.正方体D.长方体7、已知正五边形的边长为1,则该正五边形的对角线长度为().ABCD8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( ) A .① B .② C .③ D .②③92272π中无理数有( ) A .4个B .3个C .2个D .1个10、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )A .B .C .D . 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、如图,在一条可以折叠的数轴上,A 、B 两点表示的数分别是7-,3,以点C 为折点,将此数轴向·线○封○密○外右对折,若点A 折叠后在点B 的右边,且AA =2,则C 点表示的数是______.2、如图,AA 是AAAA 的中线,∠AAA =45°,AA =4cm ,把AAAA 沿AA 翻折,使点A 落在A 的位置,则BE 为___.3、如图,是体检时的心电图,其中横坐标A 表示时间,纵坐标A 表示心脏部位的生物电流,它们是两个变量.在心电图中,A ___(填“是”或“不是” )A 的函数.4、写出一个比1大且比2小的无理数______.5、已知f (x )=3−A 2A +1,那么f (12)=___.三、解答题(5小题,每小题10分,共计50分)1、用若干个相同的小正方体摆成了右面的几何体,请画出这个几何体从正面、左面和上面看到的形状图.2、已知抛物线y =﹣12x 2+x . (1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标;(2)已知该抛物线经过A (3n +4,y 1),B (2n ﹣1,y 2)两点.①若n <﹣5,判断y 1与y 2的大小关系并说明理由; ②若A ,B 两点在抛物线的对称轴两侧,且y 1>y 2,直接写出n 的取值范围.3、如图,一次函数y kx b =+的图象交反比例函数m y x =的图象于()2,4A -,(),1B a -两点. (1)求反比例函数与一次函数解析式. (2)连接,OA OB ,求OAB ∆的面积. (3)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值?4、如图,在ABC 中,AC BC >. (1)用尺规完成以下基本图形:作AB 边的垂直平分线,与AB 边交于点D ,与AC 边交于点E ;(保·线○封○密○外留作图痕迹,不写作法)(2)在(1)所作的图形中,连接BE ,若16AC =,10BC =,求BCE 的周长.5、已知:如图,在ABC 中,,AF AD DE BC DF DB=∥(1)求证EF CD ∥(2)如果4,155EF AD CD ==,求DF 的长.-参考答案-一、单选题1、C【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A 选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B 选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C 选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D 选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;2、C【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】解:当输入3x =时,21091011x -=-=-<代入21011091x -=-=-<代入2108110711x -=-=>,则输出71故选C 【点睛】 本题考查了程序流程图与代数式求值,正确代入求值是解题的关键. 3、A【分析】由折叠的性质得ABC AB C '≅,CDE CD E '≅,故ACB ACB '∠=∠,DCE D CE '∠=∠,推出90ACB DCE ∠+∠=︒,由90B D ∠=∠=︒,推出BAC DCE ∠=∠,根据AAS 证明ABC CDE ≅,即可得AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,由勾股定理即可求出BC 、AB ,由B D CD CB AB BC ''''=-=-计算即可得出答案. 【详解】 由折叠的性质得ABC AB C '≅,CDE CD E '≅, ∴ACB ACB '∠=∠,DCE D CE '∠=∠, ∴90ACB DCE ∠+∠=︒, ∵90B D ∠=∠=︒, ∴90BAC ACB ∠+∠=︒, ·线○封○密○外∴BAC DCE ∠=∠,在ABC 与CDE △中,B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CDE AAS ≅,∴AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,∴222(17)13x x +-=,解得:5x =,∴5BC =,12AB =,∴1257B D CD CB AB BC ''''=-=-=-=.故选:A .【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.4、D【分析】根据最简二次根式的条件分别进行判断.【详解】解:=A 选项不符合题意;|mn =B 选项不符合题意;C 选项不符合题意;是最简二次根式,则D 选项符合题意; 故选:D .【点睛】题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键. 5、C 【分析】 根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案. 【详解】 解:A 、是轴对称图形,不是中心对称图形,故错误; B 、是轴对称图形,不是中心对称图形,故错误; C 、既是轴对称图形,又是中心对称图形,故正确; D 、既不是轴对称图形,也不是中心对称图形,故错误. 故选:C . 【点睛】 本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合. 6、A 【分析】 根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱. 【详解】·线○封○密·○外解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,则该几何体是圆柱.故选:A .【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.7、C【分析】如图,五边形ABCDE 为正五边形, 证明,AB BCAE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB设AF =x ,则AC =1+x ,再解方程即可. 【详解】解:如图,五边形ABCDE 为正五边形,∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°,∴∠BGF =∠BFG =72°,72,ABGAGB ,,,AF BF BG GC BG BF ,AF BF BG CG 1,ABAG ,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BF AC CB 设AF =x ,则AC =1+x , 1,11x x 210,x x ∴+-=解得:12x x ==经检验:x = 15151.22AC 故选C 【点睛】 本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键. 8、B 【分析】 把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】 解:∵点M (a ,b )在抛物线y =x (2-x )上, ()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ·线○封○密○外∴点M 的个数为2,故①错误;当b =1时,1=a (2-a ),整理得a 2-2a +1=0,∵△=4-4×1=0,∴a 有两个相同的值,∴点M 的个数为1,故②正确;当b =3时,3=a (2-a ),整理得a 2-2a +3=0,∵△=4-4×3<0,∴点M 的个数为0,故③错误;故选:B .【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.9、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】,是整数,属于有理数;227是分数,属于有理数;无理数有2,共3个. 故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 10、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:A 、三视图分别为正方形,三角形,圆,故A 选项符合题意;B 、三视图分别为三角形,三角形,圆及圆心,故B 选项不符合题意;C 、三视图分别为正方形,正方形,正方形,故C 选项不符合题意;D 、三视图分别为三角形,三角形,矩形及对角线,故D 选项不符合题意; 故选:A . 【点睛】 本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图. 二、填空题 1、1 【分析】 根据A 与B 表示的数求出AB 的长,再由折叠后AB 的长,求出BC 的长,即可确定出C 表示的数. 【详解】 解:∵A ,B 表示的数为-7,3,∴AB =3-(-7)=4+7=10,∵折叠后AB =2,∴BC =10−22=4, ·线○封○密·○外∵点C在B的左侧,∴C点表示的数为3-4=-1.故答案为:-1.【点睛】本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.2、2√2cm【分析】根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.【详解】解:∵AA是AAAA的中线,∴AA=AA=1AA=2AA,2∵翻折,∴∠AAA=∠AAA=45°,AA=AA,∴∠AAA=90°,AA=AA,在Rt BDE中,由勾股定理得:AA=√22+22=2√2AA,故答案为:2√2AA.【点睛】本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.3、是【分析】根据函数的定义判断即可.【详解】解:∵两个变量A 和A ,变量A 随A 的变化而变化,且对于每一个A ,A 都有唯一值与之对应,y 是A 的函数. 故答案为:是. 【点睛】 本题考查了函数的理解即两个变量A 和A ,变量A 随A 的变化而变化, 且对于每一个A ,A 都有唯一值与之对应,正确理解定义是解题的关键. 4、故答案为: 【点睛】 本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序. 3.答案不唯一,如√2、√3等 【分析】 根据无理数的大小比较和无理数的定义写出范围内的一个数即可. 【详解】 解:一个比1大且比2小的无理数有√2,√3等, 故答案为:答案不唯一,如√2、√3等. 【点睛】 本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一. 5、54## 【分析】 ·线○封○密○外把A=12代入函数解析式进行计算即可. 【详解】解:∵f(x)=3−A2A+1,∴A(12)=3−122×12+1=522=54,故答案为:54【点睛】本题考查的是已知自变量的值求解函数值,理解12f⎛⎫⎪⎝⎭的含义是解本题的关键.三、解答题1、见解析【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形的个数依次为1,1,2;从左面看到的图形是3列,从左往右正方形的个数依次为2,1,1;从上面看到的图形是3列,从左往右正方形的个数依次为1,1,3;由此分别画出即可.【详解】解:如图所示:【点睛】本题考查了从不同方向看几何体,做此类题时,应认真审题,根据看到的形状即可解答.2、(1)直线x =1,(0,0) (2)①y 1<y 2,理由见解析;②﹣1<n <﹣15 【分析】 (1)由对称轴公式即可求得抛物线的对称轴,令x =0,求得函数值,即可求得抛物线与y 轴的交点坐标; (2)①由n <﹣5,可得点A ,点B 在对称轴直线x =1的左侧,由二次函数的性质可求解; (3)分两种情况讨论,列出不等式组可求解.(1)∵y =﹣12x 2+x , ∴对称轴为直线x =﹣112()2⨯-=1, 令x =0,则y =0, ∴抛物线与y 轴的交点坐标为(0,0); (2) x A ﹣x B =(3n +4)﹣(2n ﹣1)=n +5,x A ﹣1=(3n +4)﹣1=3n +3=3(n +1),x B ﹣1=(2n ﹣1)﹣1=2n ﹣2=2(n ﹣1). ①当n <﹣5时,x A ﹣1<0,x B ﹣1<0,x A ﹣x B <0. ∴A ,B 两点都在抛物线的对称轴x =1的左侧,且x A <x B , ∵抛物线y =﹣12x 2+x 开口向下, ∴在抛物线的对称轴x =1的左侧,y 随x 的增大而增大.·线○封○密○外∴y1<y2;②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得3412111(34)(21)1nnn n+<⎧⎪->⎨⎪-+<--⎩,∴不等式组无解,若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,由题意可得:3412111(21)341nnn n+>⎧⎪-<⎨⎪-->+-⎩,∴﹣1<n<﹣15,综上所述:﹣1<n<﹣15.【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.3、(1)8yx=-,152y x=-;(2)15;(3)0<x<2或x>8.【分析】(1)先把点A的坐标代入myx=,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求得.(1)解:把A(2,-4)的坐标代入myx=得:m=-8,∴反比例函数的解析式是8yx=-;把B(a,-1)的坐标代入8yx=-得:-1=8a-,解得:a=8,∴B点坐标为(8,-1),把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:24 81k bk b+=-⎧⎨+=-⎩,解得:125kb⎧=⎪⎨⎪=-⎩,∴一次函数解析式为152y x=-;(2)解:设直线AB交x轴于C.∵152y x=-,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积-三角形BOC的面积=1110410115 22⨯⨯-⨯⨯=;·线○封○密○外(3)解:由图象知,当0<x <2或x >8时,一次函数的值大于反比例函数的值.【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B 的坐标是解题的关键.4、(1)见解析(2)26【分析】(1)分别以点A 、点B 为圆心,以大于12AB 为半径画弧得两个交点,过两个交点画直线即可;(2)由垂直平分线的性质可得EA EB =,然后根据周长公式求解即可.(1)解:如图,直线DE 即为所求的垂直平分线; (2)解:∵直线DE 为AB 边的垂直平分线,∴EA EB =.∴16EB EC AE EC AC +=+==.∵10BC =,∴BCE 的周长161026BE EC BC ++=+=.【点睛】本题考查了尺规作图-作线段的垂直平分线,以及线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解答本题的关键. 5、(1)见解析(2)3【分析】 (1)根据DE ∥BC ,可得AD AE DB EC = ,从而得到AF AE DF EC =,进而得到AF AE AD AC = ,可证得△AEF ∽△ACD ,从而得到∠AFE =∠ADC ,即可求证; (2)根据△AEF ∽△ACD ,可得45AF EF AD CD == ,从而得到AF =12,即可求解. (1) 证明:∵DE ∥BC , ∴AD AE DB EC = , ∵AF AD DF DB =, ∴AF AE DF EC =, ∴AF AE AD AC = , ∵∠A =∠A , ∴△AEF ∽△ACD , ∴∠AFE =∠ADC , ∴EF ∥CD ;·线○封○密·○外(2)∵△AEF∽△ACD,45 EFCD=,∴45AF EFAD CD==,∵15AD=,∴AF=12,∴DF=AD-AF=3.【点睛】本题主要考查了平行分线段成比例,相似三角形的判定和性质,熟练掌握平行分线段成比例,相似三角形的判定和性质定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年广东省河源市中考数学试卷一、选择题:每小题3分,共15分,每小题给出四个答案,其中只有一个是正确的.1.(3分)(2012•梅州)=()A.﹣2 B.2C.1D.﹣12.(3分)(2012•梅州)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)(2012•河源)为参加2012年“河源市初中毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)为8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.64,9 B.8.5,9 C.8.5,8.75 D.8.5,8.54.(3分)(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(3分)(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定二、填空题:每小题4分,共20分.6.(4分)(2012•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .7.(4分)(2012•梅州)某市水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为_________ 千瓦.8.(4分)(2012•梅州)正六边形的内角和为_________ 度.9.(4分)(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是_________ (写出符合题意的两个图形即可)10.(4分)(2012•梅州)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了_________ cm;②当微型机器人移动了2012cm时,它停在_________ 点.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)(2012•梅州)计算:﹣+2sin60°+()﹣1.12.(6分)解不等式组.13.(6分)(2012•梅州)为实施校园文化公园化战略,提升校园文化品位,在“回赠母校一颗树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了_________ 人;(2)条形统计图中的m= _________ ,n= _________ ;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是_________ .14.(6分)(2012•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为_________ ;(2)点A1的坐标为_________ ;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为_________ .15.(6分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)(2010•常德)已知图中的曲线函数(m为常数)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与正比例函数y=2x图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.17.(7分)(2012•梅州)解方程:.18.(7分)(2012•梅州)如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.19.(7分)(2012•梅州)一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)(2012•梅州)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.21.(9分)(2012•梅州)(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.22.(9分)(2012•河源)如图,矩形OABC中,A(6,0),C(0,),D(0,),射线l过点D且与x 轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是_________ ;②∠CAO= _________ 度;③当点Q与点A重合时,点P的坐标为_________ ;(直接填写答案)(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.2012年广东省河源市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共15分,每小题给出四个答案,其中只有一个是正确的.1.(3分)(2012•梅州)=()A.﹣2 B.2C .1D.﹣1考点:零指数幂。

专题:常规题型。

分析:根据任何非0实数的0次幂等于1解答即可.解答:解:﹣(﹣)0=﹣1.故选D.点评:本题主要考查了零指数幂,熟记任何非0实数的0次幂等于1是解题的关键.2.(3分)(2012•梅州)下列图形中是轴对称图形的是()A.B.C.D.考点:轴对称图形。

专题:常规题型。

分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2012•河源)为参加2012年“河源市初中毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)为8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.64,9 B.8.5,9 C.8.5,8.75 D.8.5,8.5考点:众数;中位数。

分析:根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,中间位置的数为中位数.解答:解:在这一组数据中8.5是出现次数最多的,故众数是8.5;而将这组数据从小到大的顺序排列后,处于中间位置的数8.5,那么由中位数的定义可知,这组数据的中位数是8.5.故选D.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.4.(3分)(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题)。

分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.(3分)(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定考点:反比例函数与一次函数的交点问题。

分析:根据一次函数与反比例函数图象的性质作答.解答:解:y=x+1的图象过一、二、三象限;函数的中,k>0时,过一、三象限.故有两个交点.故选C.点评:本题考查了反比例函数与一次函数的交点问题,只有正确理解性质才能灵活解题.二、填空题:每小题4分,共20分.6.(4分)(2012•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:同类项。

分析:根据同类项的定义得到2n=6解得n值即可.解答:解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为3.点评:本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.7.(4分)(2012•梅州)某市水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为7.75×105千瓦.考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于775000有6位,所以可以确定n=6﹣1=5.解答:解:775 000=7.75×105.故答案为:7.75×105.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.8.(4分)(2012•梅州)正六边形的内角和为720 度.考点:多边形内角与外角。

相关文档
最新文档