变电站防雷接地技术

合集下载

变电站防雷接地技术分析

变电站防雷接地技术分析

变电站防雷接地技术分析变电站作为电力机制的重要设施之一,它能够有效地调节电力强度等其他电力参数,它的功能发挥水平在很大程度上会影响到电网运作的平稳度。

倘若变电站受到雷击的影响,那么就会导致其他有关的电气设施遭到毁坏,严重时还会引发当地区域大规模的停电,诱发一系列的危险事故。

所以,不管是从供电平稳性还是从社会安全的角度出发,相关的工作人员都要越来越重视起防雷环节,严格秉持防雷接地设计的基本准则,灵活地采取防雷接地技术,由此提高电变站的防雷水平,防止遭到雷击的大面积损坏。

对此,笔者将详尽地阐述變电站的接地装置设计以及防雷接地的技术,希望能够给同行带来一定的参考价值。

标签:变电站;防雷接地;技术分析1 导言在现代社会中,无论是国家的经济发展,还是千家万户的日常生活,都与电力系统有密不可分的联系。

因此,可以将电力系统称之为社会发展的核心内容,如果电力系统一旦出现瘫痪,则很有可能使一个国家或者整个世界陷入黑暗之中,人类也无法正常的生存。

电力系统中,变电站具有非常重要的作用,但是其也非常容易受到雷电的袭击,一旦遭遇雷电的袭击,不仅会带来严重的经济损失,还会对周围的环境带来巨大的危害,所以必须要不断地提升变电站的防雷水平。

2 雷电对变电站的危害2.1雷的直击和绕击危害天空的雷云携带与地表相反的电荷。

雷云经过变电站的避雷针或者其他地面突出物体上方的时候,突出物体的顶端电场会发生畸变。

在闪电形成的过程中,从雷云底部电荷开始逐渐向地面发展。

当距地面的高度不足100m时,突出物体顶部发生畸变电场的地方电荷开始往上移动。

当两者电荷汇合,则标志着闪电开始进入了主放电的阶段。

在安装独立避雷针后,避雷针附近将会有大量的散击出现。

同时也可能会出现直击避雷针或对处于避雷针保护范围内的物体进行绕击。

雷击的主放电会释放出巨大能量,雷电流通常为几万到十几万安培[1]。

在这种巨大能量冲击下,会造成建筑物倒塌、电气设备的损坏甚至引起大爆炸,造成人员伤亡。

变电站设施的防雷与接地技术

变电站设施的防雷与接地技术

变电站设施的防雷与接地技术随着电力系统的发展,变电站的重要性在电力传输和供应中愈加突出。

然而,由于变电站常常处在露天环境下并且承担着电力传输的任务,其设备和设施容易受到雷电的影响。

因此,实施适当的防雷与接地技术对于确保变电站的正常运行和电力安全至关重要。

首先,变电站应该配备适当的防雷设施。

常见的防雷设施包括避雷针和避雷网。

避雷针是安装在建筑物或设备上的尖峰,主要作用是引导雷电流经过,从而将雷电流安全地释放到大地中。

而避雷网则是由金属网制成的防雷网,其目的是将雷电流均匀地分散到大地中,减少雷电对设备和设施的影响。

这样的防雷设施能够通过优化电场分布和消散雷电能量,减少雷电对设备的冲击,从而保证变电站的正常运行和设备的安全性。

其次,变电站在设计和建设过程中需要注意合理的接地系统。

接地系统不仅可以防止雷电对设备的破坏,还可以保护人身安全。

常见的接地系统包括保护接地、操作接地和仪表接地。

保护接地是指将变电站的主要设备和设施与地面形成良好的接触,以便在发生故障时将电流导入地面,从而保护设备和人身安全。

操作接地主要是为了保证操作人员的安全,当需要进行设备维修和检修时,操作人员要将设备接地并使用合适的防护设备,以防止电流通过人体造成伤害。

仪表接地是指将仪表设备与大地连接,确保测量结果准确可靠。

在设计接地系统时,需要考虑以下因素:变电站的地质条件、土壤电阻率、接地电阻的要求、外部干扰和雷电破坏等因素。

地质条件和土壤电阻率将直接影响接地电阻的大小。

接地电阻的要求要符合相关的国家或地区标准,以保证系统正常运行。

外部干扰也是影响接地系统的重要因素,例如邻近大型建筑物或混凝土表面的覆盖。

因此,在设计接地系统时,应该综合考虑这些因素,确定适合的接地技术。

除了以上措施,还可以采取其他的防雷与接地技术来提高系统的可靠性和抗雷击能力。

例如,可以使用避雷器来抑制和消除过电压,保护变电设备不受雷击影响。

避雷器通常安装在设备的进出线路上,当过电压出现时,避雷器能够将过电压引流到地面,保护设备的安全。

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版变电站的防雷接地技术在现代电力系统中起着至关重要的作用。

接地系统的质量直接关系到变电站的运行安全和稳定性。

为此,需要采取一系列科学合理的防雷接地措施。

本文将对变电站防雷接地技术进行详细介绍。

1. 变电站的防雷接地目标是提高变电站的防雷能力,保证变电站的设备和人员免受雷电灾害的侵害。

具体来说,防雷接地技术的目标包括以下几个方面:(1) 提供良好的接地条件,降低设备的接地电阻,减小接地电阻对设备的影响。

(2) 合理选择接地电阻的大小,确保接地电阻能够满足工作条件。

(3) 在设计过程中考虑不同变电站的特点,如土壤电阻率、湿度等因素,制定相应的防雷接地方案。

2. 在变电站的防雷接地设计中,地网是一个重要的组成部分。

地网的作用是将雷电流迅速引入地下,避免对设备和人员造成危害。

为了确保地网的效果,应采取以下几个措施:(1) 选择导电性能好的材料,如铜、镀锌钢等,来构建地网。

这样可以降低接地电阻,提高接地效果。

(2) 最大限度地增加地网的接地面积,通过合理布置地网,使地网与大地的接触面积最大化。

(3) 进行接地体的环境电磁兼容性设计,避免雷电流对设备正常运行的干扰。

3. 变电站的防雷接地技术还包括防雷装置的选择和安装。

防雷装置主要有避雷针、避雷器等。

在选择和安装防雷装置时,需要考虑以下几个方面:(1) 根据变电站的环境条件和雷电活动情况,选择合适的防雷装置。

例如,当雷电活动频繁时,应选择灵敏度高的防雷装置。

(2) 避雷器的接地引下线应与变电站的主接地体相连,确保避雷器能够快速将雷电流引入地下。

(3) 避雷器的接地电阻应尽量小,以确保避雷器能够正常工作。

4. 防雷接地技术的设计还应考虑到防雷装置与设备的连接。

具体来说,应采取以下几个措施:(1) 创建一个低阻连接,确保雷电流能够顺利引入地下,而不对设备造成危害。

(2) 合理布置接地引下线,避免交叉干扰,确保防雷装置的正常工作。

(3) 防止接地回路的断开,采取适当的接地保护措施,如设置避雷器来保护接地引下线。

变电站防雷接地技术

变电站防雷接地技术

题目:变电站防雷接地技术内容摘要变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

关键词:变电站;防雷保护;接地装置目录内容摘要 (I)1 绪论 (1)1.1 课题研究的意义 (1)1.2 变电站防雷接地的研究背景 (2)1.3 本次论文的主要工作 (2)2 变电站的防雷保护 (4)2.1 变电站的直击雷保护 (4)2.2 变电站的侵入波保护 (6)2.3 变电站的进线段保护 (6)2.4 避雷针与避雷线的保护范围的计算 (7)2.5 变电站进线防雷保护 (8)3 变电站的防雷接地 (9)3.1 接地概述 (9)3.2 接地电阻 (9)3.3 变电所接地装置 (10)3.4 变电所接地的原则 (11)3.5 降低变电所接地装置工频接地电阻的措施 (12)4 变电所防雷接地设计实例 (13)4.1 变电所的规模 (13)4.2 变电所位置的自然条件 (14)4.3 避雷针的设置及防雷保护校验 (15)4.4 接地装置的设置 (17)5 结论 (18)参考文献 (19)1 绪论1.1 课题研究的意义接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地防雷。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的防雷接地技术范文

变电站的防雷接地技术范文

变电站的防雷接地技术范文一、引言现代社会对电力供应的要求越来越高,而变电站作为电力系统的重要组成部分,必须具备稳定可靠的运行能力。

然而,雷电是变电站运行安全的主要威胁之一。

为了确保变电站的正常运行,防雷接地技术成为了必不可少的一环。

本文将重点探讨变电站的防雷接地技术,并对其进行详细阐述。

二、变电站的防雷接地技术概述防雷接地技术是指在建设变电站时采取一系列措施,使其具备良好的接地系统,以有效抵御雷击对变电站的影响。

变电站的防雷接地技术主要包括以下几个方面:1. 接地装置的设计和维护:接地装置是变电站防雷接地技术的核心。

它通过将变电站与大地之间建立良好的导电路径,将雷电流尽量引入地下,在保护变电设备的同时减少雷击对人身安全的伤害。

接地装置的设计应符合国家标准,并且需定期检查和维护,确保其连接良好,能够有效地引导雷电流。

2. 引下装置的设置:引下装置是指为了将雷电流引导到接地装置而设置的导线和支架等设备。

引下装置的设置位置应根据变电站的具体情况确定,以确保雷电流可以快速而稳定地引导至地下。

3. 防雷网的建设:防雷网是指在变电站周围设置一定高度的金属栅格,以防止雷电通过地面路径进入变电站,从而减少对变电设备的损坏。

防雷网应与接地装置相连接,并且设置合理,以确保雷电流能够有效排除。

4. 防雷避雷器的使用:防雷避雷器是变电站防雷接地技术中的重要设备之一。

它可以在雷电击中变电站时,迅速吸收并释放雷电能量,保护变电设备的安全运行。

防雷避雷器的选用应根据变电站的电压等级和环境条件确定,并定期进行检测和更换。

三、变电站防雷接地技术的关键问题在实际应用中,变电站的防雷接地技术面临着一些关键问题需要解决。

以下是其中的几个重要问题:1. 接地电阻的控制:接地电阻是衡量接地装置性能的重要指标之一。

接地电阻越小,说明接地装置中电流的传输能力越强,从而能够更好地抵御雷电的冲击。

因此,变电站的防雷接地技术应注重控制接地电阻,以达到更好的防雷效果。

变电站防雷接地技术

变电站防雷接地技术
说 , 变 电站 的接 地 电 阻 应 控 制 在 5 D 以 下 ,对
【 关键词 】变电站 防雷接地 雷 电入侵
3变电站的防雷接地技术
3 . 1 防 雷 接 地 装 置
于重要节点处的变 电站,其接地 电阻更要小于
0 . 5 D,除 此 之 外 , 在 进 行 变 电 站 防 雷接 地装 置
或化 学腐蚀 的可能性。在进行接地线敷设时 ,
需要注意以下几个方面 :一是接 电线 的连接应 采用焊接方式,且当采 用搭接焊接 时,搭接长 度 应为扁钢 的 2倍 、圆钢 的 6倍 ;二是接地线 与管道等进行连接时宜采 用焊接方式 ,且连接 点应选择近处,并在管道阀门处设置跨 接线 ; 三是接电线与电气设备 间的连接 可采用螺栓或 焊接方式,而与接地极间的连接 宜采用焊接方
地网。 ’
出了更高 的要求 。变 电站作 为电力系统中电压
等 级 变 换 、 电 能集 中 分配 的 场 所 , 对 电 力 系 统
般 来 说, 防雷接 地装 置主 要 由接地 体
与接地线两大部分组成 。 ( 1 )接 地体。接地 体根据属 性不 同可 以 分为 自然接地体与人工接地体 两类。 自然接 地 体是指利用大地 中已经存 在的管道、钢筋等金
而感应雷也称二次雷,是 由于雷云电磁感应 而 在 电气设备上产生的一种过电压,对 电气设备 也有着严重 的破坏 。根据雷击形式的不同,变 电站 的防雷措施也应当有针对性地入手 。
P o we r E l e c t r o n i c s ● 电力 电子
变电站防雷接地技术
文/ 王 志平
的控制调度 中心 ,内部布置有大量二次 系统通 随着 我 国经 济社会 的迅 速发
展 , 社 会 用 电 量 不 断 增 加 , 电 力

35kv变电站防雷接地保护方案

35kv变电站防雷接地保护方案

35kv变电站防雷接地保护方案一、背景与目标随着电力系统的不断发展,35kv变电站的数量逐渐增多,其运行安全问题也日益突出。

雷电是导致变电站故障的重要因素之一,因此,制定一套有效的防雷接地保护方案至关重要。

本方案旨在提高35kv变电站的防雷接地能力,确保其在雷雨天气下的正常运行。

二、方案设计1.避雷针安装在变电站的进出线架构、变压器和开关设备等重要设施上安装避雷针,以防止直击雷对设备造成的损害。

避雷针应选择具有优良导电性能的材料,并按照规范进行安装,以确保其保护效果。

2.接地网设计设计一个覆盖全站的接地网,确保所有设备均能通过低阻抗路径连接到地网。

接地网的设计应考虑以下几点:(1) 确定合理的接地电阻值,以确保地网与大地之间的导电性能良好;(2) 选择合适的接地体材料,如镀锌钢等;(3) 按照规范的施工方法进行接地体的埋设和连接。

3.浪涌保护器设置在变电站的电源、信号等关键部位设置浪涌保护器,以吸收雷电过电压和操作过电压等瞬时能量,保护设备免受雷电冲击。

浪涌保护器的选择应符合设备的额定电压、持续运行电压等参数。

4.合理布线对进出变电站的线路进行合理布线,避免线路交叉跨越或近距离平行排列,减少雷电感应过电压对设备的影响。

同时,对重要设备进行屏蔽措施,如采用屏蔽电缆等。

5.维护与监测定期对防雷接地系统进行检查和维护,确保其正常运行。

同时,安装接地电阻在线监测系统,实时监测地网的电阻值变化,及时发现并处理问题。

三、实施步骤1.调研与设计阶段:对变电站的地形地貌、建筑结构、设备布局等进行详细调研,确定避雷针安装位置、接地网设计方案等。

2.材料采购与施工准备阶段:根据设计方案采购必要的材料和设备,包括避雷针、接地体、浪涌保护器等。

同时,做好现场施工准备工作,如清理场地、准备施工工具等。

3.避雷针安装与接地网施工阶段:按照设计方案和施工规范进行避雷针的安装和接地网的施工。

注意确保避雷针与设备之间的安全距离,以及接地体的埋设深度和连接质量。

变电站的防雷接地技术范本

变电站的防雷接地技术范本

变电站的防雷接地技术范本防雷接地技术在变电站的设计和运行中起着至关重要的作用。

良好的防雷接地系统可以有效地保护变电站设备和人员,降低雷击产生的破坏和损失。

下面将介绍几种常见的防雷接地技术范本,供参考。

1. 接地网的设计接地网是变电站防雷接地的主要组成部分,其设计应遵循以下原则:(1)地网形状应尽量接近正方形或长方形,以确保电流均匀分布。

(2)接地网的埋深应足够深,一般不少于1米。

(3)地网的网格尺寸应合理选择,一般取4~6米之间。

(4)地网的水平接地电阻应符合规范要求。

(5)地网内应设置足够多的接地电极,以提高接地效果。

(6)在地网周边设置导体带,以增加接地网的有效接地面积。

2. 接地电阻的降低为了降低接地系统的电阻,可以采取以下措施:(1)增加接地电极的数量和面积,可以通过并联多个接地电极来降低接地电阻。

(2)合理选择接地电极材料,如铜良好的导电性能可以降低接地电阻。

(3)采用混凝土埋地电极或化学接地电极等,可以提供更大的接地面积,从而降低接地电阻。

(4)在接地系统中添加辅助接地电极,如接闪电杆、接电杆等,可以有效地降低接地电阻。

3. 防雷设备的选择和安装防雷设备是变电站防雷接地系统的重要组成部分,正确选择和安装防雷设备可以有效地保护变电站设备和人员。

以下是几种常见的防雷设备和安装要点:(1)避雷针:应选择高效的避雷针,并安装在变电站的高处,如变压器、断路器、电缆等设备的周围。

(2)避雷器:应根据变电站设备的电压等级选择合适的避雷器,并正确安装在电力系统的进出口位置。

(3)避雷阻抗器:应选择合适的避雷阻抗器,并正确接入电力系统,以限制过电压的传播。

(4)接闪装置:应根据变电站设备的特点和雷击频率选择合适的接闪装置,并正确安装在设备上,以保护设备免受雷击的损害。

(5)接地引线:应选择导电性能良好的材料,并正确安装在设备上,以确保设备能够有效地接地。

4. 定期检测和维护为了保证接地系统的正常运行和安全性,需要定期进行接地系统的检测和维护。

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版防雷接地技术是变电站建设中至关重要的一项工作,它关系到电力设备的安全运行和用电质量的稳定。

以下是一个____字的变电站防雷接地技术模板,供参考。

第一章引言1.1 研究背景随着电力设备的不断进步和发展,变电站的规模和复杂程度也在不断增加。

在变电站中,雷击是一个常见的自然灾害,对设备的绝缘强度和继电保护的正常运行都会造成很大的影响。

因此,进行合理的防雷接地工作对于保障变电站的安全运行具有重要意义。

1.2 研究目的本文旨在研究变电站的防雷接地技术,分析其原理和方法,并提出一套完整的防雷接地技术模版,以指导变电站的防雷接地工作。

第二章防雷接地技术原理2.1 雷击特点及危害防雷接地技术的研究首先需要了解雷击特点及其对设备的危害。

雷击是一种高能量的自然现象,其能量可达数百万伏特,数百千安培。

雷电产生的电磁场和电压脉冲会对设备的电气性能产生破坏,甚至会引发火灾和爆炸。

2.2 防雷接地原理防雷接地技术依靠合理布置的接地装置将雷击电流引入地下,分散其能量,降低其危害。

接地系统的主要功能包括:引导和分散雷电能量、保护设备免受过电压的侵害、保护人身安全等。

常见的防雷接地技术包括平面接地、等效接地电阻的控制和良好的接地系统设计等。

第三章防雷接地技术方法3.1 接地系统设计3.1.1 接地体材料选择接地体的材料选择对系统的性能有重要影响。

常见的接地体材料有铜、铝、镀锌钢等。

根据预算和性能要求,选择合适的接地体材料。

3.1.2 接地体形状设计接地体的形状对其导电性能和机械强度有很大的影响。

接地体的形状应尽量接近理想导体,以增加其导电性能。

3.1.3 接地体布置设计接地体的布置设计应考虑到雷电击中的可能性,以保证雷电能够有效地引入地下。

变电站的接地系统应合理布置,保证接地电阻满足要求。

3.2 接地系统施工3.2.1 接地体施工接地体的施工应注意连接接地体和主体设备之间的接触性能和接地电阻。

接地体与地下土壤的接触性能越好,接地电阻越低。

变电站防雷接地施工方案

变电站防雷接地施工方案

变电站防雷接地施工方案一、工程概述本工程主要是针对变电站的防雷接地系统进行施工,包括接地体的安装、接地线的敷设、接地电阻的测试等内容。

我们将严格按照国家标准和行业规范进行施工,确保变电站的安全运行。

二、施工准备1.人员准备:施工队伍由经验丰富的工程师和技术人员组成,所有人员在上岗前都经过了专业的培训。

2.材料准备:根据施工需求,提前准备好符合国家标准的接地体、接地线等材料。

3.设备准备:准备好必要的施工设备,如接地电阻测试仪、电焊机等。

三、施工流程1.接地体的安装:我们需要根据设计图纸,确定接地体的位置和数量。

然后,按照规范进行接地体的挖掘、安装和回填。

2.接地线的敷设:接地线应沿着最短路径敷设,尽量避免弯曲和交叉。

接地线的连接处应采用焊接方式,确保连接牢固。

3.接地电阻的测试:在接地体和接地线安装完毕后,我们需要进行接地电阻的测试,以确保接地系统的可靠性。

四、施工要点1.接地体的安装深度应满足设计要求,且接地体顶部应低于地面。

2.接地线的敷设应遵循“短、直、平”的原则,尽量减少接地线的长度和弯曲。

3.接地线的焊接应采用双面焊接,确保焊接质量。

4.接地电阻的测试应在接地系统施工完成后进行,以确保接地系统的可靠性。

五、施工安全1.施工过程中,所有人员应严格遵守安全操作规程,确保自身和他人的安全。

2.施工场地应设置安全警示标志,提醒无关人员远离施工区域。

3.施工设备应定期检查和维护,确保设备的安全运行。

六、施工验收1.施工完成后,我们需要对施工质量进行检查,确保施工符合国家标准和行业规范。

2.验收合格后,我们将向业主提供完整的施工资料,包括施工图纸、施工记录、验收报告等。

3.在验收过程中,如发现问题,我们将及时进行整改,直到验收合格。

七、售后服务1.施工完成后,我们提供一年的质保期,质保期内如有问题,我们将免费进行维修。

2.质保期结束后,我们仍提供有偿的维修服务,确保变电站的安全运行。

接地施工可是个技术活,马虎不得,有几个注意事项得特别留意:1.接地体埋深要达标。

2024年变电站的防雷接地技术(三篇)

2024年变电站的防雷接地技术(三篇)

2024年变电站的防雷接地技术1接地装置保护和屏蔽措施都要求有科学可靠的接地装置。

1.1接地体接地体可分为自然接地体和人工接地体,设计中通常采用人工接地体,以便达到所规定的接地电阻,并避免外界其他因素的影响。

人工接地体又可分为水平接地体和垂直接地体。

接地体的接地电阻值取决于接地体与大地的接触面积、接触状态和土壤性质。

垂直接地体之间的距离为5m左右,顶部埋深0.5~0.8m。

接地体与道路或通道出入口的距离不小于3m,当小于3m时,接地体的顶部处应埋深1m以上,或采用沥青砂石铺路面,宽度超过2m。

埋在土壤中的接地装置连接部位应按规范规定的搭接长度焊接以达到电气连接。

焊接部位应作防腐处理。

1.2接地线接地线即接地体的外引线,连接被保护或屏蔽设施的连线,可设主接地线、等电位连接板和分接地线。

防雷接地装置的接地线即防雷接闪装置的引下线,可采用圆钢或扁钢,两端按规定的搭接长度焊接达到电连接。

防静电保护和防干扰屏蔽装置的主接地线一般采用多股铜芯电缆,分接地线采用多股铜芯软线。

2防雷保护措施防雷措施总体概括为2种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。

防雷保护措施应根据现场常见的雷击形式、频率、强度以及被保护设施的重要性、特点安装适宜的保护装置。

2.1避雷针或避雷线雷击只能通过拦截导引措施改变其入地路径。

接闪器有避雷针、避雷线。

小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。

2.2避雷器避雷器能将侵入变电所的雷电波降低到电气装置绝缘强度允许值以内。

我国主要是采用金属氧化物避雷器(MOA),西方国家除用MOA 外,还在所有电气装置上安装空气间隙,作为MOA失效后的后备保护。

2.3浪涌抑制器采用过压保护器(电涌保护)、防雷端子等提高电气设备自身的防护能力,防止电气设备、电子元件被击坏。

在重要设备的电源配入、配出口均应加装电源防雷器,选用的电源防雷器具有远传通讯接点,接入后台管理机。

变电站电气设备防雷接地技术

变电站电气设备防雷接地技术
了 深 入 研 究 , 首 先 阐 述 了 雷 电危
要 想 避 免 设 备 遭 受 直 接 雷 击 最 有 效 的 方 式就是装设避雷针。对于避雷针 、配 电装置 和 当 雷击避 雷 器时 , 电流 就会 随着 向四周 接地装置 三者的位置要合理选择 ,同时相 隔距 扩散 ,一旦 附近有人就会威胁 到生命。 离严格控制 ,尽量保持在不少 于 5米,对于其 他 的设备和构架接地部分支架 也是 如此。如果 2变电站 电气设备 防雷接 地技术 布置在地下 ,则要控制好避 雷针和变电所接地 网之间的距离,一般保持 3米 以上 。
害 ,并 列举 了几种 比较 常用 、有
效 的 防 雷技 术 。
【 关键词 】变电站 电气设备 防雷接地技术
最近 几 年 以来我 国 电力 改革 不断 深化 , 为变 电站 的发展和 建设提供 良好的环境 ,智能 化和数字化 成了发展的主要方 向,但是在发 展 的 同时也暴 露了更多的 问题 ,雷 电危害是最 具 代表 性的一种。最近几年 以来我 国变 电站遭 到 雷击 导致 设备损坏、供 电中断 、系统瘫痪 的情 况 时有发生,普遍存在 ,这严 重影 响了变 电站 运 行的安全性和稳定性 ,对于人们 的正常生活 也带来了不 良影响 。因此 ,必须要予 以高度关 注,加强管理和维护 ,做好变 电站 电气设备 的 防雷措施 ,合理应用 相关防雷接地技术 ,确保 变 电系统的运行安全 。
电力 电子 ● P o w e r E l e c t r o n i c s
变电站 电气设备 防叠雷 击 避 雷 器
变 电站在 电力 系统 中 占据 重 要 位 置, 其 中 包括 了电 气设备 , 由于 工作 环境 比较 复杂 , 因此 电 气设备 在 运行 过程 中很 容 易受 到

变电站的防雷及接地保护

变电站的防雷及接地保护

变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。

条件许可时,Sk与Sd应尽量大。

一般情况下,Sk>5m,Sd>3m。

避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。

一般土壤工频接地电阻不大于10Ω。

35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。

60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。

所有被保护的设备均应在避雷针保护范围内。

一、电气装置接地要求1.接地要求(1)一般要求①接地。

为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。

②接地电阻。

设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。

③接地距离。

不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。

④中性线。

中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。

(2)防静电接地要求①可靠连接。

车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。

②接地连接。

车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。

③气体场所接地。

气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。

(3)特殊设备接地要求①接地体。

变电站的防雷接地技术

变电站的防雷接地技术

变电站的防雷接地技术是保障变电站设备和人员安全的重要技术之一。

雷击是指在雷雨天气下,由于大气中带电现象的产生,经过放电通道(大气电击击穿路径),使变电设备或电力线路与大气达到电位平衡的一种自然灾害。

防雷接地技术主要是通过合理设计和布置接地体,将变电站的设备接地,以减小雷击对变电设备的损害,并将雷击过电压安全排除。

一、变电站的防雷接地原理根据电学原理,将设备或物体与地面相连的导体称为接地体,通过接地体将设备的外露金属部分与地面形成较低的接地电阻,从而降低雷击对设备的损害。

变电站的防雷接地包括主接地体和附属接地体。

1. 主接地体:主要是通过大型电气金属器材(如变压器本体、高压开关、低压开关等)的外壳、支撑架等零件与地面接地,保证设备的安全运行和人员的安全。

2. 附属接地体:根据变电站地质、场地及设备特点,通过合理埋设附属接地体,减小雷击对设备的损害,提高设备和系统的抗雷击能力。

二、变电站防雷接地技术的实施1. 场地选择:变电站必须选择在地势较高、雷电活动相对较少的地区。

同时,场地应避开高树、高建筑物等。

2. 合理布置主接地体:主接地体应设计成具有足够导电面积的图形,如网状和圆环状接地体。

接地体应选用优质的电气导体,并与设备连接牢固。

在设备竖立位置上应采用并联接地体的方式,以减小接地电阻。

3. 合理布置附属接地体:根据场地特点和设备分布情况,合理选取附属接地体的类型和布置位置。

一般根据雷击概率和设备电击承受能力等因素,将附属接地体分为雷击电流引入接地体和对大规模雷电集中放电有吸收作用的避雷针等。

4. 接地体的埋设:接地体的埋设需要注意以下几点:- 保证接地体与地面的良好接触。

接地体与地面接触不良会导致接地电阻增加,从而减小防雷的效果。

- 埋设深度要适当,一般要求超过地面0.5米,以保证稳定性和防腐能力。

- 不同接地体之间需要保持一定的距离,以防止相互干扰。

5. 接地电阻测试:接地电阻是衡量接地效果的重要指标之一。

变电站的防雷接地技术

变电站的防雷接地技术

变电站的防雷接地技术以下是变电站的防雷接地技术的详细介绍。

一、绝缘子串的选择绝缘子串是变电站防雷接地技术的重要组成部分。

在选择时应考虑绝缘子串的绝缘性能、机械强度和抗污闪能力。

绝缘子串应具有良好的耐电弧击穿性能,以确保在雷电冲击下不会发生击穿事故。

此外,绝缘子串还应能够抵抗污染和闪络,提高系统的可靠性。

二、接地极的布置接地极是变电站防雷接地技术中的重要部分,它能将雷电冲击的电流引入地下,以保护变电设备免受雷击伤害。

接地极的布置应根据变电站的具体情况进行设计,通常采用网状接地或环形接地的方式。

在布置接地极时,应考虑地下水位、土壤电阻率和接地极的材料等因素。

三、接地体的选择接地体是变电站防雷接地技术中的重要组成部分,用于连接接地极和地下水层。

常用的接地体材料有铜质接地体和镀锌接地体。

铜质接地体具有导电性能好、耐腐蚀性强的特点,但造价较高;镀锌接地体则具有成本低、耐腐蚀性能较好的特点。

根据实际情况选择合适的接地体材料,能够提高接地系统的可靠性。

四、接地系统的检测和维护为了确保接地系统的良好工作,需要定期检测和维护。

检测包括对接地电阻、接地体电流和接地体的阻抗进行测量。

接地电阻应满足规定的要求,以保证接地系统的正常工作。

维护包括对接地体和接地极的清洁和维修,以保证其良好的导电性能和耐腐蚀性能。

五、避雷器的应用在变电站的防雷接地技术中,避雷器是一种重要的防雷设备,用于消除或减小雷电冲击对设备的影响。

避雷器是一种具有高电压容限和快速响应的装置,当雷电冲击到达时,避雷器能够提供低阻抗通道,将雷电冲击引流至地下,保护变电设备不受损害。

避雷器应根据系统电压等级和雷电冲击的能量进行选择,以提高系统的防雷性能。

总结:变电站的防雷接地技术是保护变电设备免受雷击损害的关键。

在选择绝缘子串、布置接地极、选择合适的接地体材料、进行定期检测和维护以及应用避雷器等方面都需要进行详细的规划和设计。

这些技术措施将有效提高变电站的防雷能力,确保变电设备的安全运行。

变电站防雷接地技术

变电站防雷接地技术

变电站防雷接地技术哎呀,说起变电站防雷接地技术,这可真是个相当重要的事儿!我先给您讲讲我曾经的一次经历。

有一回,我去一个比较偏远的变电站做调研。

那地方周围都是大片的农田,环境倒是挺开阔的。

当时正值雷雨季节,我刚到那儿,天空就开始变得阴沉沉的,乌云滚滚而来。

变电站的工作人员都显得特别紧张,我能感觉到那种气氛的凝重。

没过多久,雷声轰隆隆地响起来,闪电也在天空中肆意划过。

这时候,我就在想,要是这变电站的防雷接地技术不过关,那后果可不堪设想啊!咱们先来说说为啥变电站需要防雷接地。

您想啊,变电站里那么多重要的设备,什么变压器啦、开关柜啦,要是被雷电击中,那不是一下就瘫痪了嘛。

雷电的能量可大得吓人,要是不做好防护,设备损坏不说,还可能会影响一大片地区的供电,那可就麻烦大了。

防雷接地技术就像是给变电站穿上了一层坚固的“防护服”。

首先,得有良好的避雷针或者避雷网。

这就好比是一把大伞,把变电站罩在下面,让雷电尽量别直接劈到设备上。

还有接地装置也特别关键。

这就像是给雷电找了个“出路”,让电流能够顺利地导入大地,而不会在变电站里乱窜。

接地装置得埋得够深,接触面积得够大,这样才能保证电流快速、有效地疏散。

而且啊,这防雷接地系统可不是一劳永逸的,得经常检查和维护。

就像咱们的身体,得定期做体检一样。

比如说,接地电阻要是变大了,那可就不好了,得赶紧处理。

我还记得那次在变电站,雨下得特别大,打在窗户上噼里啪啦的。

工作人员一直在监控室里紧盯着各种数据,生怕有什么异常。

还好,最终安然度过了那场雷雨,这也多亏了他们平时对防雷接地技术的重视和维护。

在实际应用中,选择合适的防雷接地材料也很重要。

有的材料导电性好,但可能不耐腐蚀;有的材料耐腐蚀,但导电性又不太理想。

这就得综合考虑,选出性价比最高的。

另外,变电站的位置和周边环境也会影响防雷接地的效果。

如果周围有高大的建筑物或者树木,那就得特别注意了,因为雷电可能会被它们吸引过去,然后“殃及池鱼”。

变电站的防雷接地技术

变电站的防雷接地技术

变电站的防雷接地技术引言随着电网和电气设备功能不断的扩展,对于变电站的运行维护也有了更高的要求。

在雷电天气中,变电站设备特别容易受到雷电侵扰,从而对设备造成破坏,损失较大。

因此,建立科学的防雷技术措施及接地方式,保障变电站设备的安全稳定运行,显得至关重要。

本文将围绕变电站的防雷接地技术,深入探讨其原理与技术方案。

第一部分:变电站防雷原理1.1 雷电的危害雷电是指在大气层中发生的一种高温、高压、高能的现象。

在自然界中,雷电暴是最常见的天气现象之一。

当雷电暴发生时,变电站电气设备就很容易受到雷电的侵扰,而造成零部件的宕机、烧毁、短路等情况。

1.2 防雷的原理防雷的原理是利用导体的物理特性,将雷击电流从设备引入地中流失,通过防止雷击电流进入设备,从而保护设备免受损坏。

换句话说,防雷的原理就是将雷击电流物理通常导向‘安全’的接地,从而使峰值电压降低到设备允许的安全水平。

第二部分:变电站防雷接地技术为了达到防雷的目的,需要对变电站进行接地设计。

接地设计在变电站的建造和运营中起着重要的作用。

为了达到较好的防雷和接地效果,需要了解采取不同的防雷接地技术的原理。

2.1 堤防式接地堤防式接地就是在变电站周围堆放耐腐蚀性地木板或混凝土块,将放置金属棒的管道或散开的金属棒作为接地电极,接地电极可以选择焊接或松紧连接。

堤防式接地的优点是易于施工和维护,接地效果好,可保证设备的安全工作。

但是,由于其设计具有非常明显的外观特征,容易被人为破坏。

2.2 火线接地火线接地是一种常见的接地方式。

它使变电站上游的灰暗物质接地,通过相关设备把灰缆和接地电极连接在一起,将接地线缆连接在火线出线端子上。

这种接地方式有很高的技术要求,需要设计师具有丰富的经验和专业的技术知识,选用的相关设备也要经过严格的筛选和考察。

它的优点是接地效果好,且难以被人为破坏。

2.3 集中式接地集中式接地是指沿变电站边界设置接地回路或接地网,将设备接地电极连接在接地回路或接地网中,形成一个大面积的接地,从而达到防雷的效果。

变电站的防雷接地技术范文(三篇)

变电站的防雷接地技术范文(三篇)

变电站的防雷接地技术范文【引言】随着现代社会的发展,电力系统在人们的生活中起到了至关重要的作用。

而变电站作为电力系统的重要环节,其正常运行与安全稳定有着密切关系。

然而,雷电是变电站运行中的一个重要威胁,因为雷电击中变电站会导致强大的电磁脉冲和电压浪涌,使设备受到损坏甚至导致变电站停运。

因此,防雷接地技术成为了变电站安全运行的必备技术之一。

本文将对变电站的防雷接地技术进行详细介绍,包括接地原理、接地装置的设计与安装以及接地系统的检测与维护等方面,以期提高变电站的防雷水平,确保变电站的安全稳定运行。

【接地原理】接地是指将电器设备和线路的金属外壳与大地之间建立良好的导电连接,以保证设备或线路和地之间具有良好的电位平衡。

在防雷工程中,接地的主要作用是将雷电击中的电流引入地中,从而保护设备免受雷击的侵害。

在变电站中,防雷接地主要分为主接地和绝缘接地两种形式。

主接地是将电源系统的零线通过接地装置与大地连接,以确保设备安全工作。

绝缘接地则是将设备的金属外壳通过绝缘层与大地隔离,以保护设备和人员的安全。

【接地装置的设计与安装】为了确保接地效果良好,接地装置的设计与安装十分关键。

下面将分别介绍主接地和绝缘接地的设计与安装。

1. 主接地的设计与安装主接地的设计与安装需要考虑以下几个因素:(1)接地电阻:接地电阻是指接地装置引入地中的电流通过地下电阻层流向大地的电阻。

为了确保接地效果良好,接地电阻应控制在一定范围内。

通常,根据变电站的规模和使用需求,接地电阻应小于10欧姆。

(2)接地装置的选型:接地装置的选型应根据变电站的具体情况进行,包括使用环境、功率负载和地质条件等。

常见的接地装置包括接地网、接地极和接地带等。

(3)接地装置的布置:接地装置应均匀地分布在变电站的不同位置,从而形成一个完整的接地系统。

同时,为了避免接地装置之间的干扰,应保持适当的距离。

(4)接地装置的连接方式:接地装置的连接方式应采用良好的接地线,确保连接可靠。

变电站防雷

变电站防雷

变电站防雷
变电站防雷是指通过采取一系列防雷措施,以减轻或防止
雷电对变电站设备的损坏和人员的伤害。

以下是一些常见
的变电站防雷措施:
1. 地线系统:构建完备的地线系统,将变电站设备与地面
良好连接,使雷电能够通过地线系统快速、安全地流入地下。

2. 避雷针:在变电站周围设置避雷针,既能吸引雷电击中,又能通过导线将雷电释放到地下。

3. 避雷网:在变电站设备周围设置金属网或铜排,形成密
集的网状结构,能够在一定程度上分散雷电的能量。

4. 避雷器:安装避雷器用以吸收雷电的能量,保护变电设
备免受雷击。

5. 绝缘措施:对于变电设备和线路,应采用合适的绝缘材
料和绝缘结构,以防止雷电直接接触设备导致损坏。

6. 接地保护:对于设备的导体部分,应进行良好的接地保护,以保证设备接地不会引起雷电冲击。

7. 雷电监测系统:安装雷电监测设备,实时监测变电站附
近的雷电活动,及时采取措施防止损害。

8. 维护和检查:定期进行设备的维护和检查,确保防雷措
施的有效性,及时发现和修复可能存在的问题。

总之,变电站防雷需要综合考虑各种因素,采取多种措施,以提高变电站的雷电防护水平,保证设备和人员的安全。

变电站的防雷接地技术

变电站的防雷接地技术

变电站的防雷接地技术变电站作为电力系统中的重要组成部分,其正常运行对于电力系统的稳定供电具有重要意义。

而雷电是导致电力设备损坏和电力系统故障的主要原因之一,因此,在变电站的设计和建设过程中,防雷接地技术是至关重要的。

一、防雷接地的基本概念和作用防雷接地是指通过合理布置接地设施,在雷电侵袭时迅速引导雷电流入地下,减少雷电对设备和系统的损害。

其主要作用有以下几个方面:1. 接地安全:良好的接地系统可以防止雷电对设备和人员的危害,保证安全运行。

2. 电气设备的保护:合理的接地系统可以将雷电流迅速引到地下,避免雷击对设备造成直接或间接的损害。

3. 系统可靠性:优良的接地系统可以提高系统的可靠性,减少故障发生的可能性。

二、变电站防雷接地技术1. 接地系统的设计变电站的接地系统主要由接地电阻、接地极、接地网和接地体等组成。

(1)接地电阻:接地电阻是指将接地极与大地相连的电阻。

它的主要作用是限制接地系统的电流在合理范围内,在雷击时减少对设备的伤害。

接地电阻的设计要根据变电站的场地情况和工程要求灵活选择。

(2)接地极:接地极是将接地电阻埋设在地下的部分。

它的选择要考虑土壤的导电性、外部介质的腐蚀性以及可靠性等因素。

常用的接地极有水平接地极、竖直接地极和涂铜接地极等。

(3)接地网:接地网是由多个接地极和导线连接而成的网状结构。

它通过增大接地面积,降低接地电阻,提高接地的可靠性和稳定性。

接地网的布置要根据变电站的场地和设备的要求进行合理设计。

(4)接地体:接地体是指其他与接地系统有关的构造物,如金属结构、设备等。

接地体的选择和设计要根据具体的变电站情况和设备要求进行合理布置。

2. 接地材料的选择接地材料的选择要考虑其导电性能、耐腐蚀性能和可靠性等因素。

常用的接地材料有裸铜导线、镀锌钢导线、铜包钢导线和铜排等。

其中,裸铜导线具有良好的导电性能和耐腐蚀性能,是较为理想的接地材料。

3. 接地设施的布置变电站的接地设施要合理布置,使得接地系统的电流均匀分布、电势降低,并减少相互干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变电站防雷接地技术题目:变电站防雷接地技术内容摘要变电所是电力系统重要组成部分,因此,它是防雷的重要保护部位。

如果变电所发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。

变电所是电力系统重要组成部分,因此,它是防雷的重要保护部位。

如果变电所发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。

关键词:变电所;防雷保护;接地装置目录内容摘要 (I)1 绪论 (1)1.1课题研究的意义 (1)1.2 变电站防雷接地的研究背景 (1)1.3 本次论文的主要工作 (1)2 变电站的防雷保护 (2)2.1 变电站的直击雷保护 (3)2.2 变电站的侵入波保护 (3)2.3 变电站的进线段保护 (4)2.4 避雷针与避雷线的保护范围的计算 (4)2.5 变电站差动保护 (4)3 变电站的防雷接地 (6)3.1 接地概述 (6)3.2 接地电阻 (6)3.3 变电所接地装置 (7)3.4 变电所接地的原则 (7)3.5 降低变电所接地装置工频接地电阻的措施 (7)4 变电所防雷接地设计实例 (9)4.1 变电所的规模 (9)4.2 变电所位置的自然条件 (9)4.3 避雷针的设置及防雷保护校验 (9)4.4 接地装置的设置 (16)5 结论 (17)参考文献 (18)附录 (19)1 绪论1.1 课题研究的意义雷电一直是影响电力系统安全稳定运行的重要原因,对于处在雷电频发地区的电力设备来说,防雷保护就显得至关重要。

我国是雷电活动十分频繁的国家,全国有21个省会城市雷暴日都在50天以上,最多可达134天。

据不完全统计,我国每年因雷击造成人员伤亡达3000~4000人,损失财产50~100亿元人民币。

随着社会经济发展和现代化水平的提高,特别是信息技术的快速发展,雷电灾害程度和造成的经济损失及社会影响也越来越大1.2 变电站防雷接地的研究背景长期以来,国内外学者在雷电活动规律、雷击线路物理过程方面做了大量的研究工作,建立起较为完善的输电线路防雷理论体系。

雷电流幅值、波形、地闪密度以及线路落雷次数对于分析线路防雷性能极为重要。

上世纪70年代中期发展起来的基于磁场定位和时差定位原理的雷电定位系统,使雷电测量更为准确和及时。

目前,雷电定位系统组成的雷电监测网络已在我国和北美、日本、韩国、欧洲等世界许多国家得到运用,它能帮助电力部门实现故障定位、分类、准确计算地面落雷密度等雷电参数,但雷电数据分散性较大,需要长期统计雷电数据。

但总体上变电站的防雷安全形势不容乐观,主要表现在:一是社会公众防雷安全意识不强,对雷电灾害的危害性认识不够,存在侥幸心理;二是随着社会经济的发展,雷电灾害的危害途径增多,防雷安全理念已发生巨大变化,不仅要有传统的防御直击雷,还要防感应雷的新时代,而许多措施仍然停留在传统的防雷阶段。

变电站是电力系统防雷的重要保护设施,如果发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活。

为保证电力系统的安全运行,电力系统应根据被保护物的重要性和危险程度的不同,对于直接雷、雷电感应、雷电侵入波应采取相应的防雷保护措施。

因此要求变电站的防雷保护措施必须十分可靠。

1.3 本次论文的主要工作本次论文主要研究110KV变电站的防雷接地部分的设计。

2 变电站的防雷保护变电站遭受雷击的主要原因:雷电是雷云层接近大地时,地面感应出相反电荷,当电荷积聚到一定程度,产生云和云之间以及云和大地之间放电,迸发出光和声的现象。

供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电站雷击有两种情况:一是雷直击于变电站的设备上,二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站。

其具体表现形式如下:(1)直击雷过电压。

雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。

(2)感应过电压。

当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。

(3)雷电侵入波。

架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站,是导致变电站雷害的主要原因,若不采取防护措施,势必造成变电站电气设备绝缘损坏,引发事故。

防雷措施总体概括为2种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。

防雷保护措施应根据现场常见的雷击形式、频率、强度以及被保护设施的重要性、特点安装适宜的保护装置。

雷电放电特征分析在众多的闪电类型中, 其中云地闪(俗称落地雷)与人类的关系最密切, 因此将其作为分析的对象。

在对地的雷电放电(即云地闪)中, 最常见的雷电是自雷云向下开始发展先导放电的。

据统计, 无论放电的次数, 还是放电的电荷量, 约90% 的雷是负极性的。

雷电是一种恐怖而又壮观的自然现象,这不仅在于它那划破长空的耀目闪电和令人震耳欲聋的雷鸣,重要的是它给人类生活带来巨大的影响。

且不说雷电促成有机物质的合成可能在地球生命起源中占有一定的地位,以及雷电引起的森林火灾可能启发了远古人类对火的发现和利用;仅在现代生活中,雷电威胁人类的生命安全,常使航空、通讯、电力、建筑等许多部门遭受破坏,就一直引起人们对于雷电活动及其防护问题的关注。

雷电放电是一种气体放电现象,由其引起的过电压,叫做大气过电压。

它可以分为直击雷过电压和感应雷过电压两种基本形式。

雷电放电是由于带电荷的雷云引起的。

雷云带电原因的解释很多,但还没有获得比较满意的一致的认识。

一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升,进入稀薄的大气层冷凝的结果。

强烈的上升气流穿过云层,水滴被撞分裂带电,轻微的水沫带负电,被风吹得较高,形成一些局部带正电的区域。

雷云的底部大多数是带负电,它在地面上会感应出大量的正电荷。

这样,在带有大量不同极性或不同数量电荷的雷云之间,或者雷云和大地之间形成了强大的电场,其电位差可达数兆伏甚至数十兆伏。

随着雷云的发展和运动,一旦空间电场强度超过了大气游离放电的临界电场强度(大气中约30kV/cm,有水滴存在时约10kV/cm)时,就会发生云间或对大地的火花放电;放出几十乃至几百安的电流;产生强烈的光和热(放电通道温度高达15000℃至20000℃),使空气急剧膨胀振动,发生霹雳轰鸣。

这就是闪电伴随雷鸣,叫做雷电之故。

大多数雷电发生在雷云之间,它对地面没有什么直接影响。

雷云对大地的放电虽然只占少数,但是一旦发生就有可能带来严重的危险。

这正是我们主要关心的问题。

2.1 变电站的直击雷保护防止雷闪直接击在建筑物、构筑物、电气网络或电气装置上。

直击雷防护技术主要是保护建筑物本身不受雷电损害,以及减弱雷击时巨大的雷电流沿着建筑物泄入大地的过程中对建筑物内部空间产生影响的防护技术,是防雷体系的第一部分2.2 变电站的侵入波保护变电站对侵入波的防护的主要措施是在其进出线上装设阀型避雷器,避雷器装设在被保护物的引入端,其上端接在线路上,下端接地,一般安装在变电站母线上。

阀型避雷器的基本元件为火花间隙和非线性电阻。

目前,SFZ系列阀型避雷器,主要用来保护中等及大容量变电站的电气设备。

FS系列阀型避雷器,主要用来保护小容量的配电装置。

变电站中限制侵入波的主要设备是避雷器,它接在变电站的母线上,与被保护设备相并联,并使所有设备受到可靠保护。

2.3 变电站的进线段保护要限制流经避雷器的雷电电流幅值和雷电波的波度,就必须对变电站进线实施保护。

当线路上出现过电压时,将有行波导线向变电站运动,起幅值为线路绝缘的50%冲击闪络电压,线路的冲击耐压比变电站设备的冲击耐压要高很多。

因此,在接近变电站的进出线上加装避雷线是防雷的主要措施。

如不架设避雷线,当遭受雷击时,势必会对线路造成破坏。

变电站进线保护是在靠近变电站出线架1~2km 线路上所采取的可靠的防雷保护措施,变电站进线保护具体措施视变电站的线路情况而定。

2.4 避雷针与避雷线的保护范围的计算雷击只能通过拦截导引措施改变其入地路径。

接闪器有避雷针、避雷线。

小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。

2.5 变电站差动保护主变的差动保护是主变的主保护之一。

它的可靠性对主变安全运行和系统供电可靠性起着极为重要的作用。

变压器的差动保护与其它差动保护一样,都是利用比较被保护原件各端电流的幅值和相位的原理构成。

变压器差动保护是利用比较变压器两侧电流的幅值和相位的原理构成的。

把变压器两侧的电流互感器按差接法接线,在正常运行和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作;在内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。

变压器的差动保护都是利用比较被保护原件各端电流的幅值和相位的原理来进行保护判断、动作的。

并不分什么差流、差压(没听说有差压)为了防止变压器受其它因素的影响而误动作,随着技术的发展,差动保护又出现比率制动特性差动保护、双斜率比例差动保护、小波变换原理等等新的差动保护,但归根到底都是在差动保护这个基础上的发展。

雷闪直接对电气设备放电引起的过电压称为直击雷过电压,其极性与雷电流的极性相同为负。

直击雷过电压的幅值可达上千千伏以上,很显然,大多数击于输电线或电气设备上的都会产生闪络,可能导致火灾或爆炸。

但对于高压配电线路,往往受厂房和高建筑物的屏蔽,所以遭受直击雷的几率较小。

装设避雷针是直击雷防护的主要措施, 避雷针是保护电气设备、建筑物不受直接雷击的雷电接受器。

它将雷吸引到自己的身上, 并安全导人地中, 从而保护了附近绝缘水平比它低的设备免遭雷击。

变电站装设避雷针时, 应该使站内设备都处于避雷针保护范围之内。

此外, 装设避雷针时对于35KV变电站必须装有独立的避雷针, 并满足不发生反击的要求;对于110KV及以上的变电站, 由于此类电压等级配电装置的绝缘水平较高, 可以将避雷针直接装设在配电装置的架构上, 因此, 雷击避雷针所产生的高电位不会造成电气设备的反击事故。

3 变电站的防雷接地接地装置的设计对于电力系统的安全运行至关重要。

变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越复杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

相关文档
最新文档