用邻接表实现该图的广度优先搜索遍历(实验报告)

合集下载

采用邻接表存储结构实现图的广度优先遍历。

采用邻接表存储结构实现图的广度优先遍历。

精心整理课程设计题目九:图的广度优先遍历基本要求:采用邻接表存储结构实现图的广度优先遍历。

(2)对任意给定的图(顶点数和边数自定),建立它的邻接表并输出;(3)实现图的广度优先遍历*/#include<iostream.h>#include<stdio.h>#include<malloc.h>#defineMAX_NUM20intvisited[MAX_NUM]={0};typedefintVertexType;typedefenum{DG=1,UDG}GraphKind;typedefstructArcNode{intadjvex;intweight;structArcNode*nextarc;ArcNode*info;}ArcNode;typedefstructVNode{VertexTypedata;ArcNode*firstarc;}VNode,AdjList[MAX_NUM];typedefstruct{AdjListvertices;intvexnum,arcnum;GraphKindkind;}ALGraph;voidPRIN(ALGraph&G);voidCreat_adjgraph(ALGraph&G);voidbfs(ALGraph&G,intv);voidCreat_adjgraphDG(ALGraph&G);voidCreat_adjgraphUDG(ALGraph&G);voidCreat_adjgraph(ALGraph&G);voidCreat_adjgraphDG(ALGraph&G){inti,s,d;ArcNode*p=NULL,*q=NULL;G.kind=DG;printf("请输入顶点数和边数:");scanf("%d%d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){printf("第%d个顶点信息:",i+1);scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}for(i=0;i<G.arcnum;++i){printf("第%d条边的起始顶点编号和终止顶点编号:",i+1);scanf("%d%d",&s,&d);while(s<1||s>G.vexnum||d<1||d>G.vexnum){printf("编号超出范围,重新输入");scanf("%d%d",&s,&d);}s--;d--;p=new(ArcNode);p->adjvex=d;p->nextarc=G.vertices[s].firstarc;G.vertices[s].firstarc=p;}}voidCreat_adjgraphUDG(ALGraph&G){inti,s,d;ArcNode*p,*q;G.kind=UDG;printf("请输入顶点数和边数:");scanf("%d%d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){printf("第%d个顶点信息:",i+1);scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}for(i=0;i<G.arcnum;++i){printf("第%d条边的起始顶点编号和终止顶点编号:",i+1);scanf("%d%d",&s,&d);while(s<1||s>G.vexnum||d<1||d>G.vexnum){printf("编号超出范围,重新输入");scanf("%d%d",&s,&d);}s--;d--;p=new(ArcNode);p->adjvex=d;p->nextarc=G.vertices[s].firstarc;G.vertices[s].firstarc=p;q=new(ArcNode);q->adjvex=s;q->nextarc=G.vertices[d].firstarc;G.vertices[d].firstarc=q;}}voidPRIN(ALGraph&G){inti;ArcNode*p;if(G.kind==DG||G.kind==UDG){for(i=0;i<G.vexnum;++i){printf("V%d:",G.vertices[i].data);p=G.vertices[i].firstarc;while(p!=NULL){printf("%d\t",p->adjvex+1);p=p->nextarc;}printf("\n");}}}voidbfs(ALGraph&G,intv){v--;ArcNode*p;intqueue[MAX_NUM],front=0,rear=0;intw,i;for(i=0;i<G.vexnum;i++)visited[i]=0;printf("%4d",v+1);visited[v]=1;rear=(rear+1)%MAX_NUM;queue[rear]=v;while(front!=rear){front=(front+1)%MAX_NUM;w=queue[front];p=G.vertices[w].firstarc;while(p!=NULL){if(visited[p->adjvex]==0){printf("%3d",p->adjvex+1);visited[p->adjvex]=1;rear=(rear+1)%MAX_NUM;queue[rear]=p->adjvex;}p=p->nextarc;}}printf("\n");}voidCreat_adjgraph(ALGraph&G){printf("1:有向图2:无向图\n");printf("请根据上述提示输入图的类型:");scanf("%d",&G.kind);switch(G.kind){caseDG:Creat_adjgraphDG(G);PRIN(G);break;caseUDG:Creat_adjgraphUDG(G);PRIN(G);break;default:printf("ERROR");break;}}voidmain(){ALGraphG;Creat_adjgraph(G);printf("\n");printf("广度优先搜索遍历序列为:\n");bfs(G,1);printf("\n");}。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。

二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。

图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。

class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。

def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。

数据结构实验报告-图的遍历

数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。

2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。

四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。

图的遍历实验报告

图的遍历实验报告

1.问题描述:不少涉及图上操作的算法都是以图的遍历操作为基础的。

试写一个程序,演示在连通的无向图上访问全部结点的操作。

2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。

3.测试数据:教科书图7.33。

暂时忽略里程,起点为北京。

4.实现提示:设图的结点不超过30个,每一个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。

通过输入图的全部边输入一个图,每一个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。

5.选作内容:(1) .借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。

(2) .以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或者树形打印生成树。

1.为实现上述功能,需要有一个图的抽象数据类型。

该抽象数据类型的定义为:ADT Graph{V 是具有相同特性的数据元素的集合,称为顶点集。

R={VR}VR={<v,w> | v ,w v 且P(v,w),<v,w>表示从v 到w 得弧,谓词P(v,w)定义了弧<v,w>的意义或者信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。

图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略}ArcCell, AdjMatrix[max_n][max_n];typedef struct{VertexType vexs[max_n]; //顶点AdjMatrix arcs; //邻接矩阵int vexnum, arcnum; //顶点数,边数}MGraph;//队列的类型定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode, *QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue;4.本程序包含三个模块1).主程序模块void main( ){创建树;深度优先搜索遍历;广度优先搜索遍历;}2).树模块——实现树的抽象数据类型3).遍历模块——实现树的深度优先遍历和广度优先遍历各模块之间的调用关系如下:主程序模块树模块遍历模块#include "stdafx.h"#include<iostream>using namespace std;#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。

广度遍历的实验报告(3篇)

广度遍历的实验报告(3篇)

第1篇一、实验目的1. 理解广度遍历的基本概念和原理;2. 掌握广度遍历算法的编程实现;3. 熟悉图的邻接表表示方法;4. 分析广度遍历算法在图中的应用。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验原理广度遍历(Breadth-First Search,BFS)是一种基于图的遍历算法,它按照顶点的层次顺序访问图中的所有顶点。

具体来说,从起始顶点开始,首先访问起始顶点,然后访问起始顶点的所有邻接顶点,接着访问邻接顶点的邻接顶点,以此类推,直到遍历完所有顶点。

广度遍历算法通常采用队列数据结构来实现。

在遍历过程中,首先将起始顶点入队,然后从队列中依次取出顶点,访问其邻接顶点,并将邻接顶点入队。

这样,每个顶点都会按照其被访问的顺序入队,从而实现了广度遍历。

四、实验步骤1. 创建图:使用邻接表表示法创建实验所需的图。

2. 实现广度遍历算法:编写广度遍历算法的代码,实现图的遍历功能。

3. 运行实验:运行实验程序,观察广度遍历算法的执行过程和结果。

五、实验代码```cppinclude <iostream>include <vector>include <queue>using namespace std;// 定义图的结构体struct Graph {int numVertices; // 顶点数量vector<int> adjList; // 邻接表};// 初始化图void initGraph(Graph &g, int numVertices) {g.numVertices = numVertices;g.adjList.resize(numVertices);}// 添加边void addEdge(Graph &g, int src, int dest) {g.adjList[src].push_back(dest);}// 广度遍历void bfs(Graph &g, int startVertex) {queue<int> queue;vector<bool> visited(g.numVertices, false); // 访问标记数组 // 将起始顶点入队queue.push(startVertex);visited[startVertex] = true;while (!queue.empty()) {int vertex = queue.front();cout << "访问顶点: " << vertex << endl; queue.pop();// 遍历邻接顶点for (int neighbor : g.adjList[vertex]) { if (!visited[neighbor]) {queue.push(neighbor);visited[neighbor] = true;}}}}int main() {// 创建图Graph g;initGraph(g, 6);addEdge(g, 0, 1);addEdge(g, 0, 2);addEdge(g, 1, 3);addEdge(g, 1, 4);addEdge(g, 2, 5);addEdge(g, 3, 5);addEdge(g, 4, 5);// 广度遍历cout << "广度遍历结果:" << endl;bfs(g, 0);return 0;}```六、实验结果与分析运行实验程序,可以得到以下输出:```访问顶点: 0访问顶点: 1访问顶点: 2访问顶点: 3访问顶点: 4访问顶点: 5```从输出结果可以看出,广度遍历算法按照顶点的层次顺序访问了图中的所有顶点,符合预期。

广度优先实验报告

广度优先实验报告

一、实验目的1. 了解广度优先搜索(BFS)算法的基本原理和步骤。

2. 掌握使用广度优先搜索算法解决图的遍历问题的方法。

3. 比较广度优先搜索算法与深度优先搜索算法的优缺点。

二、实验原理广度优先搜索(BFS)是一种图遍历算法,它按照从源点到目标点的距离来搜索图中的节点。

在BFS中,算法首先访问源点,然后将其邻接点按照距离顺序访问,接着访问邻接点的邻接点,以此类推,直到找到目标点或遍历完所有节点。

BFS算法的基本步骤如下:1. 创建一个队列,用于存储待访问的节点。

2. 将源点入队。

3. 当队列不为空时,执行以下操作:a. 从队列中取出一个节点,访问它。

b. 将该节点的邻接点按照距离顺序入队。

4. 重复步骤3,直到找到目标点或遍历完所有节点。

三、实验环境与工具1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 20194. 图表示方法:邻接表四、实验内容与步骤1. 创建一个图的邻接表表示。

2. 使用广度优先搜索算法遍历图,并记录遍历过程。

3. 比较广度优先搜索算法与深度优先搜索算法的遍历结果。

五、实验结果与分析1. 实验结果以下是一个图的邻接表表示,以及使用广度优先搜索算法遍历图的结果:```图:A --B -- C| |D --E -- F邻接表表示:Graph g;g.addVertex('A');g.addVertex('B');g.addVertex('C');g.addVertex('D');g.addVertex('E');g.addVertex('F');g.addEdge('A', 'B');g.addEdge('B', 'C');g.addEdge('A', 'D');g.addEdge('D', 'E');g.addEdge('E', 'F');g.addEdge('B', 'E');g.addEdge('E', 'F');广度优先搜索遍历结果:A ->B ->C ->D ->E -> F```2. 分析(1)广度优先搜索算法的优点:- 按照距离顺序遍历图中的节点,便于理解节点之间的层次关系。

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

实现图的遍历算法实验报告

实现图的遍历算法实验报告

实现图的遍历算法实验报告实现图的遍历算法实验报告⼀实验题⽬: 实现图的遍历算法⼆实验要求:2.1:(1)建⽴如图(p126 8.1)所⽰的有向图 G 的邻接矩阵,并输出之(2)由有向图G的邻接矩阵产⽣邻接表,并输出之(3)再由(2)的邻接表产⽣对应的邻接矩阵,并输出之2.2 (1)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(递归算法)(2)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(⾮递归算法)(3)输出如图8.1所⽰的有向图G从顶点0开始的⼴度优先遍历序列三实验内容:3.1 图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={|v,w∈V且P(v,w),表⽰从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。

操作结果:按V和VR的定义构造图G。

DestroyGraph( &G )初始条件:图G存在。

操作结果:销毁图G。

LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。

GetVex( G, v )初始条件:图G存在,v是G中某个顶点。

操作结果:返回v的值。

PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。

初始条件:图G存在,v是G中某个顶点。

操作结果:返回v的第⼀个邻接顶点。

若顶点在G中没有邻接顶点,则返回“空”。

NextAdjVex( G, v, w )初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。

操作结果:返回v的(相对于w的)下⼀个邻接顶点。

若w是v 的最后⼀个邻接点,则返回“空”。

InsertVex( &G, v )初始条件:图G存在,v和图中顶点有相同特征。

实验四图的应用深度优先广度优先搜索遍历

实验四图的应用深度优先广度优先搜索遍历

数据结构实验报告实验四图的应用一、实验题目:图的应用——深度优先/广度优先搜索遍历二、实验内容:很多涉及图上操作的算法都是以图的遍历操作为基础的。

试编写一个算法,实现图的深度优先和广度优先搜索遍历操作。

要求:以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现连通无向图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。

(注:学号为奇数的同学使用邻接矩阵存储结构实现,学号为偶数的同学使用邻接矩阵实现)提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先、广度优先搜索遍历,并输出遍历的结果。

三、程序源代码:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 20#define OVERFLOW -1int visited[80];typedef struct ArcNode{int adjvex; //该弧所指向的顶点的位置struct ArcNode *nextarc; //指向下一条弧的指针}ArcNode;typedef struct VNode{int data; //顶点信息ArcNode *firstarc; //指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;//图的当前顶点数和弧数}ALGraph;typedef struct QNode{int data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;//队头指针QueuePtr rear;//队尾指针}LinkQueue;void InitQueue(LinkQueue &q){//构造一个空队列qq.front=q.rear=(QueuePtr)malloc(sizeof(QNode));if(!q.front) exit(OVERFLOW);q.front->next=NULL;}void EnQueue(LinkQueue &q,int e){//插入元素e为q的新的队尾元素QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p) exit(OVERFLOW);//存储分配失败p->data=e;p->next=NULL;q.rear->next=p;q.rear=p;}int DeQueue(LinkQueue &q){int e;//若队列不空,则删除q的队头元素,用e返回其值,并返回OK;否则返回ERROR if(q.front==q.rear) return false;QueuePtr p;p=q.front->next;e=p->data;q.front->next=p->next;if(q.rear==p) q.rear=q.front;free(p);return e;}bool QueueEmpty(LinkQueue &q){ //若队列q为空队列,则返回TRUE,否则返回FLASE if(q.front==q.rear) return true;elsereturn false;}int LocateVex(ALGraph G,int v){int i;for(i=0;i<G.vexnum;i++)if(G.vertices[i].data==v)return i;}//用邻接表构造无向图void CreateDG(ALGraph &G){int i,j,k;printf("输入图的顶点数和弧度:\n");scanf("%d %d",&G.vexnum,&G.arcnum);printf("输入顶点信息:\n");for(i=0;i<G.vexnum;i++){scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}printf("输入邻接点:\n");for(k=0;k<G.arcnum;k++){char v1,v2;scanf("%d %d",&v1,&v2);i=LocateVex(G,v1);j=LocateVex(G,v2);struct ArcNode *s;s=(ArcNode *)malloc(sizeof(ArcNode));s->adjvex=j;s->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=s;struct ArcNode *t;t=(ArcNode *)malloc(sizeof(ArcNode));t->adjvex=i;t->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=t;}}void DFSAL(ALGraph G,int v0){visited[v0]=1;printf("%5d",G.vertices[v0].data);struct ArcNode *p;int w;for(p=G.vertices[v0].firstarc;p;p=p->nextarc){w=p->adjvex;if(!visited[w])DFSAL(G,w);}}//深度优先搜索遍历void DFSTraverse(ALGraph G){int v0;for(v0=0;v0<G.vexnum;v0++) visited[v0]=0; //访问标志数组初始化//直到图中所有顶点都被访问到为止for(v0=0;v0<G.vexnum;v0++)if(!visited[v0])DFSAL(G,v0); //对尚未访问的顶点调用DFSAL}//广度优先搜索遍历void BFSTraverse(ALGraph G,LinkQueue q){ int u,w;struct ArcNode *p;for(u=0;u<G.vexnum;u++) visited[u]=0; //访问标志数组初始化InitQueue(q);for(u=0;u<G.vexnum;u++)if(!visited[u]){printf("%5d",G.vertices[u].data);visited[u]=1;EnQueue(q,u);while(!QueueEmpty(q)){u=DeQueue(q);p=G.vertices[u].firstarc;while(p){w=p->adjvex;if(!visited[w]){visited[w]=1;printf("%5d",G.vertices[w].data);EnQueue(q,w);}//ifp=p->nextarc;}//while}//while}//if}//BFSTraverseint main(){ALGraph G;LinkQueue q;CreateDG(G);printf("\n");printf("输出深度优先搜索序列:\n");DFSTraverse(G);printf("\n");printf("输出广度优先搜索序列:\n");BFSTraverse(G,q);printf("\n");return 0;}四、测试结果:。

2-深度优先遍历以邻接表存储的图-实验报告

2-深度优先遍历以邻接表存储的图-实验报告

福建江夏学院《数据结构与关系数据库(本科)》实验报告姓名班级学号实验日期课程名称数据结构与关系数据库(本科)指导教师成绩实验名称:深度优先遍历以邻接表存储的图一、实验目的1、掌握以邻接表存储的图的深度优先遍历算法;二、实验环境1、硬件环境:微机2、软件环境:Windows XP,VC6.0三、实验内容、步骤及结果1、实验内容:基于图的深度优先遍历编写一个算法,判别以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径(i≠j)。

2、代码:#include <stdio.h>#include <stdlib.h>#define MaxVertexNum 100 /*最大顶点数为100*/typedef char VertexType;typedef struct node{ /*边表结点*/int adjvex; /*邻接点域*/struct node * next; /*指向下一个邻接点的指针域*//*若要表示边上信息,则应增加一个数据域info*/}EdgeNode;typedef struct vnode{ /*顶点表结点*/VertexType vertex; /*顶点域*/EdgeNode * firstedge; /*边表头指针*/}VertexNode;typedef VertexNode AdjList[MaxVertexNum]; /*AdjList 是邻接表类型*/typedef struct{AdjList adjlist; /*邻接表*/int n,e; /*顶点数和边数*/}ALGraph; /*ALGraph 是以邻接表方式存储的图类型*/bool visited[MaxVertexNum];void CreateALGraph(ALGraph *G){/*建立有向图的邻接表存储*/int i,j,k;EdgeNode * s;printf("请输入顶点数和边数(输入格式为:顶点数,边数):\n");scanf("%d,%d",&(G->n),&(G->e)); /*读入顶点数和边数*/printf("请输入顶点信息(输入格式为:顶点号<CR>):\n");for (i=0;i<G->n;i++) /*建立有n 个顶点的顶点表*/{scanf("\n%c",&(G->adjlist[i].vertex)); /*读入顶点信息*/G->adjlist[i].firstedge=NULL; /*顶点的边表头指针设为空*/}printf("请输入边的信息(输入格式为:i,j):\n");for (k=0;k<G->e;k++) /*建立边表*/{scanf("\n%d,%d",&i,&j); /*读入边<Vi,Vj>的顶点对应序号*/s=(EdgeNode*)malloc(sizeof(EdgeNode)); /*生成新边表结点s*/s->adjvex=j; /*邻接点序号为j*/s->next=G->adjlist[i].firstedge; /*将新边表结点s 插入到顶点Vi 的边表头部*/G->adjlist[i].firstedge=s;}}/*CreateALGraph*/void DFSAL(ALGraph *G,int i){/*以Vi 为出发点对邻接表存储的图G 进行DFS 搜索*/EdgeNode *p;printf("visit vertex:V%c\n",G->adjlist[i].vertex);/*访问顶点Vi*/visited[i]=true; /*标记Vi 已访问*/p=G->adjlist[i].firstedge; /*取Vi 边表的头指针*/while(p) /*依次搜索Vi 的邻接点Vj,j=p->adjva*/{if (!visited[p->adjvex]) /*若Vj 尚未访问,则以Vj 为出发点向纵深搜索*/ DFSAL(G,p->adjvex);p=p->next; /*找Vi 的下一个邻接点*/}}/*DFSAL*/void DFSTraverseAL(ALGraph *G){/*深度优先遍历以邻接表存储的图G*/int i;for (i=0;i<G->n;i++)visited[i]=false; /*标志向量初始化*/for (i=0;i<G->n;i++)if (!visited[i]) DFSAL(G,i); /*vi 未访问过,从vi 开始DFS 搜索*/}/*DFSTraveseAL*/void main(){ALGraph *G;G=(ALGraph *)malloc(sizeof(ALGraph));CreateALGraph(G);printf("深度优先搜索结果:\n");DFSTraverseAL(G);}3、测试数据与实验结果分析(可以用组合键Alt+Print Screen截图):四、心得体会。

广度优先算法实验报告

广度优先算法实验报告

一、实验目的通过本次实验,加深对广度优先搜索(Breadth-First Search,简称BFS)算法的理解,掌握其基本原理和实现方法,并能够运用BFS算法解决实际问题。

二、实验内容1. BFS算法原理及特点- BFS算法是一种图搜索算法,它按照从起始节点开始,逐层向外扩展的顺序访问节点,直到找到目标节点或遍历完所有可达的节点。

- BFS算法的特点:- 按照层次结构遍历图中的节点,保证从起始节点到目标节点的最短路径优先被访问。

- 使用队列作为辅助数据结构,实现节点的层次遍历。

- 时间复杂度为O(VE),其中V为顶点数,E为边数。

2. BFS算法实现- 使用C++实现BFS算法,包括图的表示、BFS搜索过程以及路径输出。

- 图的表示:使用邻接矩阵或邻接表表示图中的节点和边。

- BFS搜索过程:1. 初始化队列,将起始节点入队。

2. 循环访问队列中的节点,将其标记为已访问。

3. 访问该节点的所有未访问的邻接节点,将它们入队。

4. 重复步骤2和3,直到队列为空。

3. BFS算法应用- 应用BFS算法解决以下问题:- 寻找最短路径:在无权图中,BFS算法能够找到从起始节点到目标节点的最短路径。

- 检测图中的环:在无向图中,BFS算法能够检测图中是否存在环。

- 生成图的最小生成树:在无向图中,BFS算法能够生成图的最小生成树。

三、实验步骤1. 创建图- 使用邻接矩阵或邻接表表示图中的节点和边。

- 例如,创建一个包含5个节点的无向图,并设置边连接关系。

2. 实现BFS算法- 使用C++实现BFS算法,包括图的表示、BFS搜索过程以及路径输出。

3. 测试BFS算法- 设置起始节点和目标节点,运行BFS算法,观察搜索过程和输出结果。

- 验证BFS算法是否能够找到从起始节点到目标节点的最短路径,以及是否能够检测图中是否存在环。

4. 分析BFS算法性能- 分析BFS算法的时间复杂度和空间复杂度。

- 分析BFS算法在不同规模图上的性能表现。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图的遍历实验报告.doc

图的遍历实验报告.doc

图的遍历实验报告实验4:图的遍历主题:图及其应用——图的遍历类;姓名:学生编号:完成日期:一、需求分析1。

问题描述:许多涉及图操作的算法都是基于图遍历操作的。

试着写一个程序来演示访问连通无向图上所有节点的操作。

2.基本要求:邻接表作为存储结构,实现了连通无向图的深度优先和广度优先遍历。

从用户指定的节点开始,分别输出每次遍历下的节点访问顺序和相应生成树的边集。

3.测试数据:教科书中的图7.33。

暂时忽略里程,从北京开始。

4.实施提示: 假设一个图不超过30个节点,每个节点用一个数字表示(如果一个图有n个节点,它们的数字是1,2,分别为n)。

通过将一个图的所有边输入到一个图中,每个边是一对,边的输入顺序可以被限制。

请注意,生成树的边是有向边,端点的顺序不能颠倒。

5.选定内容:(1)。

借助堆栈类型(自行定义和实现),使用非递归算法实现深度优先遍历。

(2)以邻接表为存储结构,建立深度优先生成树和广度优先生成树,然后根据凹表或树打印生成树。

为了实现上述功能,需要图形的抽象数据类型。

抽象数据类型定义为:ADT图{数据对象v:v是一组具有相同特征的数据元素,称为顶点集。

数据关系r:R={VR} VR={ | v,wv和P(v,w),表示从v到w的弧,谓词P(v,w)定义弧的含义或信息}} ADT图2。

该抽象数据类型中的一些常量如下:#定义true1 #定义false 0 #定义ok 1 #定义max _ n 20//最大顶点数typedef char顶点类型[20];typedef枚举{DG,DN,AG,AN}图形种类;枚举BOOL {假,真};3.树的结构类型如下:Typedef结构{//圆弧节点和矩阵的int类型调整;//VRType是弧的类型。

图的遍历主题——图;图及其应用——图的遍历类;姓名:学生编号:完成日期:一、需求分析1。

问题描述:许多涉及图操作的算法都是基于图遍历操作的。

试着写一个程序来演示访问连通无向图上所有节点的操作。

图的遍历实验报告

图的遍历实验报告

实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。

2、熟练掌握图的存储结构。

3、熟练掌握图的两种遍历算法。

二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。

[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。

【测试数据】由学生依据软件工程的测试技术自己确定。

三、实验前的准备工作1、掌握图的相关概念。

2、掌握图的逻辑结构和存储结构。

3、掌握图的两种遍历算法的实现。

四、实验报告要求1、实验报告要按照实验报告格式规范书写。

2、实验上要写出多批测试数据的运行结果。

3、结合运行结果,对程序进行分析。

编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。

度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。

Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。

其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。

换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。

以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤:(1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。

(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。

所以,下面只考虑从某一顶点出发遍历图的问题。

(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。

(4)这就是遍历次序的问题,图的遍历通常有深度优先遍历和广度优先遍历两种方式,这两种遍历次序对无向图和有向图都适用。

图遍历操作实验报告

图遍历操作实验报告

图遍历操作实验报告实验报告姓名:班级:12南航网络学号:实验题目图的遍历操作实验时间2012-11-27实验地点指导教师尚鲜莲实验目的与要求:目的:熟练掌握图的的两种存储结构;熟练掌握图的深度优先遍历和广度优先遍历算法;能解决简单的应用问题。

要求:分别采用邻接矩阵和邻接表存储结构,完成图的深度优先遍历(DFS)和广度优先遍历(BFS)的操作。

搞清楚BFS算法中队列的作用。

需求分析和实现功能说明::在test4.c中填写入相应语句,使之能顺利完成图的深度优先和广度优先遍历操作。

测试数据为:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。

将空缺语句补充完整,并写出输出结果。

)算法设计(最好给出流程图)::算法程序(源程序代码)#defineVEX_NUM5#defineMAXSIZE10#includestdio.htypedefcharVextype;type defstruct{Vextypevexs[VEX_NUM];intarcs[VEX_NUM][VEX_NUM];}Mgraph;type defstruct{Vextypeelem[VEX_NUM];intfront,rear;}SqQueue;SqQueueQ;intvisited[VEX_NUM]={0};voidcreat_Mgraph(Mgraph *G,inte);voidDfs_m(Mgraph*G,inti);voidBfs(Mgraph*G,intk);voidInitQueu e(SqQueue*Sq);intEnQueue(SqQueue*Sq,Vextypex);intDelQueue(SqQueue*Sq, Vextype*y);intQueueEmpty(SqQueue*Sq);voidmain(){inte,i,j;Mgraph*G;pri ntf(qingshuruwuxiangtubiandeshumuscanf(%d,creat_Mgraph(G,e);printf(qi ngshurubianlideqishidingdianscanf(%d,Dfs_m(G,i);for(j=0;jVEX_NUM;++j) visited[j]=0;Bfs(G,i);}voidcreat_Mgraph(Mgraph*G,inte){inti,j,k;print f(shurugedingdianxinxi:for(i=0;iVEX_NUM;++i)/*scanf(%c,G-vexs[i]);*/G-vexs[i]=getch();for(i= 0;iVEX_NUM;++i)printf(%d%c\n,i,G-vexs[i]);/*getch();*/for(i=0;iVEX_NU M;++i)for(j=0;jVEX_NUM;++j)G-arcs[i][j]=0;printf(shurugebiandedingdianxuhaoi,j:for(k=0;kk++){scanf(%d,%d,i,G-arcs[i][j]=1;G-arcs[j][i]=1;}}/*creat_M graph*/voidDfs_m(Mgraph*G,inti){intj;printf(%3c,G-vexs[i]);visited[i] =1;for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]==1)(!visited[j]))Dfs_m(G,j); }/*Dfs_m*/voidBfs(Mgraph*G,intk){intx,i,j;SqQueue*Q;InitQueue(Q);prin tf(%3c,G-vexs[k]);visited[k]=1;x=EnQueue(Q,G-vexs[k]);while(!QueueEmp ty(Q)){x=DelQueue(Q,G-vexs[i]);for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]= =1)(!visited[j])){printf(%3c,G-vexs[j]);visited[j]=1;x=EnQueue(Q,G-vexs[j]);}}}/*Bfs*/voidInitQueue(SqQueue*Sq){Sq-front=Sq-rear=0;}/*InitQueue*/intEnQueue(SqQueue*Sq,Vextypex){ if((Sq-rear+1)%MAXSIZE==Sq-front)return0;Sq-elem[Sq-rear]=x;Sq-rear=( Sq-rear+1)%MAXSIZE;return1;printf(Sq-rearis:%d\n,Sq-rear);}/*EnQueue* /intDelQueue(SqQueue*Sq,Vextype*y){if(Sq-front==Sq-rear)return0;*y=Sq -elem[Sq-front];Sq-front=(Sq-front+1)%MAXSIZE;return1;}/*DelQueue*/in tQueueEmpty(SqQueue*Sq){return(Sq-front==Sq-rear);}上机调试情况说明(包括调试数据、调试过程中遇到的问题及解决方法)经调试没有发现问题测试结果和输出数据,对结果的分析和说明:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。

邻接矩阵实验报告

邻接矩阵实验报告

一、实验目的1. 理解邻接矩阵的概念及其在图论中的应用。

2. 掌握邻接矩阵的构建方法。

3. 学会使用邻接矩阵进行图的深度优先遍历和广度优先遍历。

4. 比较邻接矩阵和邻接表两种图的存储结构的优缺点。

二、实验内容1. 构建邻接矩阵2. 使用邻接矩阵进行图的深度优先遍历3. 使用邻接矩阵进行图的广度优先遍历4. 分析邻接矩阵和邻接表的优缺点三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019四、实验步骤1. 构建邻接矩阵(1)定义图的顶点数量n。

(2)创建一个nn的二维数组A,用于存储邻接矩阵。

(3)根据图的边信息,将对应的A[i][j]值设置为1(表示存在边)或0(表示不存在边)。

2. 使用邻接矩阵进行图的深度优先遍历(1)初始化访问标记数组visited,用于记录顶点是否被访问过。

(2)从某个顶点v开始,将其标记为已访问,并将其加入访问序列。

(3)对于v的每个邻接顶点u,如果u未被访问过,则递归调用深度优先遍历算法,并将u加入访问序列。

(4)重复步骤3,直到所有顶点都被访问过。

3. 使用邻接矩阵进行图的广度优先遍历(1)初始化队列Q和一个访问标记数组visited。

(2)将起始顶点v入队,并将其标记为已访问。

(3)当队列不为空时,执行以下步骤:a. 从队列中取出一个顶点v。

b. 将v的邻接顶点u入队,并将u标记为已访问。

c. 将v加入访问序列。

(4)重复步骤3,直到队列空为止。

4. 分析邻接矩阵和邻接表的优缺点(1)邻接矩阵的优点:a. 查找边的时间复杂度为O(1)。

b. 遍历图的时间复杂度为O(n^2)。

c. 适用于稠密图。

(2)邻接矩阵的缺点:a. 空间复杂度为O(n^2),对于稀疏图,空间利用率低。

b. 查找边和遍历图的时间复杂度较高。

(3)邻接表的优点:a. 空间复杂度为O(n+e),对于稀疏图,空间利用率高。

b. 查找边和遍历图的时间复杂度为O(n+e)。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

图的广度优先遍历实验报告

图的广度优先遍历实验报告
2017学年学期课程名称数据结构及应用算法教程实验内容图的广度优先遍历实验时间2017学院系计算机工程学院学生姓名实验名称图的广度优先遍历实验目的和要求先访问完当前顶点的所有邻接点
实验报告
(2016/2017学年第2学期)
课程名称
数据结构及应用算法教程
实验时间
2017年5月5日
指导教师
专 业
学院(系)
int i,j;
for(i=0;i<VERTEXNUM;i++){
for(j=0;j<VERTEXNUM;j++){
edge[i][j] = 0;
} }
int* vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM);
for(i=0;i<VERTEXNUM;i++){
计算机工程学院
学生姓名
学号
实 验 报 告
实验名称
图的广度优先遍历
一、实验目的和要求
先访问完当前顶点的所有邻接点。
先访问顶点的邻接点先于后访问顶点的邻接点被访问。
二、实验内容
#include <stdio.h>
#include <malloc.h>
#define VERTEXNUM 5
typedef struct qElement{
if(front == NULL){
rear = front;
}else{
front->pre = NULL;
}
free(p);
p = NULL;
return res;
} }
void putRelatedInQueue(int (*edge)[VERTEXNUM], int vertex){
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
用邻接表实现该图的广度优先搜索遍历
一﹑实验目的
1﹒掌握图的基本概念和邻接表存储结构。

2﹒掌握图的邻接表存储结构的算法实现。

3﹒掌握图在邻接表存储结构上遍历算法的实现。

二﹑实验内容
给定图如下,用邻接表实现该图的广度优先搜索遍历。

三﹑实验与算法分析
先定义图的邻接表数据,建立该图的邻接表,然后在用子函数写出广度优先搜索遍历的遍历算法,最后用主函数调用它们。

实现广度优先搜索遍历可以利用队列的原理。

利用队列先进先出的特性,并设置访问标志实现连通图的广度优先搜索遍历。

广度优先搜索遍历类似于树的按层次遍历,对于用邻接表做存储结构的图,从某个给定顶点出发的图的遍历得到的访问结点顶点次序,随建立的邻接表的不同而可能不同。

将每个结点的边用一个单边表链接起来组成一个整体。

所有头结点可看成一个一维数组,即邻接表所有链表中结点数目的一半为图中边数。

占用的存储单元数目为n+2e。

抽象算法描述:
(1)访问顶点i,并将其访问标志置为已被访问,即visited[i]=true。

(2)依次访问与标点i有边相连的所有顶点w1,w2------wt。

(3) 再按次序访问与w1,w2------wt有边相连且未曾访问过的顶点。

(4)依此类推,直到图中所有顶点都被访问完。

四﹑可执行程序及注释
实验代码:
//用邻接表实现无向图的深度优先搜索遍历和广度优先搜索遍历
#include<iostream.h>
const int n=8; //表示图中的最大顶点数
const int e=15; //图中的最大边数
typedef int elemtype;
bool visited[n+1]; //标志数组用于记载某个顶点是否被访问过class link //定义链表类型
{
public:
elemtype data;
link *next;
};
class GRAPH //定义邻接表的表头类型
{
public:
link a[n+1];
void creatlink() //建立图的邻接表
{
int i,j,k;
link *s;
for(i=1;i<=n;i++) //建立邻接表的表头类型
{
a[i].data=i;
a[i].next=NULL;
}
for(k=1;k<=e;k++)
{
cout<<"请输入一条边";
cin>>i>>j; //输入一条边(i,j)
cout<<endl;
s=new link; //申请一个动态存储单元
s->data=j;
s->next=a[i].next; //头插法建立链表
a[i].next=s; //头插法建立链表
s=new link;
s->data=i;
s->next=a[j].next; //头插法建立链表
a[j].next=s; //头插法建立链表
}
}
void bfs1(int i) //用邻接表从顶点i出发进行广度优先搜索遍历{
int q[n+1]; //定义队列
int f,r;
link *p; //p为搜索指针
f=r=0;
cout<<a[i].data<<" ";
visited[i]=true;
r++;
q[r]=i; //进队
while(f<r)
{
f++;
i=q[f]; //出队
p=a[i].next;
while(p!=NULL)
{
if(!visited[p->data])
{
cout<<a[p->data].data<<" ";
visited[p->data]=true;
r++;
q[r]=p->data; //进队
}
p=p->next;
}
}
}
};
void main()
{
link *p;
int yn=1;
GRAPH G;
G.creatlink(); //建立邻接表while(yn==1)
{
for(int i=1;i<=n;i++) //输出邻接表{
p=G.a[i].next;
cout<<G.a[i].data<<"->";
while(p->next!=NULL)
{
cout<<p->data<<"->";
p=p->next;
}
cout<<p->data<<endl;
}
for(i=1;i<=n;i++)
visited[i]=false;
cout<<"请输入广度优先搜索开始访问的顶点"; cin>>i;
cout<<endl;
cout<<"从"<<i<<"出发的广度优先搜索遍历序列为"<<endl;
G.bfs1(i);
cout<<endl;
cout<<"继续遍历吗(1/2)?";
cin>>yn;
}
}
运行结果:。

相关文档
最新文档