基于FPGA的UART设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、题目
基于FPGA的UART设计
二、设计要求
1)支持数据格式:起始位(1bit)+数据(8bit)+奇偶校验位(1bit)+终止位(1bit)2)奇/偶校验可配置
3)可配置支持115200以下的常见波特率
4)支持115200以下的波特率自适应,自适应过程如下:
a.复位后,UART首先接收输入,不断自动调整波特率,直到以一定波特率正确连
续接收到3个bytes的0x55
b.接着UART以此波特率连续发送3个bytes 0xaa
c.之后两端以此波特率进行通信
d.波特率自适应只在电路复位后进行一次,如欲再次自适应波特率应对电路再次
复位
e.波特率自适应过程中不能对UART的波特率作任何设置,自适应完成后可以对
波特率作设置
5)自动计算校验位用于发送数据;对接收到的校验位和数据进行校验,发现错误应设置错误标志,并丢弃数据
6)对接收不正常数据(如无终止位、无校验位、数据位数不正确等)应能自动识别并设置错误标志、丢弃
三、UART 的工作原理
异步通信时,UART发送/接收数据的传输格式如图1所示,一个字符单位由开始位、数据位、停止位组成。

异步通信的一帧传输经历以下步骤:
(1)无传输。

发送方连续发送信号,处于信息“1”状态。

(2)起始传输。

发送方在任何时刻将传号变成空号,即“1”跳变到“0”,并持续1位
时间表明发送方开始传输数据。

而同时,接收方收到空号后,开始与发送方同步,并期望收到随后的数据。

(3)奇偶传输。

数据传输之后是可供选择的奇偶位发送或接收。

(4)停止传输。

最后是发送或接收的停止位,其状态恒为“1”。

发送或接收一个完整的字节信息,首先是一个作为起始位的逻辑“0”位,接着是8个数据位,然后是停止位逻辑“1”位,数据线空闲时为高或“1”状态。

起始位和停止位的作用是使接收器能把局部时钟与每个新开始接收的字符再同步。

异步通信没有可参
照的时钟信号,发送器可以随时发送数据,任何时刻串行数据到来时,接收器必须准确地发现起始位下降沿的出现时间,从而正确采样数据。

首先,收发双方设定一个波特率,从计算机串口调试助手发出字符串到试验箱,试验箱接收完成后再将接收到的信息发回串口调试助手,若所发送的字符串与接收到的字符串一样,则设计无误。

四、波特率发生器设计
module speed_select(
clk,rst_n,
bps_start,clk_bps
);
input clk; // 12MHz主时钟
input rst_n; //低电平复位信号
input bps_start; //接收到数据后,波特率时钟启动信号置位
output clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点
`define BPS_PARA 1254 //波特率为9600时的分频计数值
`define BPS_PARA_2 627 //波特率为9600时的分频计数值的一半,用于数据采样
reg[12:0] cnt; //分频计数
reg clk_bps_r; //波特率时钟寄存器
//----------------------------------------------------------
reg[2:0] uart_ctrl; // uart波特率选择寄存器
//----------------------------------------------------------
always @ (posedge clk or negedge rst_n)
if(!rst_n) cnt <= 13'd0;
else if((cnt == `BPS_PARA) || !bps_start) cnt <= 13'd0; //波特率计数清零
else cnt <= cnt+1'b1; //波特率时钟计数启动
always @ (posedge clk or negedge rst_n)
if(!rst_n) clk_bps_r <= 1'b0;
else if(cnt == `BPS_PARA_2) clk_bps_r <= 1'b1; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点
else clk_bps_r <= 1'b0;
assign clk_bps = clk_bps_r;
endmodule
五、发送模块设计
module my_uart_tx(
clk,rst_n,
rx_data,rx_int,rs232_tx,
clk_bps,bps_start
);
input clk; //12MHz主时钟
input rst_n; //低电平复位信号
input clk_bps; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点
input[7:0] rx_data; //接收数据寄存器
input rx_int; //接收数据中断信号,接收到数据期间始终为高电平,在该模块中利用它的下降沿来启动串口发送数据
output rs232_tx; // RS232发送数据信号
output bps_start; //接收或者要发送数据,波特率时钟启动信号置位
reg rx_int0,rx_int1,rx_int2; //rx_int信号寄存器,捕捉下降沿滤波用
wire neg_rx_int; // rx_int下降沿标志位
always @ (posedge clk or negedge rst_n) begin
if(!rst_n) begin
rx_int0 <= 1'b0;
rx_int1 <= 1'b0;
rx_int2 <= 1'b0;
end
else begin
rx_int0 <= rx_int;
rx_int1 <= rx_int0;
rx_int2 <= rx_int1;
end
end
assign neg_rx_int = ~rx_int1 & rx_int2; //捕捉到下降沿后,neg_rx_int拉高保持一个主时钟周期
reg bps_start_r;
reg tx_en; //发送数据使能信号,高有效
reg[3:0] num;
always @ (posedge clk or negedge rst_n) begin
if(!rst_n) begin
bps_start_r <= 1'bz;
tx_en <= 1'b0;
tx_data <= 8'd0;
end
else if(neg_rx_int) begin //接收数据完毕,准备把接收到的数据发回去bps_start_r <= 1'b1;
tx_data <= rx_data; //把接收到的数据存入发送数据寄存器
tx_en <= 1'b1; //进入发送数据状态中
end
else if(num==4'd10) begin //数据发送完成,复位
bps_start_r <= 1'b0;
tx_en <= 1'b0;
end
end
assign bps_start = bps_start_r;
reg rs232_tx_r;
always @ (posedge clk or negedge rst_n) begin
if(!rst_n) begin
num <= 4'd0;
rs232_tx_r <= 1'b1;
end
else if(tx_en) begin
if(clk_bps) begin
num <= num+1'b1;
case (num)
4'd0: rs232_tx_r <= 1'b0; //发送起始位
4'd1: rs232_tx_r <= tx_data[0]; //发送bit0
4'd2: rs232_tx_r <= tx_data[1]; //发送bit1
4'd3: rs232_tx_r <= tx_data[2]; //发送bit2
4'd4: rs232_tx_r <= tx_data[3]; //发送bit3
4'd5: rs232_tx_r <= tx_data[4]; //发送bit4
4'd6: rs232_tx_r <= tx_data[5]; //发送bit5
4'd7: rs232_tx_r <= tx_data[6]; //发送bit6
4'd8: rs232_tx_r <= tx_data[7]; //发送bit7
4'd9: rs232_tx_r <= 1'b1; //发送结束位
default: rs232_tx_r <= 1'b1;
endcase
end
else if(num==4'd10) num <= 4'd0; //复位
end
end
assign rs232_tx = rs232_tx_r;
endmodule
六、接收器设计
module my_uart_rx(
clk,rst_n,
rs232_rx,rx_data,rx_int,
clk_bps,bps_start
);
input clk; // 12MHz主时钟
input rst_n; //低电平复位信号
input rs232_rx; // RS232接收数据信号
input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点
output bps_start; //接收到数据后,波特率时钟启动信号置位
output[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到
output rx_int; //接收数据中断信号,接收到数据期间始终为高电平
reg rs232_rx0,rs232_rx1,rs232_rx2,rs232_rx3; //接收数据寄存器,滤波用wire neg_rs232_rx; //表示数据线接收到下降沿,1到0,起始位。

always @ (posedge clk or negedge rst_n) begin
if(!rst_n) begin
rs232_rx0 <= 1'b0;
rs232_rx1 <= 1'b0;
rs232_rx2 <= 1'b0;
rs232_rx3 <= 1'b0;
end
else begin
rs232_rx0 <= rs232_rx;
rs232_rx1 <= rs232_rx0;
rs232_rx2 <= rs232_rx1;
rs232_rx3 <= rs232_rx2;
end
end
//下面的下降沿检测可以滤掉<20ns-40ns的毛刺(包括高脉冲和低脉冲毛刺),
//这里就是用资源换稳定(前提是我们对时间要求不是那么苛刻,因为输入信号打了好几拍)
//(当然我们的有效低脉冲信号肯定是远远大于40ns的)
assign neg_rs232_rx = rs232_rx3 & rs232_rx2 & ~rs232_rx1 & ~rs232_rx0; //接收到下降沿后neg_rs232_rx置高一个时钟周期
reg bps_start_r;
reg[3:0] num; //移位次数
reg rx_int; //接收数据中断信号,接收到数据期间始终为高电平,用于启动发送模块
always @ (posedge clk or negedge rst_n)
if(!rst_n) begin
bps_start_r <= 1'bz;
rx_int <= 1'b0;
end
else if(neg_rs232_rx) begin //接收到串口接收线rs232_rx的下降沿标志信号
bps_start_r <= 1'b1; //启动串口准备数据接收,用于控制speedselect模块
rx_int <= 1'b1; //接收数据中断信号使能
end
else if(num==4'd10) begin //接收完有用数据信息
bps_start_r <= 1'b0; //数据接收完毕,释放波特率启动信号
rx_int <= 1'b0; //接收数据中断信号关闭
end
assign bps_start = bps_start_r;
reg[7:0] rx_temp_data; //当前接收数据寄存器
always @ (posedge clk or negedge rst_n)
if(!rst_n) begin
rx_temp_data <= 8'd0;
num <= 4'd0;
rx_data_r <= 8'd0;
end
else if(rx_int) begin //接收数据处理
if(clk_bps) begin //读取并保存数据,接收数据为一个起始位,8bit数据,1或2个结束位
num <= num+1'b1;
case (num)
4'd1: rx_temp_data[0] <= rs232_rx; //锁存第0bit
4'd2: rx_temp_data[1] <= rs232_rx; //锁存第1bit
4'd3: rx_temp_data[2] <= rs232_rx; //锁存第2bit
4'd4: rx_temp_data[3] <= rs232_rx; //锁存第3bit
4'd5: rx_temp_data[4] <= rs232_rx; //锁存第4bit
4'd6: rx_temp_data[5] <= rs232_rx; //锁存第5bit
4'd7: rx_temp_data[6] <= rs232_rx; //锁存第6bit
4'd8: rx_temp_data[7] <= rs232_rx; //锁存第7bit
default: ;
endcase
end
else if(num == 4'd10) begin //我们的标准接收模式下只有1+8+1(2)=11bit的有效数据
num <= 4'd0; //接收到STOP位后结束,num清零
rx_data_r <= rx_temp_data; //把数据锁存到数据寄存器rx_data中
end
end
assign rx_data = rx_data_r;
endmodule
七、顶层模块设计
module my_uart_top(
clk,rst_n,
rs232_rx,rs232_tx
);
input clk; // 12MHz主时钟
input rst_n; //低电平复位信号
input rs232_rx; // RS232接收数据信号
output rs232_tx; // RS232发送数据信号
wire bps_start1,bps_start2; //接收到数据后,波特率时钟启动信号置位
wire clk_bps1,clk_bps2; // clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点
wire[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到
wire rx_int; //接收数据中断信号,接收到数据期间始终为高电平
//----------------------------------------------------
//下面的四个模块中,speed_rx和speed_tx是两个完全独立的硬件模块,可称之为逻辑复制
//(不是资源共享,和软件中的同一个子程序调用不能混为一谈)
////////////////////////////////////////////
speed_select speed_rx(
.clk(clk), //波特率选择模块
.rst_n(rst_n),
.bps_start(bps_start1),
.clk_bps(clk_bps1)
);
my_uart_rx my_uart_rx(
.clk(clk), //接收数据模块
.rst_n(rst_n),
.rs232_rx(rs232_rx),
.rx_data(rx_data),
.rx_int(rx_int),
.clk_bps(clk_bps1),
.bps_start(bps_start1)
);
speed_select speed_tx(
.clk(clk), //波特率选择模块
.rst_n(rst_n),
.bps_start(bps_start2),
.clk_bps(clk_bps2)
);
my_uart_tx my_uart_tx(
.clk(clk), //发送数据模块
.rst_n(rst_n),
.rx_data(rx_data),
.rx_int(rx_int),
.rs232_tx(rs232_tx),
.clk_bps(clk_bps2),
.bps_start(bps_start2)
);
endmodule
八、实验效果图
九、实验总结
本次设计具有较大的灵活性,通过调整波特率发生器的分频参数,就可以使其工作在不同的频率。

可以实时有效探测数据的起始位,并可对数据位进行“对准”中央采样,保证了所采样数据的正确性。

该模块可以作为一个完整的IP核移植进各种FPGA中,在实际应用时可嵌入到其他系统中,很容易实现和远端上位机的异步通信。

虽然本次试验设计没有完成波特率自适应,但是通过这次试验更深入的了解了uart的工作原理,重温Verilog-hdl程序设计。

相关文档
最新文档