合成氨工艺的发展历史精品PPT课件
合集下载
合成氨工艺的发展历史PPT课件
空速24000(1/h)、R=2.5出口氨浓度最大 采取的方法:新鲜原料气比为3,混合后的循环气在合 成塔入口的比约为2.8。 5、进塔气中的惰性气体含量:一般≤2% 6、催化剂颗粒:反应初期:温度440~470度粒径
0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
二、氨的分离
三、变换 1、化学反应与平衡转化率
变换的目的将一氧化碳变成氢。
CO H2O CO2 H2
2、工艺条件的优化 (1)、催化剂:
铜催化剂:氧化铜、氧化锌、氧化铝烧结用氢还原 活性温度为180-250度,为低变催化剂。 铁铬催化剂:氧化铁、氧化铬,活性温度为350-450 度,为中变催化剂。 (2)、原料气组成: 使水蒸气过量,提高转化率。 200度时,CO与H2O体积比由1:1提高到1:6时转 化率由93.8%提高到99.9%。
3、甲烷化: 除去热钾减法处理后气体中的一氧化碳、二氧化碳 和氧气。 “甲烷化”为广泛使用的初步净化方法。
CO 3H2 CH4 H2O 206kJ mol 1 CO2 4H2 CH4 2H2O 165kJ mol 1
镍做催化剂,在280-380度的条件下进行。 反应为简单绝热反应器。 甲烷化处理后的气体中一氧化碳、二氧化碳、水等总 量在10毫克每立方米以下。
造气与送风的五个阶段 间歇操作: 第一阶段为送风发热, 后四个阶段为造气。 1、空气吹风: 送风发热、提高炉温
2、上吹造气: 将水蒸气和炉气 从炉底吹入生产 半水煤气经废热 锅炉、洗涤塔送 至气柜。
3、下吹造气: 上吹后炉底温度降 低,炉顶温度尚 高,改为下吹造 气。先从炉顶向下 吹几秒水蒸气,防 止直接吹空气与煤 气相遇爆炸。得半 水煤气经废热锅 炉、洗涤塔送至气 柜。
0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
二、氨的分离
三、变换 1、化学反应与平衡转化率
变换的目的将一氧化碳变成氢。
CO H2O CO2 H2
2、工艺条件的优化 (1)、催化剂:
铜催化剂:氧化铜、氧化锌、氧化铝烧结用氢还原 活性温度为180-250度,为低变催化剂。 铁铬催化剂:氧化铁、氧化铬,活性温度为350-450 度,为中变催化剂。 (2)、原料气组成: 使水蒸气过量,提高转化率。 200度时,CO与H2O体积比由1:1提高到1:6时转 化率由93.8%提高到99.9%。
3、甲烷化: 除去热钾减法处理后气体中的一氧化碳、二氧化碳 和氧气。 “甲烷化”为广泛使用的初步净化方法。
CO 3H2 CH4 H2O 206kJ mol 1 CO2 4H2 CH4 2H2O 165kJ mol 1
镍做催化剂,在280-380度的条件下进行。 反应为简单绝热反应器。 甲烷化处理后的气体中一氧化碳、二氧化碳、水等总 量在10毫克每立方米以下。
造气与送风的五个阶段 间歇操作: 第一阶段为送风发热, 后四个阶段为造气。 1、空气吹风: 送风发热、提高炉温
2、上吹造气: 将水蒸气和炉气 从炉底吹入生产 半水煤气经废热 锅炉、洗涤塔送 至气柜。
3、下吹造气: 上吹后炉底温度降 低,炉顶温度尚 高,改为下吹造 气。先从炉顶向下 吹几秒水蒸气,防 止直接吹空气与煤 气相遇爆炸。得半 水煤气经废热锅 炉、洗涤塔送至气 柜。
合成氨工艺简介课件
数据分析与优化
通过大数据和人工智能技术,对合成氨生产过程 进行实时监测和数据分析,实现生产过程的优化 和智能化决策。
感谢您的观看
THANKS
合成氨的发展历程
总结词
合成氨的发展经历了多个阶段,技术的不断改进和创 新推动了合成氨工业的发展。
详细描述
合成氨技术的发展历程可以追溯到19世纪末期,当时 科学家们开始探索将氮气和氢气合成为氨气的方法。经 过多次试验和改进,1909年德国化学家哈伯(Fritz Haber)开发出了采用铁催化剂的高压合成氨工艺,并 在随后的几年中不断完善。随着技术的不断改进和创新 ,合成氨的产量和效率逐渐提高,推动了合成氨工业的 发展。如今,合成氨技术已经广泛应用于全球范围内, 为人类的生产和生活提供了重要的化工原料。
少对环境的污染。
废水处理
建立废水处理设施,对工艺过程中 产生的废水进行处理,达到排放标 准后再排放。
废弃物回收利用
对工艺过程中产生的废弃物进行回 收利用,减少对环境的负担。
04
合成氨工艺的未来发展
新技术的研发与应用
新型催化剂
研发高效、低成本的新型催化剂 是合成氨工艺未来的重要方向, 以提高合成氨的效率和选择性。
二氧化碳脱除
采用化学或物理方法脱除原料气中的二氧化碳,以防止其在 后续的合成过程中形成氨的碳化物。
氨的合成
01
02
03
合成塔
原料气在高温、高压条件 下进入合成塔,与催化剂 接触,发生反应生成氨。
氨的分离
从合成塔出来的气体中, 氨被冷凝分离出来,未反 应的氢气和氮气循环回到 合成塔继续反应。
氨的储存与运输
研究新型高效催化剂,降 低反应活化能,提高原料 的转化率。
降低能耗
通过大数据和人工智能技术,对合成氨生产过程 进行实时监测和数据分析,实现生产过程的优化 和智能化决策。
感谢您的观看
THANKS
合成氨的发展历程
总结词
合成氨的发展经历了多个阶段,技术的不断改进和创 新推动了合成氨工业的发展。
详细描述
合成氨技术的发展历程可以追溯到19世纪末期,当时 科学家们开始探索将氮气和氢气合成为氨气的方法。经 过多次试验和改进,1909年德国化学家哈伯(Fritz Haber)开发出了采用铁催化剂的高压合成氨工艺,并 在随后的几年中不断完善。随着技术的不断改进和创新 ,合成氨的产量和效率逐渐提高,推动了合成氨工业的 发展。如今,合成氨技术已经广泛应用于全球范围内, 为人类的生产和生活提供了重要的化工原料。
少对环境的污染。
废水处理
建立废水处理设施,对工艺过程中 产生的废水进行处理,达到排放标 准后再排放。
废弃物回收利用
对工艺过程中产生的废弃物进行回 收利用,减少对环境的负担。
04
合成氨工艺的未来发展
新技术的研发与应用
新型催化剂
研发高效、低成本的新型催化剂 是合成氨工艺未来的重要方向, 以提高合成氨的效率和选择性。
二氧化碳脱除
采用化学或物理方法脱除原料气中的二氧化碳,以防止其在 后续的合成过程中形成氨的碳化物。
氨的合成
01
02
03
合成塔
原料气在高温、高压条件 下进入合成塔,与催化剂 接触,发生反应生成氨。
氨的分离
从合成塔出来的气体中, 氨被冷凝分离出来,未反 应的氢气和氮气循环回到 合成塔继续反应。
氨的储存与运输
研究新型高效催化剂,降 低反应活化能,提高原料 的转化率。
降低能耗
化学工艺学课件合成氨工艺30页PPT
生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢你的阅读
化学工艺学课件合成氨工艺
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢你的阅读
化学工艺学课件合成氨工艺
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
《合成氨的概述》课件
合成氨的发现
总结词
合成氨的发现可以追溯到19世纪末期,当时科学家们开始探索氮和氢合成氨的可能性。
详细描述
1898年,德国化学家弗里茨·哈伯(Fritz Haber)和助手卡尔·博施(Carl Bosch)成功地开发出了一 种能够实现大规模合成氨的方法,这种方法被称为哈伯-博施法。这一发现为工业生产和农业提供了大 量的氨,对全球经济发展和人类生存具有重要意义。
原料气的净化
总结词
原料气的净化是合成氨生产工艺的重要环节,主要是通过化学和物理方法去除 原料气中的杂质,如二氧化碳、硫化氢和氧气等。
详细描述
原料气的净化通常包括脱硫、脱碳和脱氧等过程。脱硫主要是用碱性溶液或固 体吸收剂去除硫化氢;脱碳主要是用溶液吸收或固体吸附剂去除二氧化碳;脱 氧主要是通过催化剂或氧化反应将氧气转化为水。
环保与安全问题
总结词
合成氨工艺中存在一些环保与安全问题,需要采取相应的措施加以解决。
详细描述
合成氨工艺中会产生大量的废气和废水,如果处理不当会对环境造成污染。因此,需要 采取一系列环保措施,如废气处理、废水处理和废弃物回收等。此外,由于合成氨工艺 需要在高温高压下进行,也存在一定的安全风险。因此,需要采取相应的安全措施,如
《合成氨的概述》 ppt课件
目 录
• 合成氨的简介 • 合成氨的生产工艺 • 合成氨的工艺特点 • 合成氨的未来发展 • 总结
01
合成氨的简介
合成氨的定义
总结词
合成氨是指将氮和氢在高温高压和催化剂的作用下合成为氨的过程。
详细描述
合成氨是一种化学反应,通常在高温高压和催化剂存在的条件下进行,将氮气和氢气合成为氨气。这个反应是工 业上大规模生产氨的重要方法,也是化学工业中的重要反应之一。
合成氨生产工艺介绍讲座PPT
四、氨合成与分离的工艺流程
(一)气体的压缩和除油
(二)气体的预热和合成
(三)氨的分离
合成塔出口气体氨含量一般为10~20%因此将氨分离出来。 1.水吸收法 2.冷凝 该法是将合成气体降温,使其的气氨冷凝成液氨,后 在氨分离器中,从不凝气体中分离出来。目前主要采用冷却法 分离循环气中的氨。
在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。
缺氮的棉花
智利硝石(NaNO3)
氮的固定: 把大气中的氮转化为氮的化合物叫做氮的固定。
包括: ① 自然固定:豆科植物固氮、雷雨天产生NO气体; ② 人工固定:合成氨等。
二、合成原理及条件
N2+3H2
2NH3 (正反应为放热反应)
特点: a、可逆反应 b、正反应为放热反应
c、正反应是气体体积缩小的反应。
高温
C+H2O(g) → CO+H2
CO+H2O(g)催→化剂CO2+H2
4.合成氨工艺条件:
4.1操作压力
在一定的空速下,合成压力越高,出口氨浓度越高,氨 净值(合成塔出入口氨含量之差)越高,合成塔的生产能力也 就越 大。
氨合成系统的能量消耗主要包括原料气压缩功、循环气 压缩功和氨分离的冷冻功。 生产实践证明:操作压力在20~35MPa时总能量消耗比较 低。
4.2温度
将某种催化剂在一定成产条件下具有最高氨生成率 的温度称为最适宜的温度。
最适宜温度还和空间速度、压力等有关
经生产实践得出氨合成操作温度控制在470~520度较为
适宜。
4.3空间速度
当操作压力、温度及进塔气组成一定时,空速增加,氨 净值降低。由于氨净值降低的程度比空间速度的增大倍数 少,所以空间速度增加时氨合成生产强度有所提高及氨产 量有所增加。
化工工艺学合成氨幻灯片PPT
(1)原料的预热温度:其高低应根据原料烃的 组成及催化剂的性能而定。 (2)对流段内各加热盘管的布置
(3) 转化系统的余热回收
现代大型氨最重要的特点是充分回收生产过程的余热, 产生高压蒸气作为动力。
29 合成氨工业
(四)、烃类蒸气转化主要设备
顶部烧嘴炉(图)
炉型 侧壁烧嘴炉
1、一段转化炉
梯台炉 冷底式(图)
1、外部供热的蒸汽转化法
2、内部蓄热的间歇操作法
3、自热反应的部分氧化法
11 合成氨工业
二、煤气化原理
(一)、化学平衡
1、以空气为气化剂时,碳与氧之间的反应为: C+O2= CO2; △H0298=-393.77kJ/mol C+1/2O2=CO; △H0298=-110.59kJ/mol C+CO2=2CO; △H0298=-172.284kJ/mol CO+1/2O2=CO2;△H0298=-283.183kJ/mol 设CO2平衡转化率为α,总压为P 则
在制冰、空调、冷藏等系统的致冷剂。
5 合成氨工业
三、生产方法
(一)氰化法
CaO 3C 2 0 0oC 0 Ca2 CCO Ca2 CN2 1 0 0oC 0 CaC 2C N
CaC 23 NH2O CaC 32 O NH 3
(二)直接法
此法是在高压、高温和有催化剂时,氮气和氢 气直接合成为氨的一种生产方法。目前工业上合成 氨基本上都用此法。
烷烃:
或
C n H 2 n 2 n 2 1 H 2 O 3 n 4 1 C 4 n 4 H 1 C 2
C C n H n H 2 n 2 n 2 2 n n 2 2 O O H H n n2 C C ( ( 2 3 n n 1 1 ) ) O H H O 2 2
(3) 转化系统的余热回收
现代大型氨最重要的特点是充分回收生产过程的余热, 产生高压蒸气作为动力。
29 合成氨工业
(四)、烃类蒸气转化主要设备
顶部烧嘴炉(图)
炉型 侧壁烧嘴炉
1、一段转化炉
梯台炉 冷底式(图)
1、外部供热的蒸汽转化法
2、内部蓄热的间歇操作法
3、自热反应的部分氧化法
11 合成氨工业
二、煤气化原理
(一)、化学平衡
1、以空气为气化剂时,碳与氧之间的反应为: C+O2= CO2; △H0298=-393.77kJ/mol C+1/2O2=CO; △H0298=-110.59kJ/mol C+CO2=2CO; △H0298=-172.284kJ/mol CO+1/2O2=CO2;△H0298=-283.183kJ/mol 设CO2平衡转化率为α,总压为P 则
在制冰、空调、冷藏等系统的致冷剂。
5 合成氨工业
三、生产方法
(一)氰化法
CaO 3C 2 0 0oC 0 Ca2 CCO Ca2 CN2 1 0 0oC 0 CaC 2C N
CaC 23 NH2O CaC 32 O NH 3
(二)直接法
此法是在高压、高温和有催化剂时,氮气和氢 气直接合成为氨的一种生产方法。目前工业上合成 氨基本上都用此法。
烷烃:
或
C n H 2 n 2 n 2 1 H 2 O 3 n 4 1 C 4 n 4 H 1 C 2
C C n H n H 2 n 2 n 2 2 n n 2 2 O O H H n n2 C C ( ( 2 3 n n 1 1 ) ) O H H O 2 2
合成氨工业生产课件
农药
合成氨是制造农药的重要成分。
医药
合成氨还可以用于制药中的合成 反应。
工业生产
合成氨在提高工业生产效率中也 具有重要的作用。
合成氨的生产工艺
1
氨的物理和化学性质
氨是一种无色、有强烈气味的气体。它的燃烧是生成水和氮氧化物。
2
氨的生产方法
合成氨的生产方法通常采用哈伯-玻斯曼过程,需要高压、高温、铁催化和氢气。
3
传统合成氨工艺
传统的合成氨工艺存在能源消耗高、开销大、环保问题等诸多问题。
4
新型合成氨工艺
新型合成氨工艺是一种绿色、高效、低耗的方法,采用先进的催化剂和反应条件实现合成氨 的高效率转化。
合成氨工业生产的优势和挑战
优势:高效、节能、环保
合成氨工业生产具有高效、节能、环保等诸多优势,有助于推动工业绿色化发展。
技术进步和创新发展方向
新型催化剂和反应条件不断涌现, 合成氨工业将朝着更加高效、节 能、环保的方向发展。
总结
本课件介绍了合成氨的定义、生产工艺、优势和挑战,以及全球合成氨产能 与消费量、合成氨的用途和市场需求、技术进步和创新发展方向。随着技术 进步和新型催化剂的应用,合成氨工业将会越来越高效、节能和环保。
挑战:原料供应、装置设计、废气处理
合成氨工业生产面临原料供应的不稳定性、装置设计的复杂性、废气处理的环保问题等诸多 挑战。
合成氨工业发展现状和趋势
全球合成氨产能与消费量
全球各国合成氨产能与消费量不 断增长,中国是最大的生产和消 费国家。
合成氨的用途和市场需求
肥料、农药、医药等行业对合成 氨的市场需求逐年增长。
合成氨工业生产ppt课件
合成ቤተ መጻሕፍቲ ባይዱ是广泛应用于肥料、农药、医药等领域的重要化工原料。本课件介绍 了合成氨的定义、生产工艺、优势和挑战、以及发展现状和趋势。
我国合成氨工业的发展历史及现状ppt
谢
11
谢!
11
中国合成氨产量发展概况
4000 3500 3000 2500 2000 1500 1000 500 0 1990 1995 1996 1997 1998 1999 2000 2001 产量
市场供需情况分析及预测
中国作为农业大国,也是化肥生产大国,合成氨生产大国。最近十 多年来中国合成氨生产能力大幅增长,2002年中国合成氨总生产能力约 4500×10。t/a,实际产量3654×10。t/a,能力和产量已居世界第一 位。国内氮肥消费量经过了近20年的高速增长,目前已进入平稳发展阶 段,根据国家“十五”化肥发展规划,预计2000~2010年中国化肥需求 增长率约为1.5 %,化肥用氨稍有增长,而工业用氨变化不大。目前中 国合成氨生产基本上已满足氮肥工业的需要,今后氮肥工业的发展重点 是调整产品结构,对合成氨的需求将缓慢成长。
2
2
合成氨的发现
• 1 900年法国化学家勒夏特利(Henri Le ChateLier,1 850~1 936)最先 研究氢气和氮气在高压下直接合成氨的反应。很可惜,由于他所用的 氢气和氮气的混合物中混进了空气,在实验过程中发生了爆炸。在没 有查明发生事故的原因的情况下,就放弃了这项实验。 91.5% 89.9% • 德国化学家W· 能斯特(Nernst,1864~1 941),对于研究具有重大 工艺价值的气体反应有兴趣,研究了氮、氢、氨的气体反应体系,但 是由于他在计算时,用了一个错误的热力学数据,以致得出不正确的 理论,因而认为研究这一反应没有前途,把研究停止了。 • 德国的物理学家、化工专家F.哈伯(Haber,1868,---1934)和他的 学生仍然坚持系统的研究,起初他们想在常温下使氮和氢反应,但没 有氨气产生。又在氮、氢混合气中通以电火花,只生成了极少量的氨 气,而且耗电量很大。后来才把注意力集中在高压这个问题上,他们 认为高压是最有可能实现合成反应的。如果在高压下将反应进行循环 加工,同时还要不断地分离出生成的氨气,势必需要很有效的催化剂 。
《合成氨的概述》课件
未来发展趋势
未来,合成氨工业将致力于将生产过程更加环保和可持续,降低成本,并在农业、生态和环 保等领域发挥更多作用。
环保和可持续发展
合成氨工业面临环保挑战,包括氮污染、资源和能源消耗等。但是,通过技术创新和生产工 艺的改善,合成氨工业正在走向环保和可持续发展。
合成氨的历史
1
巴斯德的发现
1860年,路易-巴斯德首先制备出人工合
海法的研究和创新
2
成氨,但其成本较高,导致无法作为工
一种更为经济高效的制备合成氨之法,
被称为“海法氨法”。
3
阿莫斯过程的开发和推广
1910年,英国化学家威廉-克劳福德-阿 莫斯发明了一种基于氮的固氮合成氨工 艺,被称为“阿莫斯过程”,解决了人工 合成氨成本较高的问题,成为现代合成 氨工业的基础。
合成氨的制备方法
海法氨法制备法
以氮和氢为原料,经催化剂作用,在高温、高压下 反应制得氨。
阿莫斯过程制备法
将氮在高压容器中与金属铁粉(或铁片、铁丝)反应 制得氨。
电弧放电法制备法
合成氢气氨法
将氮和氢气以一定比例混合,在电弧炉中进行放电, 使氮分子分解合成氨物质。
通过目标易碳化物转化为氢气,并与空气分离后转 化成合成氨。这是一种环保的低碳方法。
合成氨的应用
1 重要性
合成氨是农业和工业中不可或缺的重要原料,是制造硝化炸药和其他化学品必需品。
2 用途
合成氨被广泛应用于制造化肥、塑料、涂料、纺织品和药品等工业产品中。
3 在工业和农业中的应用
工业方面包括科学研究、国防等,农业方面包括种植业和畜牧业,具有广泛的应用前景。
合成氨的发展
发展历程
20世纪初,以海法氨法和阿莫斯法为基础的合成氨工业得到了广泛应用。如今,合成氨成为 人类命运共同体下将产生深远影响的关键关键物质之一。
未来,合成氨工业将致力于将生产过程更加环保和可持续,降低成本,并在农业、生态和环 保等领域发挥更多作用。
环保和可持续发展
合成氨工业面临环保挑战,包括氮污染、资源和能源消耗等。但是,通过技术创新和生产工 艺的改善,合成氨工业正在走向环保和可持续发展。
合成氨的历史
1
巴斯德的发现
1860年,路易-巴斯德首先制备出人工合
海法的研究和创新
2
成氨,但其成本较高,导致无法作为工
一种更为经济高效的制备合成氨之法,
被称为“海法氨法”。
3
阿莫斯过程的开发和推广
1910年,英国化学家威廉-克劳福德-阿 莫斯发明了一种基于氮的固氮合成氨工 艺,被称为“阿莫斯过程”,解决了人工 合成氨成本较高的问题,成为现代合成 氨工业的基础。
合成氨的制备方法
海法氨法制备法
以氮和氢为原料,经催化剂作用,在高温、高压下 反应制得氨。
阿莫斯过程制备法
将氮在高压容器中与金属铁粉(或铁片、铁丝)反应 制得氨。
电弧放电法制备法
合成氢气氨法
将氮和氢气以一定比例混合,在电弧炉中进行放电, 使氮分子分解合成氨物质。
通过目标易碳化物转化为氢气,并与空气分离后转 化成合成氨。这是一种环保的低碳方法。
合成氨的应用
1 重要性
合成氨是农业和工业中不可或缺的重要原料,是制造硝化炸药和其他化学品必需品。
2 用途
合成氨被广泛应用于制造化肥、塑料、涂料、纺织品和药品等工业产品中。
3 在工业和农业中的应用
工业方面包括科学研究、国防等,农业方面包括种植业和畜牧业,具有广泛的应用前景。
合成氨的发展
发展历程
20世纪初,以海法氨法和阿莫斯法为基础的合成氨工业得到了广泛应用。如今,合成氨成为 人类命运共同体下将产生深远影响的关键关键物质之一。
化工工艺学课件合成氨
反应器
采用特殊设计的反应器,使氢气和氮气在高 温高压条件下进行合成氨反应。
压缩机
用于压缩气体,以满足合成氨反应所需的高 压条件。
分离设备
用于将合成的氨从反应气体中分离出来,并 进行回收。
04 合成氨的能效和环保
CHAPTER
能效分析
合成氨的能效
合成氨是化工行业中耗能较高的过程之一,能效分析对于降低生产 成本和减少能源浪费至关重要。
合成氨的市场需求和发展趋势
市场需求
随着全球人口的增长和经济的发展, 对粮食和能源的需求不断增加,合成 氨的市场需求也在逐年增长。
发展趋势
合成氨技术的发展趋势包括提高合成 氨的效率和降低能耗,同时减少对环 境的污染。
合成氨技术的未来展望和研究方向
未来展望
随着科技的不断进步,合成氨技术将朝着更加高效、环保、经济的方向发展, 为人类的生产和生活提供更加优质的化工产品。
合成氨的重要性
合成氨是世界上最重要的化工生产过程之一,它提供了大量的氮肥和尿素等农业生产所需的肥料,对提高全球粮 食产量、解决人类温饱问题起到了至关重要的作用。此外,合成氨也是其他含氮化学品的重要原料,如硝化纤维、 炸药、染料等。
合成氨的基本原理
合成氨反应方程式
N2 + 3H2 → 2NH3
反应条件
CHAPTER
工艺流程概述
原料气的制备
将煤、天然气或石油等原料转 化为含有氢和氮的合成气。
原料气的净化
通过脱硫、一氧化碳变换和气 体精制等过程,除去合成气中 的杂质。
氨的合成
在高温高压条件下,利用铁催 化剂将氢气和氮气合成为氨。
氨的分离与回收
将合成的氨从反应气体中分离 出来,并进行回收。
采用特殊设计的反应器,使氢气和氮气在高 温高压条件下进行合成氨反应。
压缩机
用于压缩气体,以满足合成氨反应所需的高 压条件。
分离设备
用于将合成的氨从反应气体中分离出来,并 进行回收。
04 合成氨的能效和环保
CHAPTER
能效分析
合成氨的能效
合成氨是化工行业中耗能较高的过程之一,能效分析对于降低生产 成本和减少能源浪费至关重要。
合成氨的市场需求和发展趋势
市场需求
随着全球人口的增长和经济的发展, 对粮食和能源的需求不断增加,合成 氨的市场需求也在逐年增长。
发展趋势
合成氨技术的发展趋势包括提高合成 氨的效率和降低能耗,同时减少对环 境的污染。
合成氨技术的未来展望和研究方向
未来展望
随着科技的不断进步,合成氨技术将朝着更加高效、环保、经济的方向发展, 为人类的生产和生活提供更加优质的化工产品。
合成氨的重要性
合成氨是世界上最重要的化工生产过程之一,它提供了大量的氮肥和尿素等农业生产所需的肥料,对提高全球粮 食产量、解决人类温饱问题起到了至关重要的作用。此外,合成氨也是其他含氮化学品的重要原料,如硝化纤维、 炸药、染料等。
合成氨的基本原理
合成氨反应方程式
N2 + 3H2 → 2NH3
反应条件
CHAPTER
工艺流程概述
原料气的制备
将煤、天然气或石油等原料转 化为含有氢和氮的合成气。
原料气的净化
通过脱硫、一氧化碳变换和气 体精制等过程,除去合成气中 的杂质。
氨的合成
在高温高压条件下,利用铁催 化剂将氢气和氮气合成为氨。
氨的分离与回收
将合成的氨从反应气体中分离 出来,并进行回收。
化工工艺学合成氨课件
化工工艺学合成氨课件
图3-34 以重油为原料合成氨流程
第13页
3.2.2 原料气制备
•
合成氨中原料气中氢氢气碳比是:由表含示碳某种燃原料料转与化水
得到。
蒸气反应时释放氢比从水中
•
现在工业上采取天然释放气氢(轻包易含程度油。田气)、
炼厂气、焦炉气、石脑油、重油、焦炭和煤生
产合成氨。这些原料均可看做是有不一样氢碳
我国合成氨装置是大、中、小规模并存格局, 总生产能力为4260万t/a。
大型合成氨装置有30套,设计能力为900万
t/a,实际生产能力为1000万t/a;
中型合成氨装置有55套,生产能力为460万
t/a;
小型合成氨装置有700多套,生产能力为
2800万t/a。
❖我国产量为4222万吨,居世界第一。
化工工艺学合成氨课件
化工工艺学合成氨课件
第18页
一、烃类蒸气转化法
• ①催化剂活性组分、助催化剂和载体
• a活性组分:从性能和经济方面考虑,活 性组分,镍为最正确,含量在4%~30%较 为适宜。
• b助催化剂:提升镍活性、延长寿命和 增加抗析碳能力。可加入MgO作助催化剂。
• c镍催化剂载体:使镍高度分散、晶料变 细、抗老化和抗析碳等作用。惯用有氧化 铝、氧化镁、氧化钾、氧化钙、氧化铬、 氧化钛和氧化钡等。
化工工艺学合成氨课件
第33页
二、重油部分氧化法
• 2、反应条件 • 反应温度:1200~1370℃ • 反应压力:3.2~8.37MPa • 催化剂:无 • 水蒸气用量:每吨原料加水蒸气400~500kg • 水蒸气作用: • (1)起气化剂作用。 • (2)能够缓冲炉温及抑制析碳反应。
《合成氨工业》课件
维护保养
定期对设备进行维护保养,包括清洗、润滑、紧固等,以延长设备使 用寿命和保证生产安全。
故障诊断与处理
对设备运行过程中出现的故障进行诊断和处理,及时排除故障,恢复 设备正常运行。
安全措施
为确保设备和人员安全,需要采取一系列安全措施,如设置安全阀、 压力表、温度计等安全附件,以及进行定期的安全检查和评估。
工艺流程的能量分析
总结词
对合成氨工艺流程的能量利用进行评估 和分析。
VS
详细描述
合成氨工艺需要消耗大量的能量,包括燃 料、蒸汽和电能等。通过对工艺流程的能 量分析,可以优化工艺过程,提高能量利 用效率,降低生产成本。同时,还可以采 取节能措施,如余热回收、能量梯级利用 等,进一步降低能耗。
03
合成氨工业的设备与操作
合成氨工业的应用领域
总结词
合成氨是农业、化工、制药等领域的重要原料,其在化肥、硝酸、炸药等方面有广泛应 用。
详细描述
合成氨是农业生产中重要的化肥原料之一,用于制造氮肥和复合肥等。此外,合成氨也 是化工和制药领域的重要原料,用于生产硝酸、己内酰胺、尼龙等化学品和炸药等军用
物资。随着科技的不断进步和应用领域的拓展,合成氨工业将继续发挥重要作用。
事故预防措施
采取多种预防措施,如定期检查设备、加强通风、设置安全警示标 识等,降低事故发生的风险。
应急处理
针对可能发生的事故,制定应急处理方案,确保在事故发生时能够 迅速、有效地应对,减少损失。
THANKS。
详细描述
原料气中可能含有硫化物、一氧化碳、二氧化碳等杂质,这 些杂质会影响合成氨的效率和产品质量。因此,需要经过一 氧化碳的变换和二氧化碳的脱除等净化过程,以获得高纯度 的氢气和氮气。
定期对设备进行维护保养,包括清洗、润滑、紧固等,以延长设备使 用寿命和保证生产安全。
故障诊断与处理
对设备运行过程中出现的故障进行诊断和处理,及时排除故障,恢复 设备正常运行。
安全措施
为确保设备和人员安全,需要采取一系列安全措施,如设置安全阀、 压力表、温度计等安全附件,以及进行定期的安全检查和评估。
工艺流程的能量分析
总结词
对合成氨工艺流程的能量利用进行评估 和分析。
VS
详细描述
合成氨工艺需要消耗大量的能量,包括燃 料、蒸汽和电能等。通过对工艺流程的能 量分析,可以优化工艺过程,提高能量利 用效率,降低生产成本。同时,还可以采 取节能措施,如余热回收、能量梯级利用 等,进一步降低能耗。
03
合成氨工业的设备与操作
合成氨工业的应用领域
总结词
合成氨是农业、化工、制药等领域的重要原料,其在化肥、硝酸、炸药等方面有广泛应 用。
详细描述
合成氨是农业生产中重要的化肥原料之一,用于制造氮肥和复合肥等。此外,合成氨也 是化工和制药领域的重要原料,用于生产硝酸、己内酰胺、尼龙等化学品和炸药等军用
物资。随着科技的不断进步和应用领域的拓展,合成氨工业将继续发挥重要作用。
事故预防措施
采取多种预防措施,如定期检查设备、加强通风、设置安全警示标 识等,降低事故发生的风险。
应急处理
针对可能发生的事故,制定应急处理方案,确保在事故发生时能够 迅速、有效地应对,减少损失。
THANKS。
详细描述
原料气中可能含有硫化物、一氧化碳、二氧化碳等杂质,这 些杂质会影响合成氨的效率和产品质量。因此,需要经过一 氧化碳的变换和二氧化碳的脱除等净化过程,以获得高纯度 的氢气和氮气。
合成氨工艺简介ppt
环境保护措施
减少能源消耗
优化工艺流程,提高能源利用效率,减少污染物排放。
污染物减排
采用低排放技术和设备,对产生的污染物进行治理和减排。
生态恢复
在生产过程中对受损生态系统进行恢复和补偿,加强生态保护。
安全风险评估
危险源辨识
识别出工艺过程中可能存在的危险源和风险点。
风险评估
对危险源和风险点进行评估,确定可能产生的安全事故及影响范围。
源进行制备。
氮气
氮气是合成氨的主要原料之一 ,主要从空气中分离得到。
天然气
天然气是一种重要的原料,可 通过蒸汽转化或部分氧化等方
法制备合成气。
原料的来源与采购
01
02
03
氢气
氢气主要通过天然气重整 、水电解、生物质气化等 方式制备。
氮气
氮气主要从空气中分离得 到,一般采用深冷分离或 膜分离等方法。
低碳化
研究开发低碳环保的合成氨工艺,降低碳排放和能源消耗,实现 可持续发展。
资源循环利用
实现资源的循环利用,提高资源的利用率和经济效益,减少对环 境的污染。
智能绿色工厂
应用智能化的信息技术和自动化技术,实现绿色工厂的智能化和 自动化生产,提高生产效率和环保水平。
THANKS
感谢观看
合成氨工艺简介ppt
xx年xx月xx日
目录
• 合成氨工艺概述 • 合成氨工艺流程 • 合成氨工艺设备 • 合成氨工艺原料及产品 • 合成氨工艺的环境影响及安全措施 • 合成氨工艺的未来发展趋势及新技术的应用
01
合成氨工艺概述
定义与特点
定义
合成氨是指将氮气和氢气在一定条件下反应,生成氨气。
特点
合成氨是一种高能耗、高水耗、高投资的化工过程,是重要 的基础化工原料生产过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变换气以氢气、氮气、二氧化碳为主,其中氢分子 与氮分子之比为:3:1 除杂净化得到合乎要求的氢氮混合气。
三、氨合成原则流程和各化学反应过程相互关系
氨合成这一步最困难,工艺条件要求也最严格,是主 要化学反应过程,应首先进行优化。
§13-2 氨合成的热力学基础
一、氨合成反应与反应热
0.5N2 1.5H2 NH3
二、氨的分离 方法:降低温度使氨液化通过气液分离器使液氨与 其他气体分离。
1.9061 1099.5 log y 4.1856 p0.5 T y : 未液化的气体中氨的含量
四 段 冷 激 轴 向 合 成 塔
• 原料气→主进气口→沿环 隙至顶部→换热器管间预 热420度,与冷激气混合 温度降为410度→第一段 催化剂床层,温度由410 上升到496度再与冷激气 混合降至430度,此时 NH3%为6.9%→二段、 三段、四段→中心管→换 热器管内→出塔 (130~200度)
第十三章 合成氨工艺
• 主要内容: 1、氨合成概述 2、氨合成的热力学基础 3、氨合成动力学 4、原料气的生产与净化 5、氨生产全流程 6、合成氨生产发展趋势 7、尿素的合成
§13-1 概述
一、合成氨的重要性 生产氮肥、硝酸盐、胺、纤维、染料等。 二、原料路线 直接原料:氢和氮 以下方法获得粗原料气:氢气、氮气、一氧化碳、二氧化碳
应速率时的反应温度随转化率的提高而降低)
2、压力:加压有利于提高转化率。 20世纪:10~15MPa; 近年:3~4MPa
3、空间速度: 气固相催化反应空间速度越大,反应时间越短,
生产强度越大。
4、氢氮比:氮的活性吸附为合成反应的控制阶段, 氮的含量对反应速率影响较大,略低于3可加快反应 速率。
• 径向塔:气体的走向是径向,每段催化剂的厚度只 有塔径的30%~70%。
• 径向塔的优点: 1、阻力小:通气面积大、催化剂床层薄;2、空速 高;3、催化剂活性高
四、合成与分离循环流程
一次分离流程只进行压缩和冷却液化分离。适于合成压力较低 (约10-15MPa)出塔气中氨%<12%
二次分离流程适用于压力较高(约30MPa)的场合。 处理过程中出塔气氨%≈15%,第一次分离是在水冷的条件下 使近一半的氨液化分离出去,气体中剩余的氨%=8%经压缩机 升压和氨冷在-5度的条件下进行二次分离。
p1.5 H2
pNH3
k2
pNH3 p1.5
H2
k1、k2:正逆反应速度常数;
不同粒度催化剂、压力30MPa、空速30000h-1时,不同 温度下的反应结果:
低温时: 化学动力学控 制,氨含量不受 颗粒大小影响; 高温时:内扩散 控制,小颗粒催 化剂效果较好。
§13-3 氨的合成与分离
一、工艺条件的优化 1、温度:400~510度(可逆放热反应,最快反
R : yH2 =3(此时y最大) 2、温度:温度越低,Kp越大。低温催化剂为发展方向。 3、压力:压力越大,平衡浓度越大。 4、惰性气体含量:有较大的影响。
§13-3 氨合成动力学
一、催化剂 铁催化剂:
Fe2O354~68%、FeO29~36%、Al2O3 2~4% K2O0.5~0.8%、CaO0.7~2.5% 在加热条件下原料气将铁还原:
§13-5 原料气的生产与净化
一、生产原料气的原料 天然气、油田气占18.6%、轻油6.3%、重油8.1%、煤 和焦65%、焦炉气1% 原料气的生产分两步:造气和变换
二、以煤焦为原料的造气过程及其优化
2C O2 3.76N2 2CO 3.76N2 248.7kJ mol 1 5C 5H2O 5CO 5H2 590.5kJ mol 1 二者合并: 7C 3.76N2 5H2O 7CO 3.76N2 5H2 341.8kJ mol 1
C H2O CO H2 CnHm nH2O nCO (0.5m n)H2 2C O2 3.76N2 2CO 3.76N2 CnHm (n 0.25m)O2 3.76(n 0.25m)N2 nCO 0.5mH2O 3.76(n 0.25m)N2
• 粗原料气变换: CO H2O CO2 H2
二、反应平衡常数
K f
f NH3
f f 0.5 1.5
N2
H2
p NH3
K K 0.5 1.5
p p N2
H2
NH3
0.5 1.5
N2
H2
p
f : 逸度;:逸度系数
K f:与压力无关仅与温度有关。
三、影响平衡时氨浓度的因素
pK p
R1.5 (1 R)2
(1
y y
yi )2
p :总压力;
实践:32MPa、450度、催化剂粒度1.2~2.5mm 空速24000(1/h)、R=2.5出口氨浓度最大
采取的方法:新鲜原料气比为3,混合后的循环气在 合
成塔入口的比约为2.8。 5、进塔气中的惰性气体含量:一般≤2% 6、催化剂颗粒:反应初期:温度440~470度粒径
0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
(Fe2O3 ,FeO) +H2 = Fe+H2O
A10型催化剂:活化能约170KJ/mol,起燃温度370 度,耐热温度510度,活性最高时的温度450度左右,粒 径2.2~13mm.
二、反应动力学
1:气体向催化剂表面(内、外)扩散 2:气体在催化剂表面发生活性吸附
N2 (气) 2N (吸附) H2 (气) 2H (吸附) 3:吸附的氮、氢发生反应生成氨 N (吸附) H (吸附) NH (吸附) NH (吸附) H (吸附) NH2 (吸附) NH2 (吸附) H (吸附) NH3(吸附) 4:生成的氨从催化剂表面解吸 NH3(吸附) NH3(气) 5:解吸的氨从催化剂表面向气流主体扩散
反应控制阶段取决于反应条件(温度、催化剂颗粒的大小)
温度一定:大颗粒为内扩散控制,小颗粒为化学动力学控制。
颗粒一定:低温为化学动力学控制,高温为内扩散控制。
扩散控制时:yNH3 kp k : 扩散系数;p:总压力 化学动力学控制:
远离平衡时:r
kp
0.5 N2
p 0.5 H2
接近平衡时:r k1 pN2
三、氨合成原则流程和各化学反应过程相互关系
氨合成这一步最困难,工艺条件要求也最严格,是主 要化学反应过程,应首先进行优化。
§13-2 氨合成的热力学基础
一、氨合成反应与反应热
0.5N2 1.5H2 NH3
二、氨的分离 方法:降低温度使氨液化通过气液分离器使液氨与 其他气体分离。
1.9061 1099.5 log y 4.1856 p0.5 T y : 未液化的气体中氨的含量
四 段 冷 激 轴 向 合 成 塔
• 原料气→主进气口→沿环 隙至顶部→换热器管间预 热420度,与冷激气混合 温度降为410度→第一段 催化剂床层,温度由410 上升到496度再与冷激气 混合降至430度,此时 NH3%为6.9%→二段、 三段、四段→中心管→换 热器管内→出塔 (130~200度)
第十三章 合成氨工艺
• 主要内容: 1、氨合成概述 2、氨合成的热力学基础 3、氨合成动力学 4、原料气的生产与净化 5、氨生产全流程 6、合成氨生产发展趋势 7、尿素的合成
§13-1 概述
一、合成氨的重要性 生产氮肥、硝酸盐、胺、纤维、染料等。 二、原料路线 直接原料:氢和氮 以下方法获得粗原料气:氢气、氮气、一氧化碳、二氧化碳
应速率时的反应温度随转化率的提高而降低)
2、压力:加压有利于提高转化率。 20世纪:10~15MPa; 近年:3~4MPa
3、空间速度: 气固相催化反应空间速度越大,反应时间越短,
生产强度越大。
4、氢氮比:氮的活性吸附为合成反应的控制阶段, 氮的含量对反应速率影响较大,略低于3可加快反应 速率。
• 径向塔:气体的走向是径向,每段催化剂的厚度只 有塔径的30%~70%。
• 径向塔的优点: 1、阻力小:通气面积大、催化剂床层薄;2、空速 高;3、催化剂活性高
四、合成与分离循环流程
一次分离流程只进行压缩和冷却液化分离。适于合成压力较低 (约10-15MPa)出塔气中氨%<12%
二次分离流程适用于压力较高(约30MPa)的场合。 处理过程中出塔气氨%≈15%,第一次分离是在水冷的条件下 使近一半的氨液化分离出去,气体中剩余的氨%=8%经压缩机 升压和氨冷在-5度的条件下进行二次分离。
p1.5 H2
pNH3
k2
pNH3 p1.5
H2
k1、k2:正逆反应速度常数;
不同粒度催化剂、压力30MPa、空速30000h-1时,不同 温度下的反应结果:
低温时: 化学动力学控 制,氨含量不受 颗粒大小影响; 高温时:内扩散 控制,小颗粒催 化剂效果较好。
§13-3 氨的合成与分离
一、工艺条件的优化 1、温度:400~510度(可逆放热反应,最快反
R : yH2 =3(此时y最大) 2、温度:温度越低,Kp越大。低温催化剂为发展方向。 3、压力:压力越大,平衡浓度越大。 4、惰性气体含量:有较大的影响。
§13-3 氨合成动力学
一、催化剂 铁催化剂:
Fe2O354~68%、FeO29~36%、Al2O3 2~4% K2O0.5~0.8%、CaO0.7~2.5% 在加热条件下原料气将铁还原:
§13-5 原料气的生产与净化
一、生产原料气的原料 天然气、油田气占18.6%、轻油6.3%、重油8.1%、煤 和焦65%、焦炉气1% 原料气的生产分两步:造气和变换
二、以煤焦为原料的造气过程及其优化
2C O2 3.76N2 2CO 3.76N2 248.7kJ mol 1 5C 5H2O 5CO 5H2 590.5kJ mol 1 二者合并: 7C 3.76N2 5H2O 7CO 3.76N2 5H2 341.8kJ mol 1
C H2O CO H2 CnHm nH2O nCO (0.5m n)H2 2C O2 3.76N2 2CO 3.76N2 CnHm (n 0.25m)O2 3.76(n 0.25m)N2 nCO 0.5mH2O 3.76(n 0.25m)N2
• 粗原料气变换: CO H2O CO2 H2
二、反应平衡常数
K f
f NH3
f f 0.5 1.5
N2
H2
p NH3
K K 0.5 1.5
p p N2
H2
NH3
0.5 1.5
N2
H2
p
f : 逸度;:逸度系数
K f:与压力无关仅与温度有关。
三、影响平衡时氨浓度的因素
pK p
R1.5 (1 R)2
(1
y y
yi )2
p :总压力;
实践:32MPa、450度、催化剂粒度1.2~2.5mm 空速24000(1/h)、R=2.5出口氨浓度最大
采取的方法:新鲜原料气比为3,混合后的循环气在 合
成塔入口的比约为2.8。 5、进塔气中的惰性气体含量:一般≤2% 6、催化剂颗粒:反应初期:温度440~470度粒径
0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
(Fe2O3 ,FeO) +H2 = Fe+H2O
A10型催化剂:活化能约170KJ/mol,起燃温度370 度,耐热温度510度,活性最高时的温度450度左右,粒 径2.2~13mm.
二、反应动力学
1:气体向催化剂表面(内、外)扩散 2:气体在催化剂表面发生活性吸附
N2 (气) 2N (吸附) H2 (气) 2H (吸附) 3:吸附的氮、氢发生反应生成氨 N (吸附) H (吸附) NH (吸附) NH (吸附) H (吸附) NH2 (吸附) NH2 (吸附) H (吸附) NH3(吸附) 4:生成的氨从催化剂表面解吸 NH3(吸附) NH3(气) 5:解吸的氨从催化剂表面向气流主体扩散
反应控制阶段取决于反应条件(温度、催化剂颗粒的大小)
温度一定:大颗粒为内扩散控制,小颗粒为化学动力学控制。
颗粒一定:低温为化学动力学控制,高温为内扩散控制。
扩散控制时:yNH3 kp k : 扩散系数;p:总压力 化学动力学控制:
远离平衡时:r
kp
0.5 N2
p 0.5 H2
接近平衡时:r k1 pN2