高等数学在实际生活中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学知识在实际生活中的应用
(4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。
(5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。
归纳起来,数学建模的主要步骤可以用下面的框图来说明:
检验、修改
图1
(二)数学建模的例
例教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚?
这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑
板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得越近越好呢?
先建立一个非常简单的模型: 模型1:
先对问题进行如下假设:
1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。
2.看黑板的清楚程度只与视角的大小有关。
设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知:
ab b
a x a
b x b a ab
x x b a tna x
b
x a 2)(tan 1tan tan )tan(,tan ,tan 2-≤
+
-=+-=+-=-∴=
βαβαβαβα
所以,当且仅当ab
x =
时,)tan(βα-最大,从而视角βα-最大。
从结果我们可以看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。
下面我们在原有模型的基础上,将问题复杂一些。
模型2:设教室是一间阶梯教室,如图2.3-2所示。为了简化计算我们将阶梯面看
图2.3-2
成一个斜面,与水平面成γ角,以黑板所在直线为y 轴,以水平线为x 轴,建立坐标系(见图2.3-2)。则直线O E 的方程(除原点)为:
γtan x y = )0(>x
若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为
)tan ,(γx x ,
则:x
x b x
x a γ
βγ
αtan tan ,tan tan -=
-=
所以β
αβ
αβαtan tan 1tan tan tan(+-=
-)
x
x b x x a x x b x x a γγγ
γtan tan 1tan tan -⋅
-+---=
x
x x b a ab x b
a 22tan )tan tan (γγγ++-+
-=
设
x
x x b a ab x x f 2
2tan )tan tan ()(γγγ++-+
=,要使)tan(βα-最大,只要)(x f 最小就可以了。对)(x f 求导得:
2
22'
)tan 1()(x ab
x x f -+=
γ
当
γ2tan 1+>
ab x 时,
('>)x f ,则
)
(x f 随
x
的增大而增大;当
γ
2tan 10+<
x f ,则)(x f 随x 的增大而减小,由因为)(x f 是连续的,所以当γ
2tan 1+=ab x 时,)(x f 取最小值,也就是γ
2tan 1+=
ab
x 时,
学生的视角最大。
通过这两个模型,我们便可以解释为什么学生总愿意坐在中间几排。模型1和模型2所应用的基本知识都是相同的,只是因为假设
的教室的环境不同,建立的模型有些细微差别,所以结果不同,但这两个结果都是基本符合实际的。在解题过程中,我们只考虑了一个因素,那就是视角,其实我们还可以考虑更多的因素,比如:前面学生对后面学生的遮挡,学生看黑板的舒适度(视线与水平面成多少度角最舒服),等。我们考虑的因素越多,所的结果就会越合理。但有时如果考虑的因素过多、过细的话,解题过程就会相当繁琐,有时甚至得不到结果。所以“简化假设”时就需要我们冷静的分析,在众多的因素中抓住主要矛盾,作出最佳的选择。因此在建立模型时既要符合实际,又要力求计算简便。 二、矩阵在实际生活中的应用 (一)有关矩阵的乘法
矩阵A =⎢⎣⎡c a
⎥⎦⎤d b 与→a =⎥⎦
⎤
⎢⎣⎡y x 相乘 =→
a A ⎢⎣⎡c
a
⎥⎦⎤d b ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡++dy cx by ax =→
)(a A λ⎢⎣⎡c
a
⎥⎦
⎤d b ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x λ=⎢⎣⎡c a ⎥⎦
⎤d b ⎥⎦⎤⎢⎣⎡y x λλ=⎥⎦⎤⎢⎣⎡++y d x c y b x a λλλλ=⎥⎦
⎤
⎢⎣⎡++dy cx by ax λλλλ=→a A λ →
→→
→
+=+b A a A b a A )( →
→
→
→
+=+b A a A b a A 2121)(λλλλ
(二)矩阵应用的例—人口流动问题
例 假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年保持不变,而社会调查表明:
(1) 在这40万就业人员中,目前约有25万人从事农业,10
万人从事工业,5万人经商;