电解槽破损原因及破损槽运行措施

合集下载

电解槽底部破损与应对

电解槽底部破损与应对

110管理及其他M anagement and other电解槽底部破损与应对郭福宝,贾晓刚(山西兆丰铝电有限责任公司,山西 阳泉 045200)摘 要:本文分析了电解槽底部破损的机理和原因,结合具体生产实践,详细的介绍了如何查找破损部位及相应的修补措施,并且给出了修补后的破损槽在日常生产中的管理措施。

关键词:电解槽;破损;修补;管理措施中图分类号:TF845 文献标识码:A 文章编号:11-5004(2019)06-0110-2收稿日期:2019-06作者简介:郭福宝,男,生于1980年,辽宁建平人,本科,冶金工程师,研究方向:铝冶炼、碳素。

铝电解槽是在900℃以上高温的熔盐状态下工作的设备,它的阴极内衬长期受到铝液和电解质的侵蚀,由于侵蚀所产生的应力会使槽体变形和内衬破损,严重时导致电解槽停槽大修。

电解槽大修需要耗费大量的人工和费用,从降低成本和增加产量的角度出发,应当加强生产期间对电解槽的日常维护,减少电解槽的破损。

而当电解槽出现初期破损时,如何及早发现并进行成功修补,是电解生产中十分重要的一项工作。

1 电解槽破损的现象、原因及机理1.1 破损现象在电解槽停槽清理内衬时,可以看到底部破损的情况:阴极炭块发生变形,膨胀隆起、有冲蚀坑、横向或纵向断裂;炭块之间的扎固糊发生裂纹造成炭缝之间有碳化铝、电解质和铝等固体;炭块与钢棒的交界面上有凝固的铝和电解质,部分钢棒被铝液熔化,生成铁铝合金;炭块下面有凝固的电解质、铝、铝铁合金,严重时耐火砖、防渗料、炭块与沉积物熔铸在一起,形成较大的结块。

1.2 破损原因电解槽发生破损的根本原因是电解槽在高温铝液和电解质的侵蚀下,阴极炭块出现冲蚀坑或者裂缝,铝液从冲蚀坑或者裂缝中进入阴极炭块,造成炭块变形隆起上抬,严重时造成炭块断裂和阴极钢棒熔化[1]。

1.3 破损机理电解生产中阴极炭块是不消耗的,但它长期与高温电解质和铝液接触,不可避免的会受到侵蚀和渗透,并最终演变为破损,主要表现在以下三种情况。

浅谈电解槽槽壳破损原因分析及修复方式

浅谈电解槽槽壳破损原因分析及修复方式

浅谈电解槽槽壳破损原因分析及修复方式摘要:随着电解铝行业技术发展, 电解槽型越来越大、槽壳尺寸也随之增大, 致使大槽型电解槽壳的成本增加, 且维修难度加大、破损后造成损失也较大。

因此槽壳维护、后期电解槽大修对企业生产、经营至关重要。

关键词:大型铝电解槽;槽壳破损;修复方式1.槽壳结构目前大型电解槽主要结构——两个端头 (出铝端、烟道端) 、两个长侧 (进、出电端) 、一张底板及工字钢底梁, 组成直角船型的电解槽熔池。

在电解铝项目建设初期,槽底板、长侧在厂房内焊接制作,两个端头在外部(加工现场)制作好后, 在电解厂房组对成型。

2.破损原因及现象2.1 施工及焙烧过程(1) 内衬材料 (主要是侧部复合块、捣打料及内衬糊) 质量不合格。

(2) 施工过程质量未达标, 例如捣打料填塞不实、侧部复合块砌筑砖缝过大、内衬扎固不符合要求等。

(3) 在电解槽焙烧炉启动时, 焙烧温度、电压设置、焙烧时间及电解质高度等参数控制不当。

(4) 造成后果:高温电解质、铝水冲刷槽壳,造成电解槽漏炉。

2.2 原因分析(1) 生产过程维护管理不到位, 造成内衬材料局部破损, 形成槽壳局部过热发红、局部破损; 造成槽壳壁钢板长期受到高温影响,金属材料局部金相组织可能发生不可逆性状态改变,材料物理性能指标下降,导致金属材料脆断(裂)。

(2) 漏槽造成的后果:侧部、钢棒窗口或底部钢板被渗漏出来的高温铝液或电解质冲坏。

(3) 使用时间达到设计年限随着电解槽的运行槽龄不断增长, 液态电解质不断地向阴极碳块渗透, 由于熔盐渗透至熔体的凝固等温线时就生成凝固物, 或生成碳化铝促使碳块继续膨胀, 其过程是连续的、缓慢的,应力逐步向最弱的位置转移,导致槽壳变形和破损。

内衬受熔盐的侵蚀加重, 槽壳壁钢板也随之被腐蚀,在电解槽短侧最为常见,大概在电解槽沿板下方600mm—800mm左右。

(4)槽壳底板与斜侧壁之间焊缝开裂情况,可能是电解槽后续生产过程中内衬吸钠膨胀叠加在该处产生的应力集中导致。

铝电解槽内衬破损原因分析及对策

铝电解槽内衬破损原因分析及对策

现象使熔盐与炭间界 面张力变小 , 从而使 湿润性变 好, 并使 电解质渗透入炭中。
增大电流密度能够促进电解质 向炭阴极渗透 。 当电流密度增大时, 炭阴极表面上 的电荷密度亦增
开或 有 冲蚀 坑 穴 等 变形 , 成 了 黄 色 的碳 化 铝 生 ( C ) 并 侵入 了电解 质和 铝 。 阴极 内衬 的变异一 ,, 般是从焙烧启动期开始 , 焙烧后期 由于水份和挥发 分自 下而上冒 , 由于炭缝体积的收缩 , 并 填充在炭块
12 阴极炭块受钠的侵蚀 .

般认为 , 的侵蚀作用在较低温度下尤其严 钠
重, 因为碳钠化合物在高温下部分分解 , 而在低温下 稳定。钠在真空中对炭的破坏作用随温度升高而减 弱, 故对 于电解槽槽底 的焙烧而言 , 焙烧温度宜达到 90 90o之后才开始启动 , 0 ~ 5 C 旨在削弱钠对槽底的
之间的“ 炭糊” 便与炭块分离 , 形成裂缝 。启动期 由 于大量热 的冲击 , 在阴极炭块 中产生巨大应力 , 造成 炭块的破坏。特别是焦粒焙烧时 , 由于局部温度的 不均匀性 , 导致阴极炭块表面温度差异特别大 , 焙烧 后期就产生了大量裂纹 , 启动期则加剧 了裂纹的扩
大。
大, 使电位升高 , 从而使熔盐与炭问界面张力变得更
小, 故电解质容易渗透人炭中。 14 阴极钢 棒 的变异 . 阴极钢棒是铝电解槽阴极中的一个重要组成部 分, 其功用是把电流从 阴极导出 , 通常用软钢制作 ,
有通长的和对开的 2种结构形式 。阴极钢棒的变异
有下列几种情形 :
1 渗碳 。阴极钢棒直接敷设在炭块中 , ) 又处在 较高的温度下 , 故碳容易向钢棒渗透。研究发现 , 钢 棒中的碳浓度 , 从原始低浓度增大到共析浓度 , 直径 为6m 5 m的棒经 10 d之后 , 00 碳渗透到钢棒的中心 部位 , 渗入的碳量在每米长度上约为 20 。 0 g 2 向上 隆起。在废 旧内衬 中发现 阴极钢 棒普 ) 遍向上隆起 , 引起钢棒 的变形 。在 70C以上的高 0o

铝电解预焙槽侧部破损原因及对策

铝电解预焙槽侧部破损原因及对策

书山有路勤为径,学海无涯苦作舟铝电解预焙槽侧部破损原因及对策一、电解槽侧部破损现象1、侧部破损的判定电解生产的特殊性使侧部炉帮形成不良初期破损较难判定,尤其是300kA 大型槽的生产实践在我国尚属初期,对该种情况下研究较少,大部分借鉴过去小槽型的经验管理,但是由于300kA 级以上槽均使用Si3N4-SiC 侧部碳块,为我们提供了新的科学判定依据。

在原铝品质化验中Si 含量的高低可直接作为判断尤其是早期判定的依据,一般原铝Si 含量在0.03%左右,如果超过0.05%我们就应该认为是该槽子炉帮形成不好,侧部碳块已经开始腐蚀,应尽快找准原因采取措施。

如果一个生产系列200 多台电解槽中,硅含量有5 台以下硅含量达到或者是超过0.05%,应从技术条件保持和操作质量中查找原因,采取措施控制,如果有10-20 台Si 含量超过0.05%,那么我们就应该从设计角度查找原因,炉帮局部发红也是电解槽侧部损坏的判定依据。

2、电解槽侧部破损宏观现象在进行电解槽大修过程中发现,电解槽侧部炉帮形成不良或受损坏严重,侧部碳块人造伸腿上沿铝液、电解质液界面处腐蚀尤其严重,形成长条断裂空洞带。

二、原因分析及对策“炉帮”形成不良或易遭破损的原因从对停槽大修的电解槽炉膛解剖,特别是正常生产中炉帮不良槽子看,侧部碳块直接和电解质溶液接触,有的地方还粘少许酥状的电解质固体,Si3N4-SiC 侧砖已经粉化,沿铝液面的炉膛明显有深的冲刷条沟。

有的侧部裸露部分已经形成粉末状物,对于炉帮形成不良或形成的炉帮易遭破损的原因主要为:1、电解槽预热启动影响电解槽预热启动期,升、降温曲线梯度时间控制得不好,分子比低或技术条件组合失误,导致电解槽初期没有形成良好的坚固的炉帮,因为早期坚实基础炉帮的建立对后期正常生产、炉帮的维护起到重要的保障作用。

2、生产技术条件对侧部炉帮的影响对炉帮损毁的因素很多,在生产中主要反映为电解质温度、溶液流速。

电解槽内衬早期破损原因及修理方法

电解槽内衬早期破损原因及修理方法

电解槽内衬早期破损原因及修理方法摘要:电解槽是化学工业中的核心设备,广泛应用于冶金、化工等领域。

其内部结构复杂,维护难度大,一旦出现破损,不仅会导致设备性能下降、生产效率降低,而且可能引发严重的安全事故。

对电解槽内衬早期破损的原因及修理方法进行深入研究具有重要的实际意义和价值。

电解槽内衬的早期破损形式多样,原因复杂。

常见的破损形式有裂纹、剥落、溶蚀等。

这些破损可能是由于设计不当、材料缺陷、制造缺陷、安装不当、运行不当等引起的。

此外,环境因素如温度、压力、腐蚀介质等也对电解槽内衬的破损产生影响。

对电解槽内衬早期破损的原因及修理方法进行研究具有重要的实际意义和价值。

通过深入研究和探索,可以进一步提高电解槽的性能和寿命,降低生产成本和安全风险,为冶金、化工等领域的可持续发展做出贡献。

关键词:电解槽;内衬;破损;维修方法引言随着工业的飞速发展,电解技术已经广泛应用于各种生产领域,为工业化进程提供了强有力的支持。

然而,电解槽内衬的早期破损问题却时常困扰着生产过程。

内衬的破损往往会导致设备的性能下降,甚至停机维修,从而增加企业的维护成本。

因此,解决电解槽内衬早期破损问题,对于提高设备运行效率、降低维护成本具有重要意义。

1.电解槽内衬破损问题概述电解槽内衬破损问题是一个复杂的问题,涉及到多个因素。

电解槽是化工生产中的重要设备之一,其内衬材料通常由耐腐蚀、耐高温的陶瓷或合金制成。

在生产过程中,由于受到高温、高压、腐蚀等因素的影响,电解槽内衬容易发生破损。

电解槽内衬破损会导致多种问题。

首先,它会降低设备的生产效率,因为破损会导致电解液泄漏,使得生产过程中断。

其次,内衬破损还会增加企业的维护成本,因为需要定期检查和修复设备。

此外,如果内衬破损严重,还可能导致安全事故,对员工和工厂安全构成威胁。

电解槽内衬破损问题的原因有很多。

其中,设备材料质量不好、设备安装不当、生产操作不当、设备长时间使用等是最常见的因素。

因此,为了解决这个问题,需要从多个方面入手,包括选用高质量的内衬材料、规范设备安装和生产操作、定期检查和维护设备等。

浅谈铝电解槽的破损及维修

浅谈铝电解槽的破损及维修

浅谈铝电解槽的破损及维修【摘要】在电解铝生产实践过程中由于电解槽侧部散热不良、槽炉帮形成不好等一系列问题,使得电解槽侧部破损,从而降低电解槽的使用寿命。

本文对电解槽的破损原因进行了归纳分析,并提出了电解槽破损的检查与维修方法。

【关键词】铝电解槽;阴极内衬;破损;维护1、铝电解槽常见破损形式及原因通常所说的电解槽的破损是指其阴极内衬的破损,铝电解槽的阴极内衬使用期不到1年,称为早期破损。

槽内铝液中的铁含量连续增加,一般情况下,是槽底部阴极钢棒受铝液侵蚀熔化所致,往往是阴极炭块破损的征兆。

当铝液中的铁含量连续超过1%时,表示阴极炭块已发生严重破损。

电解槽阴极内衬破损可归纳为如下几种形式:1.1阴极炭块及保温绝热结构的变异阴极内衬的变异主要有:阴极炭块发生变形—膨胀、隆起、裂开或有冲蚀坑穴;炭块之间的炭糊接缝发生裂纹,其中侵渍着碳化铝、电解质和铝;炭块中的钢棒弯曲变形,一部分被铝熔解侵蚀,形成亮晶晶的铝铁合金;炭块下而的耐火砖层局部变质,向上隆起,呈凸棱镜状;侧部炭块受到侵蚀,其中渗透着铝和电解质,体积膨胀;槽壳变形,侧壁向外鼓出,四角上抬,底部呈船形。

阴极内衬的变异,一般是从焙烧启动期开始。

由于水分和挥发成分自下而上冒出,并由于炭缝体积收缩,填充在炭块之间的“炭糊”便与炭块分离,形成裂纹。

加入电解质开始电解之后,组织也开始酥松,给电解质和铝液的侵入创造了条件。

侵入炭块和炭缝中的铝液,继续向下渗透,直到炭块下而并淤积在那里。

NaF成分是阴极界而上的表而活性物质,它首先入侵,故在炭块下而发现柱状结晶的氟化钠。

侵入炭块下的电解质和钠还同耐火砖层发生化学作用,使其变质而体积胀大。

一旦铝侵入阴极钢棒区,则铁被熔解。

由于钠、电解质和铝先后侵入阴极内衬中,引起炭块和耐火层体积膨胀,于是炭块向上隆起。

在电解槽启动后6个月内,隆起高度不超过2cm,以后则逐渐增大,在36个月内达到10cm,以后趋于稳定。

当炭块隆起增大时,会引起电流偏流和电压降增大,铝的纯度降低,槽膛有效深度减小,造成电解槽操作困难,甚至停槽。

300kA系列电解槽阴极破损的现象_原因及对策

300kA系列电解槽阴极破损的现象_原因及对策

300kA系列电解槽阴极破损的现象、原因及对策张洪涛1,温铁军1,齐宁2,张万福2(1.河南豫港龙泉铝业公司,河南洛阳450041;2.沈阳铝镁设计研究院,辽宁沈阳110001)摘要:介绍了河南豫港龙泉铝业公司300kA预焙阳极电解槽大修刨炉时电解槽阴极的破损情况,简要分析了形成原因并有针对性的提出了解决的对策。

关键词:电解槽;破损;电流效率;结壳中图分类号:TF80 文献标识码:B 文章编号:10021752(2006)05004103Phenomena and causes of300kAreductioncell s damaged cathode lining and its countermeasuresZHANG Hong-tao1,WEN Tie-jun1,QI Ning2and ZHANG Wan-fu2(1.H enan Yugang L ongquan Aluminum Co.,L uoyang,H enan450041;2.Sheny angA luminum and M agnesium Engineer ing and Research Institute,Shenyang,L iaoning110001) Abstract:It presents the damaged conditi ons of300kA pre-baked anode reduction cel l s cathode lining in Henan Yugang Longquan Aluminum Co., and briefly analyzes the causes and puts forward the countermeasures.Key words:reduction cell;damage;current efficien cy;crust阴极破损是影响铝电解槽寿命最重要的原因之一,槽寿命的长短是衡量铝电解技术优劣的主要指标。

浅析对大型电解槽破损原因及延长槽寿命问题分析

浅析对大型电解槽破损原因及延长槽寿命问题分析

浅析对大型电解槽破损原因及延长槽寿命问题分析摘要:我国大中型铝电解槽相对寿命低于国外先进国家同类型铝电解槽,其一般寿命比国外先进铝电解槽少近1000天。

因此,我国的整体水平与国外相比有较大差距。

随着电解铝工业的技术发展,电解槽槽型越来越大,槽壳的尺寸也随之增大,使得大型电解槽槽壳的成本增加,维护难度加大,破损后造成损失也较大。

因此,了解槽壳变形和损坏的原因,掌握维护方法,实施最佳维护方法,对电解铝企业的顺利生产和延长槽的使用寿命至关重要。

关键词:大型电解槽;造成损害的原因;延长;槽寿命;槽问题研究前言众所周知,槽寿命是现代铝电解生产技术水平高低的关键,对企业的经济效益和社会效益有着直接的影响。

国产电解槽的使用寿命多在1200天左右,而个别铝厂电解槽的使用寿命甚至不足1000天,这在一定程度上对企业的发展有明显的阻碍。

因此,有必要对大型电解槽进行细致的研究和分析,识别电解槽的类型和特性,从而进一步延长电解槽的使用寿命。

1电解槽破损原因及特点分析1.1电解槽损坏原因早期电解槽的损坏因素包括:设计因素,内衬材料质量因素,筑炉质量因素,焙烧启动与后期的管理质量因素。

根据电解槽破坏因素的实际比例,可以看出,设计因素占10%,内衬材料质量因素和炉质量因素各占20%,焙烧启动与后期的管理质量因素占50%。

为了确保槽的使用寿命得到改善,我们必须从源头开始,并严格控制每个节点。

1.1.1设计因素注重设计的科学合理性,弹性槽壳对内衬砌材料的膨胀具有应力缓冲作用,并有效地限制了膨胀。

该涂层材料能吸收烘烤时阴极膨胀产生的分压,防止阴极扎固的碳缝破损或分层等问题。

1.1.2内衬材料的质量因素阴极碳块的质量比较差,在启动焙烧时容易发生阴极碳块的隆起或折断。

如果质量达不到标准,则会导致剥落、起层情况出现,甚至会出现裂缝问题。

如果隔热砖的隔热性能不好,则炉底温度相对较高,其电解质等相应温凝固线会逐渐上移到碳块上,促使碳块被破坏。

电解槽破损分析

电解槽破损分析

电解槽破损形式及原因一、电解槽破损形式电解槽破损主要是由阴极内衬破损和侧部炭块破损组成,其破损形式有阴极炭块隆起断裂、阴极冲蚀坑和侧部氧化脱落。

1、阴极炭块隆起断裂阴极炭块在生产一段时间后,上抬隆起,整个阴极面呈中间高,四周低的情况,致使阴极钢棒弯曲变形,槽沿钢板向外伸展。

炉底隆起长时间会出现阴极炭块断裂,铝液顺裂缝渗入底部,熔化阴极钢棒,造成漏炉。

图5-19给岀了炉底隆起造成阴极断裂的示意图。

根据阴极钢棒的组装形式不同,炉底隆起程度不同,特别是通方钢组装(见图5-20),钢棒承担应力较大,炉底隆起后阴极钢棒顺势弯曲,造成阴极炭块和钢棒脱离,甚至阴极炭块内部层脱。

随着近年来的发展,阴极组装钢棒都改成了短钢棒组装,对阴极寿命会起到一定的作用。

炉底隆起断裂的原因主要是热膨胀和钠对碳阴极的渗透引起的体积膨胀,这种膨胀力远大于从室温至I000℃的膨胀力,钠直接在阴极内衬下产生反应的结晶张力将导致槽壳的变形及阴极炭块上移。

2、阴极冲蚀坑这是预焙槽上的一种特殊破损形式。

由于磁场推动铝液冲涮的作用,在槽底形成冲蚀坑穴,冲蚀坑穴大部分出现进电端,这是因为立柱母线和槽底母线磁场作用铝液流速增加,消磨阴极造成。

冲蚀坑表面磨得很光滑,覆盖有一层白色氧化铝固体。

当坑穴逐渐向下穿透炭块时,铝液熔化阴极钢棒,从而造成漏炉。

有两种形式的坑穴,一种是面积较大的,存在形式基本对应每个立柱母线都会有此现象,坑穴深度约为10cm以上。

随着坑穴深度的增加,铝液冲刷阴极炭块逐渐变薄,一旦突破阴极炭块,阴极钢棒熔化。

另一种是局部小冲蚀坑,或者称为冲蚀洞,呈不规则的圆形,是阴极炭块质量问题形成的铝液通道,这种冲蚀洞破坏性比较大,会造成多组阴极钢棒熔化,引发漏炉事故。

3、侧部破损侧部在以前是采用纯炭块砌筑的。

现在是碳氮化硅块或者碳-氮化硅组合块砌筑。

电解槽运行过程中,侧部因受空气氧化、化学腐蚀、边部开口捞渣作业的破坏,致使侧部物质氧化消耗或物理破坏脱落落入槽内,图5-23为侧部破损前后对比。

电解槽破损原因及破损槽运行措施

电解槽破损原因及破损槽运行措施

电解槽破损原因及破损槽运行措施引起电解槽早期破损的因素主要四方面,一是设计原因,二是内衬材料质量,三是筑炉质量,四是焙烧启动及后期管理质量。

按引起电解槽破损原因分,设计原因的占10%,材料质量占20%,筑炉质量占20%,焙烧启动及后期管理质量占50%,提高槽寿命,必须从这四方面入手,控制好每个环节。

一、设计对电解槽寿命的影响设计合理,弹性槽壳可缓冲内衬材料膨胀产生的应力,同时限制其自由膨胀。

内衬材料能吸收焙烧启动期间阴极膨胀产生的部分应力,避免阴极扎固碳缝起层、断裂。

二、内衬材料质量对电解槽寿命的影响阴极碳块质量差,焙烧启动期间阴极碳块容易折断或隆起。

糊料质量不合格,会出现起层,剥落,产生裂缝。

防渗料不合格,电解质或铝液向下渗透时形不成阻断层,造成早期破损。

保温砖保温性能不好,致使炉底温度高,电解质等温凝固线上移至碳块中,造成对碳块的破坏。

因此确保内衬材质量是提高槽寿命关键因素之一。

三、筑炉质量对电解槽寿命的影响碳块、糊料、钢棒等温度控制不好,没有严格按筑炉工艺施工,会使碳块压接压降差别很大,电流会向压降低的阴极集中,导致阴极钢棒温度高,膨胀加剧,很容易折断阴极碳块。

筑炉时带入水分过多,人造伸腿扎固质量差,都会在焙烧期间会形成很多的通道,电解质会沿通道向下渗透。

筑炉时内衬材料表面不水平,焙烧启动期间阴极各部分承受应力会不一样,很容易破坏阴极内衬,导致早期破损。

四、焙烧启动质量对槽寿命的影响焙烧期间,阳极电流分布不均会引起阴极表面温度有较大的差距,如果调整不及时,会形成恶性循环,导电多阳极导电越来越多,对应的阴极导电必然多,产生阴极局部温度过高,阴极碳块易产生裂缝,产生铝液通道。

启动期间,如果温度过高,渗透到阴极裂缝中的电解质不会凝固,利用电解质弥补阴极缺陷的可能性减小,导致阴极破损的可能性增加。

五、破损槽的维护措施1、确认破损的位置通过测量阴极电流分布,记录导电多的方钢位置,通过测量阴极钢棒温度,记录温度高于300度的方钢位置,通过测量炉底钢板温度,记录温度高于100度的区域,然后用铁钩检查阴极方钢温度高对应阴极区域、炉底温度高区域。

铝电解槽的破损及维修分析

铝电解槽的破损及维修分析

铝电解槽的破损及维修分析摘要:铝电解槽是电解铝生产的重要设备。

其运行状态良好程度,寿命长短,直接关系到电解铝生产的质量和产量,同时也对电解铝生产的成本有很大影响。

铝电解槽经多年使用,运行周期较长,电解槽槽壳变形、破损严重,需进行大修。

铝电解槽破损会影响到实际的应用效果,本文主要分析铝电解槽的破损以及维修的方法。

关键词:铝电解槽;破损;维修.电解槽破损鉴定在停电过程中,需要对电解槽的破损进行鉴定。

电解槽的破损主要是由于槽侧部的炭块过度损耗或人为因素造成破坏未及时处理造成的。

其主要的破损形式有以下两种:一是侧部伸腿的过度损耗导致电解质与铝液从阴极钢棒处渗漏。

二是侧部炉帮发红导致侧部击穿渗漏电解质。

引起这种现象的原因主要有空气对侧部炭块的氧化和炉帮的形成不良,使高温和强腐蚀的电解质溶液直接对侧部炭块的冲刷和侵蚀。

.小修。

一是阴极炭块在电、热、磁等共同作用下会时常出现碳内衬中的热膨胀、钠膨胀,阴极断裂、冲蚀、剥层,以及碳内衬下部各渗透物渐渐填充的现象等,这些都造成了阴极炭块的隆起。

如果隆起在50mm以下,凹坑在80mm以下无断裂时可定位小修。

二是侧部内衬两小面仍可见炭块的轮廓,大面伸腿以上受到不同程度破损和侵蚀,但如若侧部炭块破损不至于见到钢板则不需更换。

经过干刨伸腿的局部都有横向裂纹,但整体形状规整。

按照我公司多台小修槽启动后发现钢棒发红、漏铝比值是2.46%。

三是对槽内没脱落的阴流块要严格检查,因为它和电解槽的使用寿命有直接的联系。

中修。

更换1~14块破损严重的阴极炭块,若一块阴极炭块破损50%以上低于其他阴极炭块表面120mm以上的话,则给予更换。

大修。

阴极炭块拱起90mm以上、炉底钢板温度异常、表面破损严重裂纹较多。

铝电解槽破损分析铝电解槽发生破损的原因主要有三种,分别是:钠渗透。

铝电解槽内钠的含量应该处于平衡的状态,实际情况下钠含量偏低,钠向阴极扩散、渗透,最终形成了炭钠化合物,引起了炭阴极破损的问题,铝电解槽内的反应温度在400—1000℃中炭阴极发生破损的情况最为严重,之后温度升高破损情况减弱.电解质的渗透。

电解槽破损原因分析

电解槽破损原因分析

本文针对我国大型铝电解槽寿命低于国外寿命的情况,从设计和生产工艺方面对造成电解槽破损的原因进行了分析,并在总结几年来提高槽寿命的措施和经验基础上,提出延长槽寿命的几点想法。

据报道,国外200KA以上大型预焙铝电解槽的平均寿命在5年(1800天)以上,法国彼施涅公司的180KA电解槽寿命达6-8年(2190-2920天),远远高于我国电解槽1500天的设计指标。

本文结合多年的生产实际对电解槽寿命问题进行探讨。

电解槽破损原因分析1.侧部破损电解槽侧部破损主要是由于侧部不易形成保护侧部炭块的炉帮,使熔融的电解质随着电解的进行渐渐地渗透于炭块中,而电解质中的钠离子又很容易与碳发生反应生产碳-钠中间化合物,引起侧部炭块疏松、分层,这就更加剧了侧部炭块被氧化和侵蚀的速度。

据资料报道,这种侵蚀速度使炭块每天约腐蚀掉1毫米,使得侧部炭块容易受到侵蚀磨损,引起槽壳局部过热,严重时槽壳会被烧红,甚至发生漏槽事故,导致停槽,缩短电解槽寿命。

据调查统计,影响电解槽侧部炉帮不易形成的原因主要是:(1)电解槽槽壳及槽壳与地面的空间设计不尽合理。

有关研究表明,电解槽侧部散热能力在槽壳温度基本恒定的情况下,决定于周围环境温度和空气流动情况。

虽然电解槽设计采用侧部散热型,即侧部只有一层碳化硅砖的结构,目的是保证在电解槽四周形成自然炉帮。

然而,我国绝大多数200KA、300KA电解槽槽壳仍采用了传统带二翼板的结构,并且槽壳与地面的距离较短,不利于散热通风,严重影响侧部炉帮的形成。

这样不仅缩短了电解槽的寿命,而且还增加了不必要的大修费用。

(2)使用的氧化铝原料质量不均匀及打料系统缺陷,造成效应受控率低。

各厂使用的氧化铝产地和体积密度均不同,导致电解槽实际接受的氧化铝料量不均匀,造成电解槽炉底沉淀多,或是电解槽打料系统故障等原因,阳极效应受控率较低,效应系数高,导致槽温在短时间内骤然上升30℃-40℃,实践表明,槽温升高越多,恢复到正常生产温度所需时间越长。

破损槽管理办法[1]

破损槽管理办法[1]

破损电解槽的管理规定为延长槽寿命,降低生产运营成本,规范对破损槽的管理,特规定如下:一、破损槽管理1、电解槽破损的认定(1)、电解槽原铝Fe含量电解槽破损的迹象是电解槽铁含量升高,正常槽Fe含量一般小于0.08%,如果电解槽正常生产没有熔化阳极钢爪,又无铁工具和等外铝加入,也没有脏料入槽,原铝中铁含量突然升高,并逐日增高,可以初步判断电解槽炉底开始破损,高温熔融的电解质和铝液已渗透到破损炭块缝隙中,开始熔化阴极钢棒,导致原铝中铁含量升高。

(2)、阴极电流分布情况生产中正常的电解槽,通过各阴极钢棒的电流基本是相同的。

但因阴极钢棒小母线设计的长度、软带层数是不一致的,测得阴极小母线的等距压降需经过设计系数调整。

对破损槽,由于炉底已形成铝液的通道,使该处局部电阻减少,通过的电流便增大,经过系数调整后该处电流偏大。

(3)、阴极钢棒头温度分布情况一般情况下,电解槽炉底结构基本是一致的,因此阴极棒头的散热面积和散热形式基本相同的,阴极棒头之间的表面温度相差不大,一般在15~25℃之间,而当某一阴极钢棒周围出现破损,形成铝液通道时,一方面使炉底与阴极棒之间的热量传递速度加快,另一方面使破损部位电流集中,导致阴极钢棒电流密度升高,使棒头产生的焦耳热明显增多。

使破损处的阴极棒温度升高。

由此确定该处有破损迹象。

2、破损槽的管理(1)、破损槽修补及维护首先要确定出破损部位、范围、和破损程度,以便采取相应措施。

检查方法是:根据电解槽炉膛宽度制作检查炉底的长铁钎,将长铁钎弯成40--60 cm(从液面上部可直接确定破损位置)的直角钩,将钩尖朝下阴极底部,按照底块和底缝排列的纵横顺序,在初步确定的破损部位逐渐钩探,寻找破损部位,根据多年的经验发现:破损部位由于电阻小通电多,此处炉底干净无沉淀,根据这个特征很容易找到破损部位。

在检查时由于每个人的感觉有一定差别,所以要多人检查感觉综合分析,防止个人行为。

且要做到仔细认真,用力均匀,避免用力过猛,恶化破损部位。

电解车间破损槽防范措施

电解车间破损槽防范措施

电解车间破损电解槽维护措施
1、严格按照分公司和车间的要求各班安排专人进行各项数据的测量:
⑴每两小时测量一次各部位温度(钢棒、钢窗、炉底),变化异常每半小时测量一次,记录好测量人、班次、测量时间、记录人等;
⑵每两小时化验一次原铝质量;
⑶每班测量一次阴极电流分布;
⑷监控该槽的各项数据,并对异常部位进行及时的相应处理,对各项异常数据每2小时在车间QQ群平台公布一次;
2、工区调整该槽的技术参数,有意识的降低NB间隔,加大氟化盐投放量,降低分子比,降低设定电压,逐步提高铝水平,降低电解质水平,使该槽过热度偏低运行。

3、对阴极母线、软带及过桥母线采取保护措施;
4、加强对破损槽巡检力度,严格控制突发效应;
5、对发现的破损部位用镁砂、氧化铝饼等进行修补;
6、加强对漏炉事故应急预案和异常汇报制度的学习;
7、该槽前放置漏炉所需的应急物资,严禁任何人无故动用,各班进行交接班。

电解破损槽管理办法[1]

电解破损槽管理办法[1]

电解厂破损槽管理办法一预焙阳极电解槽破损的特征预焙阳极电解槽破损是指阴极槽体破坏和损耗程度,主要有以下几种特征:1、在排除外界铁、硅来源后,铝液中铁、硅含量急剧升高或一段时间内居高不下;2、槽底膨胀隆起(槽底沿长度方向呈山丘状隆起,形成中间高、四周低的状况);3、阴极棒孔处漏槽;4、阴极炭块断裂,阴极扎固炭缝起层裂开受侵蚀,引起底部破损漏槽;5、侧部破损漏槽;6、电解槽槽底压降大幅上升,导致槽底压降超高(阴极压降高达500-600mv及以上);7、槽壳面升高,严重时顶到槽腹板(集气箱),被迫缩短抬母线周期。

二、电解槽破损位置的排查与确认1电解槽破损位置的排查:当预焙阳极电解槽出现破损迹象后,电解分厂要及时组织人员进行检查,破损排查手段:1)、按照Fe、Si含量升高变化,基本判断属于炉底破损还是炉帮破损。

一般情况,Si高属于炉帮破损,Fe高属于炉底破损。

特殊情况,也会炉底、炉帮同时破损。

2)、发现Fe、Si升高后,电解分厂要立即进行重点部位排查。

采取重点监护,增加检查频次,测量侧部钢板温度,测量炉底钢板温度、测量阴极钢棒头温度、测量阴极电流分布、阴极表面铁钩检查等手段进行检查。

2 电解槽破损部位确认对检查结果进行认真分析,找出异常数据,判断破损部位的同时,更需结合有经验技术人员或师傅的现场对炉底、炉帮的检查确认破损部位。

检测数据与现场人工铁钩探查结合,有利于准确判断破损部位及程度。

三、管理细则1、电解厂对每日取样、化验的原铝质量分析结果进行监督,排除一切外来影响因素后,铁、硅含量异常增加不能确定其具体来源的电解槽,电解厂将之纳入为异常槽管理,单独跟踪统计杂质含量数据,并报告生产技术部。

2、电解厂负责保证电解槽的安全运行。

应每日关注电解槽原铝化验单的Fe、Si含量,对发现的异常槽及时分析原因,根据上述描述的破损槽特征及时检查该异常电解槽,判断是否存在破损现象。

3、判定为破损槽确认破损的具体位置后,汇报给生产技术部、设备部等相关管理部门,同时要指派专人对该槽进行监护运行,在指定位置准备好应的应急工具。

240铝电解槽破损原因及防范修补方案范文

240铝电解槽破损原因及防范修补方案范文

2021240铝电解槽破损原因及防范修补方案范文 1引言 甘肃东兴铝业有限公司陇西分公司(简称“分公司”)是年产 35 万吨电解铝生产企业。

分公司电解铝生产线有两条,分别是 240kA 系列(10 万吨/年)和 400kA 系列(25 万吨/年),其中,240kA 系列设计槽 164 台。

240kA 在生产过程中出现了维护不到位,少数槽有漏停现象,其中两台槽经过二次修补,减少了大修维修费用,节约了一定费用。

电解槽在生产中破损是比较常见的,其原因主要是:①前期筑炉质量存在缺陷;②后期操作维护不到位。

因此在前期筑炉中,要求施工过程务必精准,以提高电解槽的使用寿命。

分公司在生产中,240kA 系列预焙电解槽曾出现过1154#、1182# 槽漏停现象,经过修补 ,两槽二次启动投入生产,生产稳定。

2预焙槽破损原因分析和预防措施制订 2.11154#、1182#、1153# 漏炉时的处理情况 1154#漏炉时间为 2011 年 10 月 19 日 ,漏点为进电端第 9 根阴极钢棒处,侧部漏洞约20cm×6cm(见图 1),出现漏炉时 ,作业人员立即用多功能机组加壳面块对该处炉帮、炉底进行补漏,经过 4 个多小时的修补,因电解槽内液体一半(总高)流入地沟中,不得已停槽。

1182#漏炉时间为 2011 年 10 月 18 日 ,漏铝处为进电端第 5 根阴极钢棒处,在现场发现该槽进电端从南起第 5 根阴极钢棒处电解质、铝水大量外流,口径约30cm(见图 2)。

作业人员将该处上方两块阳极吊离,用多功能机组加壳面块不断砸该处炉帮。

经过 3 个多小时的抢救,在补救无果的情况下决定停槽。

1153#漏炉时间为 2012 年 12 月 12 日 ,漏铝处为进电端第 9 根阴极钢棒处电解质、口径约 16cm×7cm,处理情况基本同上。

2.2三台槽漏炉后底阴极底部及侧部炭块情况 1154#漏炉部位距侧部炉帮约 6cm~7cm,在炉底人造伸腿下部(见图 3)。

电解槽的破损及维修分析

电解槽的破损及维修分析

电解槽的破损及维修分析摘要:在进行电解铝的时候要使用电解槽,电解槽为电解铝的生产提供了一定的条件,但是在电解槽的使用过程中存在着散热不良的现象,这样就会导致电解铝出现破损的情况,从而导致电解槽的使用年限受到影响,也会使电解铝的质量下降。

电解槽的破损会使实际的使用情况受到影响。

本文对电解槽的破损进行了分析,从中找到维修的方式。

关键词:电解槽;破损;维修在使用电解槽的过程中,会出现破损的情况,要对其进行及时的维修,在进行维修之前要对电解槽破损的原因进行充分的掌握与了解,这样才可以对其进行维修处理工作,从而有效保障电解槽的可靠性与科学性,更好地满足电解铝的需求。

当电解槽出现破损情况的时候,会影响生产的效果,因此要对其进行及时的维修,从而使电解槽的基本结构得到有效的恢复,这样才可以使电解槽的具体应用得到充分的完善。

一、电解槽破损分析工作人员在使用电解槽的过程中会发生破损的情况,对破损的原因进行有效的分析,从分析中可以发现造成破损的原因主要分三种情况。

(1)渗透电解槽内钠的含量要处于平衡,但是在实际的情况中发现,钠的含量较少,同时钠出现了渗透的情况,使其最终成为了炭钠化合物,这样就会出现炭阴极破损的现象。

一般情况下,当电解槽内的温度达到400摄氏度到1000摄氏度之间,炭阴极出现破损的情况是十分严重的,当温度再度升高的时候,破损现象就会降低。

(2)电解质渗透。

阴极炭块材料的质量会对电解质的渗透量有一定的影响,当炭活性越大的时候,渗透量就会越大。

电解质渗透在电解槽破损是十分常见的一个现象,要对其进行格外的关注,在旧的电解槽中可以发现,电解质渗透会引起破损情况的发生。

(3)结构变异。

阴极炭块在工作的过程中会出现膨胀、分裂等情况,这样就会导致阴极内衬中出现破损变异,内衬是结构变异中十分常见的破损现象,在化学作用下,会使结构出现异常的情况,内衬炭块破损隆起后会使电解槽出现电压增强、过大等问题。

二、电解槽破损维修2.1检查破损位置在对电解槽破损位置进行检查的时候,首先要对其槽底进行深入的检查,工作人员要将尖头的铁杆放到电解槽的阴极处,对破损位置进行检查,主要是根据槽底缝隙的排列进行,最终对破损位置进行有效地确定工作,工作人员要将其进行记录。

电解槽破损原因及破损槽运行管理

电解槽破损原因及破损槽运行管理

电解槽破损原因及破损槽运行管理摘要:本文主要针对电解槽的破损原因与破损槽的运行管理进行综述分析,望能够为相关专家及学者对这一课题的深入研究提供有价值的参考依据。

关键词:电解槽;破损;原因;破损槽;运行管理;前言:铝电解槽,属于铝电解实际生产期间主要设备,国外的电解质平均寿命为7-8年左右,国内大型的预焙槽,通常会由于材料、设计、作业及运行管理等各方面因素所影响,电解质平均寿命为4-5年左右。

那么,为能更好地将电解质实际寿命延长,深入研究电解槽的破损原因与破损槽的运行管理尤为重要。

1、电解槽的破损原因及特征分析1.1电解槽的破损原因早期电解槽的破损因素包括:设计因素、内衬材料的质量因素、筑炉质量因素、焙烧启动与后期的管理质量因素。

依据电解槽遭到破坏因素实际比例可了解到,设计因素占比10%、内衬材料的质量因素与筑炉质量因素均各自占比20%、焙烧启动与后期的管理质量因素占比50%。

而若想确保槽的使用寿命得以提升,就应当从源头上着手,严控各个节点。

①设计因素注重设计的科学合理性,弹性槽壳对于内衬的材料膨胀所产生应力缓冲作用,对其膨胀予以有效地限制。

内衬材料,可吸收启动焙烧时阴极膨胀所产生部分应力,防止阴极扎固的碳缝出现断裂或起层等问题状况。

②内衬材料的质量因素阴极碳块的质量相对较差,启动焙烧时阴极碳块极易有隆起或折断情况出现。

糊料质量若不达标,则会导致剥落、起层情况出现,甚至会出现裂缝问题;保温砖的保温性能若不佳,则炉底部温度会相对较高,其电解质等相应温凝固线会逐渐上移到碳块上,促使碳块被破坏。

故而,保证内衬材料的质量,属于提升槽实际使用寿命关键点,需得到充分重视。

③筑炉质量因素若钢棒、糊料、碳块等温控不佳,并能严格依据筑炉工艺开展施工操作,则会导致碳块压的接压降差较大,电流会集中于向压降低阴极,促使阴极钢棒的温度过于高,加剧膨胀,极易导致阴极碳块被折断。

筑炉期间带入过多水分,人造的伸腿扎固是质量较低,均会导致焙烧时有较多通道形成,促使电解质逐渐沿着通道向下进行渗透。

铝电解槽的破损及维修分析

铝电解槽的破损及维修分析

铝电解槽的破损及维修分析摘要:铝电解槽在长期运行过程中出现槽壳长侧板鼓肚、摇篮架开焊断裂以及电解槽出铝和烟道两端上翘等变形现象,严重破坏电解槽炉膛内型,给电解槽指标带来不利影响,并且这种状况在电解槽运行中很难修复,一直持续到停槽大修。

本文全面分析了电解槽在每个运行阶段的变形原因,以及应采取的预防措施,保障电解槽规整稳定的炉膛内型,获得良好的运行指标。

同时在槽大修方面给出了槽壳校正评判标准及槽壳校正方法,可以为电解槽槽壳校正提供借鉴和参考。

关键词:铝电解槽;槽壳变形;原因分析;槽壳校正前言槽壳是铝电解槽的重要组成部分,不仅作为结构件承载电解槽内衬的各种应力,而且对电解槽的通风散热起到关键性作用,是电解槽结构场、电热场和场设计的重要组成部分。

而槽壳的结构形式也是随着不断革新,从直角摇篮架结构,发展到船型摇篮架结构,再到目前的新型一体化槽壳结构。

1 质量要求在槽壳制作中,总结了以往的经验,采用新工艺提高了焊接质量和效率。

采用的新工艺有如下特点:摇篮架依托T型钢技术,保证腹板与翼缘板熔深,防止变形;长侧立板和端侧立板连接立缝采用单面焊双面成型技术;底板拼接和大面侧板焊接采用翻转胎具;端侧围板与围带之间组对采用预先开坡口和二次下料,保证尺寸公差。

(1)尺寸规格。

槽壳整体外形长度18500±5mm,宽度4900±3mm,高度2412±3mm,总重约44.86吨。

由槽底板(含底梁)、端部组件、大面组件以及支i座梁共6个部件组成,各部件基本连接形式均为焊接。

槽壳的制作难点为尺寸偏差和焊接质量的控制,因此采取反变形和二次下料手段控制变形,通过减少手工焊提高焊接质量,最后由分部件矫正和整体矫正两个步骤控制偏差。

(2)材料要求。

焊接材料是根据所焊钢材的化学成分、机械性能、焊接接头的抗裂性能,耐蚀性能,焊后是否热处理、使用条件等综合因素考虑后选定的。

钢材采用GB/T700-2006《碳素结构钢》中规定的Q235B和GB/T1591-2008《低合金高强度结构钢》中规定的Q345B钢材。

400kA铝电解槽破损分析及预防

400kA铝电解槽破损分析及预防

400kA铝电解槽破损分析及预防摘要:本文从某厂400kA铝电解槽破损增多实际出发,分析电解槽破损原因,提出严格把控筑炉工艺、采用优化焙烧启动方案、均匀阴极电流分布,工艺精细化控制等措施,对延长电解槽寿命有着重要意义,关键词:铝电解槽;破损;焙烧方案;工艺控制引言铝电解槽作为在高温、强磁场、强腐蚀下运行设备,其寿命长短与电解槽设计、内衬材料质量、筑炉质量、焙烧启动方案、启动后期管理、工艺控制和生产操作管理等有关系[1]。

近几年来,我国铝电解工业迅猛发展,逐步向着大型化、规模化、集团化发展,铝电解槽造价更高,直接影响着生产经济效益,延长电解槽寿命,降低大修成本是每一个铝电解厂迫切需要解决难题。

本文从某厂400kA铝电解槽破损增多实际出发,分析铝电解槽破损原因,提出把好原材料和筑炉关,采用优化后焙烧启动方案,均匀阴极电流分布,严格执行工艺纪律,实施差异化控制,可以有效预防铝电解槽破损,延长电解槽寿命。

1铝电解槽破损原因分析通过对某厂400kA铝电解槽近一年来破损原因进行分析,得出该厂铝电解槽破损主要与筑炉质量、焙烧方案、局部电流偏流、工艺控制、停槽临槽干扰等有关。

1.1内衬砌筑质量对某厂400kA近两年来大修42台铝电解槽炉底温度进行统计(表1),采用冷捣糊对炭间缝进行扎固,扎固糊质量及扎固质量是引起伸腿漂浮关键因素。

以往观点认为,阴极碳块之间缝隙能够被膨胀的阴极碳块所挤紧,其实则不然。

因为电解槽槽壳也在向外膨胀,所以扎固糊与阴极碳块之间的裂纹在未焙烧以前就已产生[2],在焙烧期间如阳极电流分布不均,且温度梯度过大时,则所有的碳块间缝糊膨胀与收缩不会达到同步,在500—1000℃下的碳糊膨胀率为0.4%,半石墨质碳块膨胀率为0.8%[3],如果铝电解槽八层扎固质量不好,电解槽非正常期或启动初期电解质会通过炭间缝渗透到炉底,炉底温度升高,造成铝电解槽早期破损。

作者简介:王红波,1979年,男,云南宁洱人,专科,技师,主要从事铝电解冶炼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电解槽破损原因及破损槽运行措施
引起电解槽早期破损的因素主要四方面,一是设计原因,二是内衬材料质量,三是筑炉质量,四是焙烧启动及后期管理质量。

按引起电解槽破损原因分,设计原因的占10%,材料质量占20%,筑炉质量占20%,焙烧启动及后期管理质量占50%,提高槽寿命,必须从这四方面入手,控制好每个环节。

一、设计对电解槽寿命的影响
设计合理,弹性槽壳可缓冲内衬材料膨胀产生的应力,同时限制其自由膨胀。

内衬材料能吸收焙烧启动期间阴极膨胀产生的部分应力,避免阴极扎固碳缝起层、断裂。

二、内衬材料质量对电解槽寿命的影响
阴极碳块质量差,焙烧启动期间阴极碳块容易折断或隆起。

糊料质量不合格,会出现起层,剥落,产生裂缝。

防渗料不合格,电解质或铝液向下渗透时形不成阻断层,造成早期破损。

保温砖保温性能不好,致使炉底温度高,电解质等温凝固线上移至碳块中,造成对碳块的破坏。

因此确保内衬材质量是提高槽寿命关键因素之一。

三、筑炉质量对电解槽寿命的影响
碳块、糊料、钢棒等温度控制不好,没有严格按筑炉工艺施工,会使碳块压接压降差别很大,电流会向压降低的阴极集中,导致阴极钢棒温度高,膨胀加剧,很容易折断阴极碳块。

筑炉时带入水分过多,人造伸腿扎固质量差,都会在焙烧期间会形成很多的通道,电解质会沿通道向下渗透。

筑炉时内衬材料表面不水平,焙烧启动期间阴极各部分承受应力会不一样,很容易破坏阴极内衬,导致早期破损。

四、焙烧启动质量对槽寿命的影响
焙烧期间,阳极电流分布不均会引起阴极表面温度有较大的差距,如果调整不及时,会形成恶性循环,导电多阳极导电越来越多,对应的阴极导电必然多,产生阴极局部温度过高,阴极碳块易产生裂缝,产生铝液通道。

启动期间,如果温度过高,渗透到阴极裂缝中的电解质不会凝固,利用电解质弥补阴极缺陷的可能性减小,导致阴极破损的可能性增加。

五、破损槽的维护措施
1、确认破损的位置
通过测量阴极电流分布,记录导电多的方钢位置,通过测量阴极钢棒温度,记录温度高于300度的方钢位置,通过测量炉底钢板温度,记录温度高于100度的区域,然后用铁钩检查阴极方钢温度高对应阴极区域、炉底温度高区域。

估计裂纹、坑的形状及大概位置。

2、破损部位的修补
将镁砂、氟化钙制成块,其形状、大小可根据破损部位尺寸分成几块,将其放到漏勺上,用铁钩压住,慢慢送到破损位置盖
住破损处,修补一天后原铝铁含量稳定或下降,说明修补成功,否则需重新修补或找其它破损部位。

3、破损槽运行
破损槽修好后,必须加强维护,要做好以下几方面工作:
1)、调整技术条件,保持电解槽运行稳定,避免波动。

2)保持适当低的电解温度,比正常槽低5度左右,适当提高铝水平1-2公分,使炉底产生一层稀沉淀保护破损处。

3)炉底压降比正常槽高20MV以上时,电压可比正常槽高50MV左右,以保持电解槽运行的稳定。

4)、严格控制阳极效应和效应持续时间(小于3分钟),避免长效应熔化修补处沉淀。

5)在电压稳定的前提下,分子比可比正常槽低0.05-0.1,以保护炉底沉淀不熔化。

6)保持适当高的氧化铝浓度,最好保持在2-3.5%较窄范围内,以减少效应,适当造一些沉淀。

7)、严禁使用铁钩等勾耙炉底沉淀,以防碰损填补处。

8)提高阳极工作质量,杜绝异常电压的发生,发现碳渣及时捞出,保证电解质清洁。

9)每天测量炉底钢板温度(﹤150度)、阴极钢棒温度(﹤300度)、散热孔温度(﹤400度),超过范围的及时检查。

10)每天统计铝质量中铁的升降,铁升高时及时检查原因。

相关文档
最新文档