圆锥曲线知识点归纳
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中非常重要的一部分,它包括直角双曲线、抛物线和椭圆。
这些曲线都是由一个平面与一个旋转椭球体相交得到的,具有广泛的应用价值。
以下是对于圆锥曲线的知识点总结:一、直角双曲线直角双曲线由于其特殊的形状和性质,在物理学、工程学和数学等方面都有应用。
直角双曲线的方程可以表示为以下形式:(x^2/a^2) - (y^2/b^2) = 1其中a和b是正实数。
在直角双曲线上,存在两个焦点以及两个称为顶点的特殊点。
双曲线还具有渐近线,与其方程的斜率相关。
二、抛物线抛物线是一种类似于开口向上或开口向下的弧线。
它的方程通常表示为:y = ax^2 + bx + c其中a、b和c是实数且a不等于零。
抛物线的焦点是它的特殊点,而直径称为准线。
抛物线具有对称性质,其形状可以用焦点和准线的位置来确定。
三、椭圆椭圆是圆锥曲线中最常见的类型,它的形状类似于椭圆形。
椭圆的方程可以表示为:(x^2/a^2) + (y^2/b^2) = 1其中a和b是正实数。
椭圆具有两个焦点,椭圆的形状和大小由焦距和长短轴决定。
椭圆还具有较为特殊的直径,它称为主轴。
四、参数方程与极坐标方程除了直角坐标系下的方程表示,圆锥曲线还可以用参数方程和极坐标方程来描述。
参数方程是将x和y表示为参数t的函数,通过参数的变化来确定曲线上的点。
极坐标方程是使用角度和极径来定义曲线上的点。
五、圆锥曲线的性质圆锥曲线具有许多重要性质和性质。
其中一些重要的性质包括:切线的斜率、焦点与直线的关系、曲率和弧长等。
这些性质在求解问题和绘图中都有重要的应用。
总结:圆锥曲线是数学中的重要概念,它包括直角双曲线、抛物线和椭圆。
每种曲线都具有独特的形状和性质,可以通过方程、参数方程或极坐标方程来描述。
了解圆锥曲线的基本知识对于解决实际问题和深入理解数学概念都是非常重要的。
掌握圆锥曲线的知识点,将有助于我们在几何学和解析几何学领域更加灵活和熟练地运用相关概念。
高考数学知识点圆锥曲线二级结论

圆锥曲线的二级结论一.有关椭圆的经典结论结论1.(1)、与椭圆22221x y a b 共焦点的椭圆的方程可设为 222221,0x y b a b.(2)、与椭圆22221x y a b 有相同的离心率的椭圆可设为2222x y a b , 2222,0x y b a.结论2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)、第一定义:122PF PF a ;(2)、焦半径的最大值与最小值:1a c PF a c ;(3)、2212b PF PF a ;(4)、焦半径公式10||PF a ex ,20||PF a ex (1(,0)F c ,2(,0)F c 00(,)M x y ).结论4.设P 点是椭圆上异于长轴端点的任一点,12,F F 为其焦点,记12F PF ,则(1)、2122||||1cos b PF PF;(2)、焦点三角形的面积:122||=tan2PF F P S c y b;(4)、当P 点位于短轴顶点处时, 最大,此时12PF F S 也最大;(5)、.21cos 2e (6)、点M 是21F PF 内心,PM 交21F F 于点N ,则caMN PM ||||.结论5.有关22b a的经典结论(1)、AB 是椭圆22221x y a b 的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a .(2)、椭圆的方程为22221x y a b(a >b >0),12,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a(3)、椭圆的方程为22221x y a b(a >b >0),12,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a(4)、椭圆的方程为22221x y a b(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B两点的任一点,则有22PA PBb K K a结论6.若000(,)P x y 在椭圆22221x y a b 上,则(1)、以000(,)P x y 为切点的切线斜率为2020b x k a y ;(2)、过0P 的椭圆的切线方程是00221x x y ya b.结论7.若000(,)P x y 在椭圆22221x y a b外,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b.结论8.椭圆的两个顶点为1(,0)A a ,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b.结论9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y (常数).结论10.若P 为椭圆上异于长轴端点的任一点,F 1,F 2是焦点,12PF F ,21PF F ,则sin sin sin c e a.结论11.P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF ,当且仅当2,,A F P 三点共线时,等号成立.结论12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ .(1)、22221111||||OP OQ a b;(2)、22||+|OQ|OP 的最大值为22224a b a b ;(3)、OPQ S 的最小值是2222a b a b .结论15.过焦点且垂直于长轴的弦叫通经,其长度为ab 22结论16.从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.结论17.过椭圆22221(0)x y a b a b左焦点的焦点弦为AB ,则)(221x x e a AB ;过右焦点的弦)(221x x e a AB .结论18.椭圆内接矩形最大面积:2ab .结论19.若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设(1)、过1F 的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有①2211,cos cos b b AF BF a c a c;②2cos ab AB a c2222(2)、若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设过F 2的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有:①22,cos cos b b AF BF a c a c22+-;②22cos ab AB a c222结论:椭圆过焦点弦长公式: 222cos 2sin ab x a c AB ab y a c222222焦点在轴上焦点在轴上结论20.若AB 是过焦点F 的弦,设,AF m BF n ,则2112amnb二.有关双曲线的经典结论结论21.(1)、与22221x y a b 共轭的双曲线方程为22221x y a b,①它们有公共的渐近线;②四个焦点都在以原点为圆心,C 为半径的圆上;③2212111e e 。
圆锥曲线知识点

圆锥曲线知识点圆锥曲线是数学中一类重要的曲线,它们是平面上所有与两个固定点(焦点)距离之和为常数的点的集合。
这些曲线包括椭圆、抛物线和双曲线。
以下是圆锥曲线的知识点总结:1. 椭圆:椭圆是平面上所有与两个焦点距离之和等于常数的点的集合。
这个常数大于两个焦点之间的距离。
椭圆的标准方程可以表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,\( a \) 是椭圆的半长轴,\( b \) 是椭圆的半短轴。
2. 抛物线:抛物线是平面上所有与一个焦点和一个定点(顶点)距离相等的点的集合。
抛物线的标准方程可以表示为:\[ y^2 = 4ax \]或者\[ x^2 = 4ay \]其中,\( a \) 是抛物线的参数,表示顶点到焦点的距离。
3. 双曲线:双曲线是平面上所有与两个焦点距离之差的绝对值等于常数的点的集合。
这个常数小于两个焦点之间的距离。
双曲线的标准方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]或者\[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \]其中,\( a \) 是双曲线的实半轴,\( b \) 是双曲线的虚半轴。
4. 圆锥曲线的性质:- 椭圆具有两个焦点,所有点到两个焦点的距离之和是常数。
- 抛物线具有一个焦点和一个顶点,所有点到焦点的距离等于到顶点的距离。
- 双曲线具有两个焦点,所有点到两个焦点的距离之差的绝对值是常数。
- 圆锥曲线的焦点可以通过方程的参数确定。
5. 圆锥曲线的应用:- 椭圆在天文学中描述行星的轨道。
- 抛物线在光学中描述光线通过抛物面反射后的路径。
- 双曲线在工程学中用于设计某些类型的天线。
6. 圆锥曲线的参数化:- 椭圆的参数方程可以表示为:\[ x = a \cos(t) \]\[ y = b \sin(t) \]- 抛物线的参数方程可以表示为:\[ x = at^2 \]\[ y = 2at \]- 双曲线的参数方程可以表示为:\[ x = a \sec(t) \]\[ y = b \tan(t) \]7. 圆锥曲线的几何特征:- 椭圆的长轴和短轴是对称的,且椭圆是封闭的。
圆锥曲线知识点总结6篇

圆锥曲线知识点总结6篇第1篇示例:圆锥曲线是解析几何学中非常重要的概念,它们分为三种:椭圆、双曲线和抛物线。
在数学中,圆锥曲线具有丰富的性质和应用,掌握其基本知识对于理解其在几何、物理、工程等多个领域的应用至关重要。
本文将对圆锥曲线的基本性质和特点进行详细总结。
我们从圆锥曲线的定义入手。
圆锥曲线是平面上一点到一个固定点(焦点)和一条直线(准线)的距离之比为常数的点的轨迹。
根据这个定义,椭圆的准线是实直线,双曲线的准线是虚直线,而抛物线的准线是平行于其自身的直线。
椭圆是圆锥曲线中最简单的一种。
椭圆的定义是到焦点和准线的距离之比小于1的点构成的轨迹。
椭圆具有对称性,其焦点到准线的垂直距离之和恒等于两焦距之和,这个性质被称为焦点定理。
椭圆还有面积、周长等重要性质,在几何中有重要的应用。
抛物线是圆锥曲线中最特殊的一种,其定义是到焦点和准线的距离相等的点构成的轨迹。
抛物线具有对称性,其焦点到准线的垂直距离恰好等于焦距。
抛物线是一种非常重要的曲线,常见于物理学和工程学中的抛物线运动、光学、无线电通信等领域。
除了上述基本性质外,圆锥曲线还有许多重要的定理和性质。
焦点、准线、焦距、离心率等概念是理解圆锥曲线的重要基础。
圆锥曲线的方程形式也是研究和应用圆锥曲线的关键,椭圆和双曲线的标准方程分别为x^2/a^2 + y^2/b^2 = 1和x^2/a^2 - y^2/b^2 = 1,而抛物线的标准方程为y^2 = 2px。
圆锥曲线是解析几何学中的重要内容,掌握其基本性质和定理对于理解几何学、物理学和工程学中的问题有重要意义。
通过对圆锥曲线的学习,我们不仅可以深入理解几何形体的性质,还可以应用圆锥曲线的知识解决实际问题,提高数学建模和问题求解的能力。
加强对圆锥曲线知识的学习和应用是十分必要的。
第2篇示例:圆锥曲线是解析几何中最重要的一类曲线,它包括椭圆、双曲线和抛物线这三种。
这些曲线在数学和物理学等领域中有着重要的应用,是我们熟悉的常见数学概念之一。
圆锥曲线 知识点总结

圆锥曲线知识点总结圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而得到的曲线。
在平面几何中,圆锥曲线可以用数学方程来进行描述。
一般来说,圆锥曲线的数学方程可以由二次方程来表示,它们的一般形式为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0(其中A、B、C、D、E和F是常数,且A和C不同时为0)。
根据二次方程的系数A、B和C的取值,我们可以将圆锥曲线分为椭圆、双曲线和抛物线三种类型。
椭圆是圆锥曲线的一种类型,它的数学方程一般形式为 Ax^2 + By^2 + C = 0(其中A和B不同时为0)。
椭圆在平面上呈现出闭合的轨迹,且其长度和宽度不同,这种特性使得椭圆在几何学和物理学中有着广泛的应用。
例如,在天文学中,行星的轨道就可以用椭圆来描述。
双曲线是圆锥曲线的另一种类型,它的数学方程一般形式为 Ax^2 - By^2 + C = 0(其中A和B不同时为0)。
双曲线在平面上表现出两个分离的开口,它的形状类似于一个倒置的U形。
双曲线在数学和物理学中有着丰富的应用,例如在电磁学中,电场和磁场的分布就可以用双曲线来描述。
抛物线是圆锥曲线的最后一种类型,它的数学方程一般形式为 Ax^2 + By = 0(其中A不为0)。
抛物线在平面上呈现出开口向上或向下的曲线轨迹,其特性在物理学和工程学中有着广泛的应用。
例如,在抛物线运动中,抛出的物体会沿着抛物线轨迹移动。
圆锥曲线的性质和特点除了不同类型的圆锥曲线有着各自不同的数学方程之外,它们还有许多共同的性质和特点。
在本节中,我们将分别对椭圆、双曲线和抛物线的性质进行探讨。
椭圆是圆锥曲线中最简单的一种类型,它具有许多重要的性质。
首先,椭圆在平面上呈现出闭合的轨迹,且其长度和宽度不同。
其次,椭圆上的任意一点到两个焦点的距离之和是一个常数,这个常数被称为椭圆的长轴长度。
另外,椭圆还满足反射定律,即光线从一个焦点射到椭圆上的一个点,然后被反射到另一个焦点。
圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
下面我们来详细整理一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。
高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结一、椭圆1.平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点, 两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<二、双曲线1.平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线. 即: 。
这两个定点称为双曲线的焦点, 两焦点的距离称为双曲线的焦距.2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 或 ,或 ,顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于 轴、 轴对称, 关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±3.等轴双曲线: 双曲线 称为等轴双曲线, 其渐近线方程为 , 离心率 . 4、共渐近线的双曲线系方程:三、抛物线1.平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线. 定点 称为抛物线的焦点, 定直线 称为抛物线的准线.2.抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 , 称为抛物线的“通径”, 即 .4.焦半径公式:若点 在抛物线 上, 焦点为 , 则 ; 若点 在抛物线 上, 焦点为 , 则 ; 5、焦点弦: = +p四、圆1.定义: 点集{M ||OM |=r }, 其中定点O 为圆心, 定长r 为半径.2.方程: (1)标准方程: 圆心在c(a,b), 半径为r 的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点, 半径为r 的圆方程是x2+y2=r2(2)一般方程: ①当D2+E2-4F >0时, 一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程, 圆心为 半径是 。
完美版圆锥曲线知识点总结

完美版圆锥曲线知识点总结圆锥曲线是数学中的一类重要曲线,广泛应用于几何、物理、工程等领域。
由于其独特的性质和广泛的应用,掌握圆锥曲线的知识对于提高数学水平和解决实际问题具有重要意义。
本文将对圆锥曲线的基本概念、性质和常见类型进行总结和归纳。
一、圆锥曲线的基本概念圆锥曲线是由平面和一个固定点(焦点F)以及一个固定直线(准线L)共同确定的曲线。
根据焦点和准线的位置关系,圆锥曲线分为椭圆、抛物线和双曲线三类。
1. 椭圆:椭圆是焦点到准线的距离之和恒定于两倍焦半径的轨迹。
椭圆具有对称性,焦点位于椭圆的两个焦点之间。
2. 抛物线:抛物线是焦点到准线的距离等于焦半径的轨迹。
抛物线具有对称轴,焦点位于抛物线的焦点上方或下方。
3. 双曲线:双曲线是焦点到准线的距离之差恒定于两倍焦半径的轨迹。
双曲线也具有对称性,焦点位于双曲线的两个焦点之间。
二、圆锥曲线的性质圆锥曲线具有一系列重要的性质,为研究和应用圆锥曲线提供了基础。
1. 对称性:椭圆和双曲线具有两个关于准线和两个焦点的对称轴,抛物线具有一个关于准线的对称轴。
2. 焦距和半焦距:焦距是焦点到对称轴的距离,半焦距是焦距的一半。
焦距对于不同类型的圆锥曲线有不同的计算方法,但都是相对于准线和对称轴计算的。
3. 焦半径:焦半径是焦点到曲线上点的距离,焦半径对于同一曲线上不同点的值是相等的。
4. 离心率:离心率是焦半径与半焦距的比值,用e表示。
对于椭圆,离心率范围在0和1之间;对于抛物线,离心率等于1;对于双曲线,离心率大于1。
5. 焦点和准线的关系:焦点和准线的位置关系决定了曲线的类型。
当焦点在准线上时,曲线是抛物线;当焦点在准线之上时,曲线是椭圆;当焦点在准线之下时,曲线是双曲线。
三、常见类型的圆锥曲线。
(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。
在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。
本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。
一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。
2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。
3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。
准线是过焦点且垂直于对称轴的直线。
二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。
2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。
3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。
4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。
5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。
三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。
2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。
3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。
四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。
2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。
3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。
圆锥曲线知识点总结(好)

圆锥曲线知识点总结一、考点概要:1、椭圆:(1)轨迹定义:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
3、双曲线:(1)轨迹定义:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;5、曲线与方程:(1)轨迹法求曲线方程的程序:①建立适当的坐标系;②设曲线上任一点(动点)M的坐标为(x,y);③列出符合条件p(M)的方程f(x,y)=0;④化简方程f(x,y)=0为最简形式;⑤证明化简后的方程的解为坐标的点都在曲线上;(2)曲线的交点:由方程组确定,方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点。
二、复习点睛:1、平面解析几何的知识结构:2、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
3、利用焦半径公式计算过焦点的弦长:若过椭圆左(或右)焦点的焦点弦为AB,则;4、弦长公式:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长这里体现了解析几何“设而不求”的解题思想。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
圆锥曲线知识点总结

圆锥曲线知识点总结
定义与性质:
到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d 的点的轨迹叫做圆锥曲线。
其中,定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。
当e>1时为双曲线。
当e=1时为抛物线。
当0<e<1时为椭圆。
形成方式:
用垂直于锥轴的平面去截圆锥,得到的是圆。
把平面渐渐倾斜,得到椭圆。
当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线。
用平行于圆锥的轴的平面截取,可得到双曲线的一支。
应用领域:
工程:圆锥曲线被应用于各种工程设计中,如建筑、航天、船舶等。
例如,圆锥曲线被用于设计桥梁、隧道、水坝、航天器、船舶等。
光学:圆锥曲线被广泛应用于光学设计中,例如设计反射望远镜和透镜,以及光学系统中的成像和折射问题。
绘画和艺术:圆锥曲线的美学特性使其成为绘画、雕塑、建筑和设计等领域的重要元素。
物理:圆锥曲线可以用来描述粒子在空间中的运动轨迹。
以上仅为圆锥曲线部分知识点的总结,如需更全面的内容,建议查阅数学教材或咨询数学教师。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线知识点 总结

圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。
圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。
它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。
- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。
- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。
- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。
2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。
- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。
- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。
- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。
3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。
参数方程是指用参数来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。
极坐标方程是指用极坐标来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。
焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。
6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。
圆锥曲线知识点清单

圆锥曲线知识点清单1.圆锥曲线定义:圆锥曲线可以定义为平面上一条曲线,是由一个平面与一个双曲面(或抛物面、圆锥、椭球)相交而得到的曲线。
2.圆锥曲线的分类:根据双曲面的切割方式,圆锥曲线可以分为圆、椭圆、双曲线和抛物线四种。
3.圆:圆是一种特殊的圆锥曲线,是由一个平面与圆锥体的底面相交而得到的曲线。
圆的特点是所有的点到圆心的距离都相等。
4.椭圆:椭圆是圆锥曲线中除了圆之外最为常见的一种形式。
椭圆的特点是到两个焦点的距离之和等于定长的点构成的轨迹。
5.双曲线:双曲线是圆锥曲线中的一种形式,具有两个分离的点,称为焦点。
双曲线的特点是到两个焦点的距离之差等于定长的点构成的轨迹。
6.抛物线:抛物线是圆锥曲线中的一种形式,具有一个焦点和一个定点。
抛物线的特点是到焦点和定点的距离相等的点构成的轨迹。
7.圆锥曲线的方程:每种圆锥曲线都有其特定的方程形式。
例如,椭圆的方程可以表示为x^2/a^2+y^2/b^2=1,其中a和b分别代表椭圆的长半轴和短半轴长度。
8.圆锥曲线的焦点和准线:每种圆锥曲线都具有焦点和准线,它们在曲线的定义中起到重要作用。
焦点是曲线的特定点,而准线是曲线的特定直线。
9.圆锥曲线的参数方程:除了直角坐标系方程外,圆锥曲线还可以使用参数方程来表示。
参数方程由参数t控制,使我们可以通过调整参数值来改变曲线的形状。
10.圆锥曲线的基本性质:每种圆锥曲线都具有一些基本的性质,如对称性、渐近线、离心率等。
这些性质有助于我们更好地理解和分析圆锥曲线。
11.圆锥曲线的应用:圆锥曲线在现实生活和工程领域中有着广泛的应用,如天体轨道、卫星通信、汽车运动轨迹等。
了解圆锥曲线的性质和方程形式有助于我们更好地理解和应用它们。
12.圆锥曲线的研究方法:研究圆锥曲线的方法包括几何方法和解析几何方法。
几何方法主要是通过几何性质和图形推理来研究曲线的特性,而解析几何方法则是通过代数和数学计算来推导圆锥曲线的方程和性质。
以上是圆锥曲线的一些主要知识点,通过学习和了解这些知识点,我们可以更好地理解和应用圆锥曲线。
高中数学圆锥曲线基本知识点

弦长
公式
适合所有直线与曲线以及曲线与曲线相交所得弦的弦长( 联列求解后的二次项系数)
15、
焦半径
焦点在x轴上的椭圆的焦半径公式( 分别是椭圆的左右焦点)
,
焦点在y轴上的椭圆的焦半径公式( 分别是椭圆的上下焦点)
焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关
可以记为:左加右减,上减下加
1、双曲线的焦距与实轴长的比
2、双曲线上一点到焦点距离与到相应准线的比
注:决定开口大小,e越大开口越大
e=1
11、准线
(只需要掌握抛物线就行)
, ;
, ;
焦点到准线的距离 (焦参数)
椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称
, ;
, ;
焦点到准线的距离 (焦参数)
双曲线的准线方程有两条,这两条准线在双曲线外部,与虚轴平行,且关于短轴对称
如果已知一双曲线的渐近线方程为 ,那么此双曲线方程就一定是: 或写成
4、共轭双曲线
以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. 与 互为共轭双曲线,它们具有共同的渐近线: .
区别:三量a,b,c中a,b不同(互换)c相同,共用一对渐近线,双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-1
19、
几种特殊曲线
1、共离心率的椭圆系的方程:
椭圆 的离心率是 ,方程 是大于0的参数, 的离心率也是 ,此方程为共离心率的椭圆系方程.
2、等轴双曲线
定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线
等轴双曲线的性质:(1)渐近线方程为: ;(2)渐近线互相垂直;(3)离心率
圆锥曲线知识点公式大全

圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。
它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。
1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。
2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。
焦距是c,满足c² = a² - b²。
3.离心率:离心率用e表示,e² = 1 - (b²/a²)。
离心率是一个衡量椭圆形状的指标,e=0表示圆。
4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。
5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。
6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。
7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。
以上是圆锥曲线的基本知识点和公式。
除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。
-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。
-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。
-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。
对于圆锥曲线来说,高斯曲率恒为常数。
希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线知识点小结教师:王光明1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中,是椭圆的是( ) A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF(2)8=表示的曲线是_____ (3)利用第二定义已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是___2.圆锥曲线的标准方程(1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____(2)若R y x ∈,,且62322=+y x ,则y x +的最大值是___,22y x +的最小值是(3)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(4)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C过点)10,4(-P ,则C 的方程为_______3.圆锥曲线焦点位置的判断:椭圆:已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是( )4.圆锥曲线的几何性质:(1)椭圆若椭圆1522=+my x 的离心率510=e ,则m 的值是__(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(3)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于______(4)双曲线221ax by -=:a b =(5)设双曲线12222=-by a x (a>0,b>0)中,离心率e ∈[2,2],则两条渐近线夹角θ的取值范围是________(6)设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系:6.直线与圆锥曲线的位置关系:(1)若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是_______(2)直线y―kx―1=0与椭圆2215x y m +=恒有公共点,则m 的取值范围是______ (3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有_____条.(4)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:(5)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
(6)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有__(7)过点(0,2)与双曲线116922=-y x 有且仅有一个公共点的直线的斜率取值范围为______(8)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条(9)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______(10)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp 11_______ (11)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于)(12)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离 (13)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。
①当a 为何值时,A 、B 分别在双曲线的两支上? ②当a 为何值时,以AB 为直径的圆过坐标原点? 7、焦半径(1)已知椭圆1162522=+y x 上一点P 到椭圆左焦点的距离为3,则点P 到右准线的距离为____(2)已知抛物线方程为x y 82=,若抛物线上一点到y 轴的距离等于5,则它到抛物线的焦点的距离等于____;(3)若该抛物线上的点M 到焦点的距离是4,则点M 的坐标为__(4)点P 在椭圆192522=+y x 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为____(5)抛物线x y 22=上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离为______(6)椭圆13422=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M ,使MF MP 2+ 之值最小,则点M 的坐标为____8、焦点三角形(1)短轴长为5,离心率32=e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为________(2)设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F 1、F 2是左右焦点,若0212=⋅F F PF ,|PF 1|=6,则该双曲线的方程为(3)椭圆22194x y +=的焦点为F 1、F 2,点P 为椭圆上的动点,当PF 2→ ·PF 1→ <0时,点P 的横坐标的取值范围是(4)双曲线的虚轴长为4,离心率e =26,F 1、F 2是它的左右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2BF 等差中项,则AB =_______(5)已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程9、抛物线中与焦点弦有关的一些几何图形的性质: 10、弦长公式:(1)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,那么|AB|等于_______(2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABC 重心的横坐标为_______11、圆锥曲线的中点弦问题:(1)如果椭圆221369x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是 (2)已知直线y=-x+1与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线L :x -2y=0上,则此椭圆的离心率为_______(3)试确定m 的取值范围,使得椭圆13422=+y x 上有不同的两点关于直线m x y +=4对称特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!12.你了解下列结论吗?与双曲线116922=-y x 有共同的渐近线,且过点)32,3(-的双曲线方程为_______13.动点轨迹方程:(1)已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程. (2)线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为(3)由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为(4)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是_______(5) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为(6)动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为__________(7)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。
(8)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是____ (9)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是________(10)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(1)设x 为点P 的横坐标,证明x aca P F +=||1; (2)求点T 的轨迹C 的方程;(3)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.答案部分1.(答 :C );(答 :双曲线的左支)(答 :2)2. (答 :11(3,)(,2)22---);(答 2)(答 :2214x y -=);(答 :226x y -=) 3.(答 :)23,1()1,( --∞) 4.(答 :3或325)5.(答 :22)(答 2或3);(答 :4或14);(答 :[,]32ππ); (答 :)161,0(a); 6. (答 :(-315,-1));(答 :[1,5)∪(5,+∞));(答 :3);(答 :①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;)(答 :2;(答 :4,33⎧⎪±±⎨⎪⎪⎩⎭);(答 :3);(答 :相离);(答 :1);(答 :等于);(答 :13)(答 :①(;②1a =±); 7.(答 :353);(答 :7,(2,4)±);(答 :2512);(答 :2);(答 :)1,362(-);8.(答 :6);(答 :224x y -=);(答 :();(答 :; (答 :221412x y -=);10.(答 :8);(答 :3);11.(答 :280x y +-=);(答 :2);(答 :1313⎛- ⎝⎭); 12.(答 :224194x y -=)(答 :212(4)(34)y x x =--≤≤或24(03)y x x =≤<); (答 :22y x =);(答 :224x y +=);(答 :216y x =);(答 :双曲线的一支);(答 :3162-=x y );(答 :22||x y a y +=);(答 :2121(||)2y x x =+≤);(答 :222x y =-);(答 :(1)略;(2)222x y a +=;(3)当2b ac>时不存在;当2b a c≤时存在,此时∠F 1MF 2=2)。