铸铁得金相组织观察
(完整)合金钢、铸铁、有色金属的显微组织观察与分析

合金钢、铸铁、有色金属的显微组织观察与分析实验目的实验说明实验内容及方法指导实验报告要求思考题一:实验目的(1)观察各种常用合金钢、有色金属和铸铁的显微组织.(2)分析这些金属材料的组织和性能的关系及应用。
二:实验说明1.几种常用合金钢的显微组织一般合金结构钢、低合金工具钢都是低合金钢。
即合金元素总量小于5%的钢,由于加入了合金元素,使相图发生了一些变动,但其平衡状态的显微组织与碳钢没有质的区别。
热处理后的显微组织仍然可借助C曲线来分析,除了Co元素之外,合金元素都使C曲线右移,所以低合金钢用较低的冷却速度即可获得马氏体组织。
例如,除作滚动轴承外,还广泛用作切削工具、冷冲模具、冷轧辊及柴油机喷嘴的GCrl5钢,经过球化退火、840~C油淬和低温回火,得到的组织为隐针或细针回火马氏体和细颗粒状均匀分布的碳化物以及少量残余奥氏体.高速钢是一种常用的高合金工具钢.如W18Cr4V高速钢,因为含有大量合金元素,使Fe-Fe3C相图中点E 大大向左移动,所以它虽然只含有w(C)=0.7%~0.8%碳,但已经含有莱氏体组织。
在高速钢的铸态组织中可看到鱼骨状共晶碳化物,如图1所示。
这些粗大的碳化物,不能用热处理方法去除,只能用锻造的方法将其打碎.锻造退火后高速钢的显微组织是由索氏体和分布均匀的碳化物组成(图2)。
大颗粒碳化物是打碎了的共晶碳化物。
高速钢淬火加热时,有一部分碳化物未溶解,淬火后得到的组织是马氏体、碳化物和残余奥氏体(图3)。
碳化物呈颗粒状,马氏体和残余奥氏体都是过饱和的固溶体,腐蚀后都呈白色,无法分辨,但可看到明显的奥氏体晶界。
为了消除残余奥氏体,需要进行三次回火,回火后的显微组织为暗灰色回火马氏体、白亮小颗粒状碳化物和少量残余奥氏体,如图4所示。
图1 W18Cr4V钢铸态组织图2 W18Cr4V钢锻后退火组织图3 W18Cr4V钢的淬火组织图4 W18CNV钢的淬火回火组织2.铸铁的显微组织依铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁、麻口铸铁.白口铸铁具有莱氏体组织而没有石墨,碳几乎全部以碳化物形式(Fe3C)存在;灰口铸铁没有莱氏体,而有石墨,即碳部分或全部以自由碳、石墨的形式存在。
T 灰铸铁的金相组织标准

灰铸铁的金相组织(GB/T7216-1987)石墨分布形状分类(GB/T7216-1987)名称 代号 说明片状 A 片状石墨均匀分布菊花状 B 片状与电状石墨聚集成菊花状分布块片状 C 部分带尖角块状、粗大片状初生石墨及小片状石墨枝晶点状 D 点、片状枝晶间石墨成无向分布枝晶片状 E 短小片状枝晶石墨呈方向性分布星状 F 星状(或蜘蛛状)与短片状石墨混合均匀分布灰铸铁的石墨长度分级(GB/T7216-1987)级别 1 2 3 4 5 6 7 8 名称 石长100 石长75 石长38石长18石长9石长4.5石长2.5 石长1.5石墨长度/mm >100 >50~100 >25~50>12~25>6~12>3~6 >1.5~3 >1.5灰铸铁的基体组织特征(GB/T7216-1987)组织名称 说明铁素体 白色块状组织为α铁素体片状珠光体 珠光体中碳化物和铁素体均成片状,近似平行排列粒状珠光体 在白色铁素体基体上分布着粒状碳化物托氏体 在晶界呈黑团状组织,高倍观察时,可看到针片状铁素体和碳化物的混合体粒状贝氏体 在大块铁素体上有小岛状组织,岛内可能是奥氏体,奥氏体分解产物(珠光体或马氏体)针状贝氏体 形状呈针片状,高倍观察时,可看到针片状铁素体上分布着电状碳化物,边缘多分枝,无明显夹角关系。
马氏体 高碳马氏体外形为透镜状,有明显的中脊面,不回火时针面明亮,有明显的60度或120度夹角特征。
珠光体间间距分级(GB/T7216-1987)级别 名称 说明1索氏体型珠光体 放大500倍下,铁素体和渗碳体难以分辨2细片状珠光体放大500倍下,片间距≤1mm 3中等片状珠光体放大500倍下,片间距>1~2mm 4粗片状珠光体放大500倍下,片间距>2mm级别 1 2 3 4 5 6 7 8 名称 珠98 珠95 珠90 珠80 珠70 珠60 珠50 珠40 珠光体数量(%) >98 <98~95 <95~85<85~75<75~65<65~55<55~45 <45碳化物数量分级(GB/T7216-1987)级别 1 2 3 4 5 6名称 碳1碳3碳5碳10碳15碳20碳化物数量(%) ≈1 ≈3 ≈5 ≈10≈15≈20磷共晶类型(GB/T7216-1987)类型 组织与特征二元磷共晶 在碳化铁上均匀分布着奥氏体分解产物的颗粒在碳化铁上分布着奥氏体分解产物的颗粒及粒状、条状碳化三元磷共晶物二元磷共晶-碳化物复合物 二元磷共晶和大块状的碳化物三元磷共晶-碳化物复合物 三元磷共晶和大块状的碳化物磷共晶数量分级(GB/T7216-1987)级别 1 2 3 4 5 6名称 磷1磷2磷4磷6磷8磷10磷共晶数量(%) ≈1≈2≈4≈6≈8≥10级别放大10倍 放大40倍单位面积中实际共晶团数量(个/cm2)1 >400 >25 >10402 ≈400 ≈25 ≈10403 ≈300 ≈19 ≈7804 ≈200 ≈13 ≈5205 ≈150 ≈9 ≈3906 ≈100 ≈6 ≈2607 ≈50 ≈3 ≈1308 <50 <3 <130。
实验三 铸铁与有色金属的显微组织分析

实验三铸铁与有色金属的显微组织分析一、实验目的1. 观察和分析各种灰口铸铁的显微组织。
2. 熟悉常用的铝合金、铜合金及轴承合金的显微组织。
二、实验内容观察分析下列金相组织。
表3—1(一)灰口铸铁的组织分析:1. 普通灰口铸铁:灰口铸铁显微组织与白口铸铁的显微组织不同,白口铸铁中的碳全部以化合物渗碳体的形式存在,在组织中有共晶莱氏体,其断口白亮。
性质硬而脆,故工业上很少应用,主要作炼钢原料。
普通灰口铸铁中碳全部或部分以自由碳—片状石墨形式存在,断口呈现灰色。
其显微组织根据石墨化程度的不同为铁素体或珠光体或铁素体+珠光体基体上分布片状石墨。
由于片状石墨无反光能力,故试样未经腐蚀即可看出呈灰黑色。
石墨性脆,在磨制时容易脱落,此时在显微镜下只能见到空洞。
为了研究石墨的形状和分布,一般均先观察未经腐蚀的试片。
灰口铸铁的基体在未经腐蚀的试片上呈白亮色,经过硝酸酒精腐蚀后和碳钢一样。
在铁素体基体的灰口铸铁中看到晶界清晰的等轴铁素体晶粒。
在珠光体基体的灰口铸铁中,珠光体片的大小随冷却速度而异。
由于石墨的强度和塑性几乎等于零,这样可以把铸铁看成是布满裂纹和空洞的钢,因此铸铁的抗拉强度与塑性远比钢低。
且石墨数量越多,尺寸越大,石墨对基体的削弱作用也愈大。
在铸铁中由于含磷较高,在实际铸造条件下磷常以Fe3P的形式与铁素体和Fe3C形成硬而脆的磷共晶。
因此在灰铸铁的显微组织中,除基体和石墨外,还可以见到具有菱角状沿奥氏体晶界连续或不连续分布的磷共晶(又叫斯氏体)。
磷共晶主要有三种类型,即二元磷共晶(在Fe3P的基体上分布着粒状的奥氏体分解产物—铁素体或珠光体)、三元磷共晶(在Fe3P的基体上分布着呈规则排列的奥氏体分解产物的颗粒及细针状的渗碳体)和复合磷共晶(二元或三元磷共晶基体上嵌有条块状渗碳体)。
用硝酸酒精或苦味酸腐蚀时Fe3P不受腐蚀,呈白亮色,铁素体光泽较暗,在磷共晶周围通常总是珠光体。
由于磷共晶硬度很高,故当二元或三元磷共晶以少量均匀孤立分布时,有利于提高耐磨性,而并不影响强度。
铸铁的金相组织图

灰口铸铁 可锻铸铁 球墨铸铁 蠕墨铸铁
片状石墨(未浸蚀) 团絮状石墨(未浸蚀) 球状石墨(未浸蚀) 蠕虫状石墨(未浸蚀) 放大倍数400× 放大倍数400× 放大倍数400× 放大倍数400×
灰口铸铁 灰口铸铁 灰口铸铁
F 基+片状石墨 (F +P )基+片状石墨 P 基+片状石墨
放大倍数400× 放大倍数400× 放大倍数400×
可锻铸铁
可锻铸铁 球墨铸铁 F 基+团絮状石墨
P 基+团絮状石墨 F 基+球状石墨 放大倍数400×
放大倍数400× 放大倍数400×
球墨铸铁
球墨铸铁 高磷铸铁 (F +P )基+球状石墨
P 基+球状石墨 P 基+片状石墨+磷共晶 放大倍数400× 放大倍数400× 放大倍数400×。
铸铁的金相组织观察

铸铁的金相组织观察实验铸铁的金相组织观察一、实验目的1(观察和研究灰铸铁、可锻铸铁及球墨铸铁的显微组织特征。
2(了解影响铸铁中石墨形态的因素。
二、概述根据石墨的形态、大小和分布情况不同,铸铁分为:灰口铸铁(石墨呈片条状)、可锻铸铁(石墨呈团絮状)和球墨铸铁(石墨呈圆球状)。
(一)灰口铸铁灰口铸铁组织的特征是在钢的基体上分布着片状石墨。
根据石墨化程度及基本组织的不同,灰口铸铁可分为:铁素体灰口铸铁,铁素体—珠光体灰口铸铁和珠光体灰口铸铁。
对灰口铸铁石墨形态的观察,应在未浸蚀的试样上进行。
放大倍数为100倍。
灰口铸铁石墨分布形状的说明见下表1。
表1名称符号说明图号A 1 片状片状石墨均匀分布B 2 菊花状片状与点状石墨聚集成菊花状分布C 3 块片状部分带尖角块状、粗大片状粗生石墨及小片状石墨D 4 枝晶点状点、片状枝晶间石墨呈无向分布E 5 枝晶片状短小片状枝晶间石墨呈有向分布F 6 星状星状(或蜘蛛状)与短片状石墨均匀分布(二)可锻铸铁可锻铸铁(又称韧性铸铁)是由白口铸铁经石墨化退火处理而得。
其中渗碳体发生分解而形成团絮状石墨。
按照基体组织不同,可锻铸铁分为铁素体可锻铸铁和珠光体可锻铸铁两类,如下图所示。
(三)球墨铸铁在球墨铸铁组织中石墨呈圆球状。
球状石墨的存在可使铸铁内部的应力集中现象得到改善,同时减轻了对基体的割裂作用,从而充分地发挥了基体性能的潜力,使球墨铸铁获得很高的强度和一定的韧性。
如下图所示。
三、实验方法指导 (一)实验内容及步骤1(各小组分别领取各种不同类型的铸铁材料试样。
2(在显微镜下进行观察,并分析其组织形态特征。
(二)实验设备及材料1(金相显微镜;2(金相放大照片;3(各类铸铁的金相显微试样。
(三)注意事项1(对各类铸铁可采用对比方法进行分析研究,着重区别各自的组织形态特征。
(四)实验报告要求1(明确本次实验的目的。
2(根据观察,综合分析各类铸铁的形成机理。
铸铁的金相组织图

灰口铸铁可锻铸铁球墨铸铁蠕墨铸铁
片状石墨(未浸蚀)团絮状石墨(未浸蚀)球状石墨(未浸蚀)蠕虫状石墨(未浸蚀)放大倍数400×放大倍数400×放大倍数400×放大倍数400×
灰口铸铁灰口铸铁灰口铸铁
F基+片状石墨(F+P)基+片状石墨P基+片状石墨
放大倍数400×放大倍数400×放大倍数400×
可锻铸铁可锻铸铁球墨铸铁
F基+团絮状石墨P基+团絮状石墨F基+球状石墨放大倍数400×放大倍数400×放大倍数400×
球墨铸铁球墨铸铁高磷铸铁
(F+P)基+球状石墨P基+球状石墨P基+片状石墨+磷共晶放大倍数400×放大倍数400×放大倍数400×。
铸铁金相图谱赏析

铸铁金相图谱赏析(一)铸铁金相图谱赏析(二)铸铁金相图谱赏析(三)金相组织解析金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。
不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。
所谓外部条件就是指温度、加工变形、浇注情况等。
所谓内在因素主要指金属或合金的化学成分。
金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。
1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在α-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体-碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
铸铁金相组织分析

球墨铸铁金相组织球墨铸铁金相组织球墨铸铁牌号球墨铸铁是指铁液经球化处置后,使石墨大部或全体呈球状形态的铸铁。
与灰铸铁比拟,球墨铸铁的力学性能有明显提高。
由于它的石石墨呈球状,对基体的切割作用最小,可有效地应用基体强度的70%~80%(灰铸铁-般只能应用基体强度的30%)。
球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。
球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了产业性生产。
而且,各个时代都有代表性的产品或技巧。
20世纪50年代的代表产品是动员机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。
如今,球墨铸铁已在汽车、铸管、机床、矿山和核产业等范畴获得普遍的利用。
据统计,2000年世界的球墨铸铁产量已超过1500万吨o球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。
表1 单铸试块球墨铸铁牌号牌号抗拉强度Rm(MPa)断后伸长率A(%)布氏硬度HBW重要金相组织QT400-1840018130~180铁素体QT400-15 40015130~180铁素体QT450-10 45010160~210铁素体QT500-7 5007170~230铁素体+珠光体QT600-3 6003190~270珠光体+铁素体QT700-27002225~305珠光体QT800-28002245~335珠光体或回火组织QT900-29002280~360贝氏体或回火组织球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。
其中,最具代表性的形态是球状。
在光学显微镜下察看球状石墨,低倍时,外形近似圆形;高倍时,为多边形,呈辐射状,构造清楚。
经深腐化的试样在SEM中视察,球墨表面不光滑,起伏不平,形成一个个泡状物。
实验7铸铁的金相组织观察

三、实验原理
三、实验原理
(2)可锻铸铁
三、实验原理
三、实验原理
三、实验原理
(3)球墨铸铁
三、实验原理
(4)蠕墨铸铁
三、实验原理
三、实验原理
三、实验原理
三、实验原理
四、实验内容及步骤
1、各小组分别领取各种不同类型的铸铁材料试样。 2、在显微镜下进行观察,并分析其组织形态特征。
1、铸铁的石墨化过程
三、实验原理
三、实验原理
三、实验原理
三、实验原理
2、影响石墨化的因素
三、实验原理
三、实验原理
三、实验原理
3、铸铁的组织特点
三、实验原理
4、铸铁的性能特点
三、实验原理
5、铸铁的分类与牌号
三、实验原理
三、实验原理
(1)灰铸铁
三、实验原理
三、实验原理
三、实验原理
五、实验报告要求
1、明确本次实验的目的。 2、画出四种不同类型的铸铁材料的显微组织。
3、分析显微组织中各种组织组成物的形态对 其性能的影响。
铸铁的金相组织观察 孙瑞雪
一、实验目的
• 1、观察和研究灰铸铁、可锻铸铁、球
墨铸铁及蠕墨铸铁的显微组织特征。
2、了解铸铁组织中不同组织组成物和组 成相的形态、分布对铸铁性能的影响。
二、实验设备
1、金相显微镜
2、金相标准试样
灰口铸铁 可锻铸铁
球墨铸铁 蠕墨铸铁
三、实验原理
三、实验原理
三、实验原理
铸铁金相组织分析

铸铁金相组织分析球墨铸铁金相组织球墨铸铁金相组织球墨铸铁牌号球墨铸铁是指铁液经球化处置后,使石墨大部或全体呈球状形态的铸铁。
与灰铸铁比拟,球墨铸铁的力学性能有明显提高。
由于它的石石墨呈球状,对基体的切割作用最小,可有效地应用基体强度的70%~80%(灰铸铁-般只能应用基体强度的30%)。
球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。
球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了产业性生产。
而且,各个时代都有代表性的产品或技巧。
20世纪50年代的代表产品是动员机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面(轻量化、近终型)球墨铸铁。
如今,球墨铸铁已在汽车、铸管、机床、矿山和核产业等范畴获得普遍的利用。
据统计,2000年世界的球墨铸铁产量已超过1500万吨o球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。
表1 单铸试块球墨铸铁牌号牌号抗拉强度Rm(MPa)断后伸长率A(%)布氏硬度HBW重要金相组织QT400-1840018130~180铁素体QT400-15 40015130~180铁素体QT450-10 45010160~210铁素体QT500-7 5007170~230铁素体+珠光体QT600-3 600 3190~270珠光体+铁素体QT700-27002225~305珠光体QT800-28002245~335珠光体或回火组织QT900-29002280~360贝氏体或回火组织球墨铸铁中常见的石墨形态有球状、团状、开花、蠕虫、枝晶等几类。
其中,最具代表性的形态是球状。
在光学显微镜下察看球状石墨,低倍时,外形近似圆形;高倍时,为多边形,呈辐射状,构造清楚。
经深腐化的试样在SEM中视察,球墨表面不光滑,起伏不平,形成一个个泡状物。
灰铸铁金相分析讲解

3、铸铁中的元素: 基本元素:Fe C Si Mn P S 合金元素:Cr Mo Mn 增加硬度 Cu Ni 增加强度 Si RE Sb Sn B V Nb Ti 增加强度的元素一定增加硬度;增加硬度 的元素开始增加时,增加强度,当增加到一定 程度时继续增加,强度不但不增加,反而下降 ,硬度继续增加。
石墨的形态:
五、灰铸铁 1、灰铸铁的定义:在铸铁的金相组织中, 碳以片状石墨的形式存在,这种铸铁称为灰铸 铁。 2、灰铸铁的分类: 3、灰铸铁的生产 4、灰铸铁的牌号: 其中:HT100 HT150 HT200为普通灰铸铁 HT250 HT300 HT350为孕育铸铁
5、灰铸铁的化学成分一般为: 2.8%~3.9%C,1.2%~3.0%Si, 0.4%~1.2%Mn,P≦0.3%,S≦0.15%。 该铸铁大量地应用于各种机械零件,是应 用最广泛的铸造材料。
4、基本计算 1)共晶点碳量 考虑各元素对相图中共晶点的影响后,共 晶点的实际含碳量,称为共晶点碳量。 Cc’%=4.26%-1/3(Si+P)% 比较方法: > 过共晶 C% =Cc’% 共晶 < 亚共晶
例1:C 3.2, Si 1.9 Mn 0.8 P 0.12 S 0.12 Cc’%=4.26%-1/3(Si+P)%=Cc’%=4.26%1/3(1.9+0.12)%= 4.26%-0.67%=3.59% 因为3.2% < 3.59%,所以该铸铁是亚共晶 例2:C 3.4, Si 2.5 Mn 0.8 P 0.15 S 0.12 Cc’%=4.26%-1/3(Si+P)%=Cc’%=4.26%1/3(2.5+0.15)%= 4.26%-0.88%=3.38% 因为3.4% > 3.38%,所以该铸铁是过共晶
铸铁的金相组织图

灰口铸铁 可锻铸铁 球墨铸铁 蠕墨铸铁
片状石墨(未浸蚀) 团絮状石墨(未浸蚀) 球状石墨(未浸蚀) 蠕虫状石墨(未浸蚀) 放大倍数400× 放大倍数400× 放大倍数400× 放大倍数400×
灰口铸铁 灰口铸铁 灰口铸铁
F 基+片状石墨 (F +P )基+片状石墨 P 基+片状石墨
放大倍数400× 放大倍数400× 放大倍数400×
可锻铸铁
可锻铸铁 球墨铸铁 F 基+团絮状石墨
P 基+团絮状石墨 F 基+球状石墨 放大倍数400×
放大倍数400× 放大倍数400×
球墨铸铁
球墨铸铁 高磷铸铁 (F +P )基+球状石墨
P 基+球状石墨 P 基+片状石墨+磷共晶 放大倍数400× 放大倍数400× 放大倍数400×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验铸铁得金相组织观察
一、实验目得
1.观察与研究灰铸铁、可锻铸铁及球墨铸铁得显微组织特征。
2.了解影响铸铁中石墨形态得因素。
二、概述
根据石墨得形态、大小与分布情况不同,铸铁分为:灰口铸铁(石墨呈片条状)、可锻铸铁(石墨呈团絮状)与球墨铸铁(石墨呈圆球状)。
(一)灰口铸铁
灰口铸铁组织得特征就是在钢得基体上分布着片状石墨。
根据石墨化程度及基本组织得不同,灰口铸铁可分为:铁素体灰口铸铁,铁素体—珠光体灰口铸铁与珠光体灰口铸铁。
对灰口铸铁石墨形态得观察,应在未浸蚀得试样上进行。
放大倍数为100倍。
灰口铸铁石墨分布形状得说明见下表1。
表1
(二)可锻铸铁
可锻铸铁(又称韧性铸铁)就是由白口铸铁经石墨化退火处理而得。
其中渗碳
体发生分解而形成团絮状石墨。
按照基体组织不同,可锻铸铁分为铁素体可锻铸铁与珠光体可锻铸铁两类,如下图所示。
(三)球墨铸铁
在球墨铸铁组织中石墨呈圆球状。
球状石墨得存在可使铸铁内部得应力集中现象得到改善,同时减轻了对基体得割裂作用,从而充分地发挥了基体性能得潜力,使球墨铸铁获得很高得强度与一定得韧性。
如下图所示。
三、实验方法指导(一)实验内容及步骤
1.各小组分别领取各种不同类型得铸铁材料试样。
2.在显微镜下进行观察,并分析其组织形态特征。
(二)实验设备及材料
1.金相显微镜;
2.金相放大照片;
3.各类铸铁得金相显微试样。
(三)注意事项
1.对各类铸铁可采用对比方法进行分析研究,着重区别各自得组织形态特征。
(四)实验报告要求
1.明确本次实验得目得。
2.根据观察,综合分析各类铸铁得形成机理。
3.画出4种组织简图。