复杂网络及其在国内研究进展的综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17卷第4期2009年10月

系统科学学报

JOURNAL OF SYSTEMS SCIENCE

Vo1.17No.4

oct ,2009

复杂网络及其在国内研究进展的综述

刘建香

(华东理工大学商学院上海200237)

摘要:从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内关于复杂网络理论及其应用的研究现状从两方面进行综述:一是对国外复杂网络理论及应用研究的介绍,包括复杂网络理论研究进展的总体概括、复杂网络动力学行为以及基于复杂网络理论的应用研究介绍;二是国内根植于本土的复杂网络的研究,包括复杂网络的演化模型,复杂网络拓扑性质、动力学行为,以及复杂网络理论的应用研究等。并结合复杂网络的主要研究内容,对今后的研究重点进行了分析。

关键词:复杂网络;演化;拓扑;动力学行为中图分类号:N941

文献标识码:A

文章编号:1005-6408(2009)04-0031-07

收稿日期:2009-01-05

作者简介:刘建香(1974—),女,华东理工大学商学院讲师,研究方向:系统工程。E-mail :jxliu@

0引言

系统是由相互作用和相互依赖的若干组成部分结合的具有特定功能的有机整体[1]。而网络是由节点和连线所组成的。如果用节点表示系统的各个组成部分即系统的元素,两节点之间的连线表示系统元素之间的相互作用,那么网络就为研究系统提供了一种新

的描述方式[2、3]

。复杂网络作为大量真实复杂系统的高度抽象[4、5],近年来成为国际学术界一个新兴的研究热

点,随着复杂网络逐渐引起国内学术界的关注,国内已有学者开始这方面的研究,其中有学者对国外的研究进展情况给出了有价值的文献综述,而方锦清[6]也从局域小世界模型、含权网络与交通流驱动的机制、混合择优模型、动力学行为的同步与控制、广义的同步等方面对国内的研究进展进行了简要概括,但是到目前为止还没有系统介绍国内关于复杂网络理论及应用研究现状的综述文献。本文从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内研究现状进行综述,希望对国内关于复杂网络的研究起到进一步的推动作用。

1.复杂网络模型的发展演化

网络的一种最简单的情况就是规则网络

[7]

,它

是指系统各元素之间的关系可以用一些规则的结构来表示,也就是说网络中任意两个节点之间的联系遵循既定的规则。但是对于大规模网络而言由于其复杂性并不能完全用规则网络来表示。20世纪50年代末,Erdos 和Renyi 提出了一种完全随机的网络模型———随机网络(ER 随机网络),它指在由N 个节点构成的图中以概率p 随机连接任意两个节点而成的网络,即两个节点之间连边与否不再是确定的事,而是由概率p 决定。或简单地说,在由N 个节点构成的图中,可以存在条边,从中随机连接M 条边所构成的网络就叫随机网络。如果选择M =p ,这两种构造随机网络模型的方法就可以联系起来。规则网络和随机网络是两种极端的情况,对于大量真实的网络系统而言,它们既不是规则网络也不是随机网络,而是介于两者之间。1998年,Watts 和Strogatz [8]提出了WS 网络模型,通过以概率p 切断规则网络中原始的边并选择新的端点重新连接

31--

构造出一种介于规则网络和随机网络之间的网络——

—小世界网络(‘small-world’networks)。显然,当p=0时,相当于各边未动,还是规则网络;当p=1时就成了随机网络。小世界网络模型的理论分析表明,其节点的度分布(degree distribution)服从指数分布,而实证结果表明,大多数大规模真实网络的节点度用幂律(power-law)分布来描述更加精确。1999年,Barabasi和Albert[9]提出了BA网络模型,在网络的构造中引入了增长性和择优连接性:增长性指网络中不断有新的节点加入进来;择优连接性则指新的节点进来后优先选择网络中度数大的节点进行连接。BA网络是无标度网络(scale-free networks)模型,其节点度服从幂律分布。除了经典的小世界网络模型和无标度网络模型之外,也有学者提出了一些其他的网络模型来描述真实的网络系统。如Barabasi, A.建立的确定性无标度网络模型[10],Francesc Comellas和Michael Sampels建立的确定性小世界网络模型[11]以及Fan等考虑某些现实网络具有局域特性而建立的多局域世界演化网络模型[12]等等。

2.复杂网络的统计特征

2.1平均路径长度L

在网络中,两点之间的距离为连接两点的最短路径上所包含的边的数目。网络的平均路径长度指网络中所有节点对的平均距离,它表明网络中节点间的分离程度,反映了网络的全局特性。不同的网络结构可赋予L不同的含义。如在疾病传播模型中L可定义为疾病传播时间,交通网络模型中L可定义为站点之间的距离[13]等。

2.2聚集系数C

在网络中,节点的聚集系数是指与该节点相邻的所有节点之间连边的数目占这些相邻节点之间最大可能连边数目的比例。而网络的聚集系数则是指网络中所有节点聚集系数的平均值,它表明网络中节点的聚集情况即网络的聚集性,也就是说同一个节点的两个相邻节点仍然是相邻节点的概率有多大,它反映了网络的局部特性。

2.3度及度分布

在网络中,节点的度是指与该节点相邻的节点的数目,即连接该节点的边的数目。而网络的度指网络中所有节点度的平均值。度分布P(k)指网络中一个任意选择的节点,它的度恰好为k的概率。

2.4介数

包括节点介数和边介数。节点介数指网络中所有

最短路径中经过该节点的数量比例,边介数则指网络中所有最短路径中经过该边的数量比例。介数反映了相应的节点或边在整个网络中的作用和影响力。

2.5小世界效应

复杂网络的小世界效应是指尽管网络的规模很大(网络节点数目N很大),但是两个节点之间的距离比我们想象的要小得多。也就是网络的平均路径长度L随网络的规模呈对数增长,即L~lnN。大量的实证研究表明,真实网络几乎都具有小世界效应。

2.6无标度特性

对于随机网络和规则网络,度分布区间非常狭窄,大多数节点都集中在节点度均值的附近,说明节点具有同质性,因此可以被看作是节点度的一个特征标度。而在节点度服从幂律分布的网络中,大多数节点的度都很小,而少数节点的度很大,说明节点具有异质性,这时特征标度消失。这种节点度的幂律分布为网络的无标度特性。

3.国内对复杂网络理论

及应用研究现状的概括性介绍

3.1复杂网络理论研究进展的介绍

国内学者对国外复杂网络理论研究的介绍最早始于汪小帆(2002)发表在国外杂志上的一篇文章[14],文中回顾了近年来国外复杂网络研究所取得的重要成果,其中包括平均路径长度、聚集系数、度分布等网络度量,Internet、WWW和科学合作网络等现实系统,规则网络、随机网络、小世界网络、无标度网络等网络模型,以及复杂网络上的同步等。而在国内刊物上对国外复杂网络理论研究的介绍可追溯到朱涵(2003)[15]在《物理》杂志上发表的“网络‘建筑学’”,文章以小世界、集团化和无标度等概念为中心,介绍了复杂网络的研究进展。之后,吴金闪等[16]从统计物理学的角度总结了复杂网络的主要研究结果,对无向网络、有向网络和加权网络等三种不同网络统计性质研究的现状分别作了综述,对规则网络、完全随机网络、小世界网络和无标度网络等网络机制模型进行了总结,并对网络演化的统计规律、网络上的动力学性质的研究进行了概括。周涛等(2005)围绕小世界效应和无标度特性等复杂网络的统计特征及复杂网络上的物理过程等问题,概述了复杂网络的研究进展。刘涛等[17]从平均路径长度、聚集系数、度分布等复杂网络的统计性质,小世界网络和无标度网络等网络模型等层面简述了复杂网络领域的相关研究。史定华[18]从对

32 --

相关文档
最新文档