高考物理真题分类汇编:动量

合集下载

2024年高考物理真题和模拟题分类汇编专题08动量含解析

2024年高考物理真题和模拟题分类汇编专题08动量含解析

专题08 动量选择题1. (2024·全国乙卷)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。

用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。

在地面参考系(可视为惯性系)中,从撤去推力起先,小车、弹簧和滑块组成的系统( )A. 动量守恒,机械能守恒B. 动量守恒,机械能不守恒C. 动量不守恒,机械能守恒D. 动量不守恒,机械能不守恒答案B解析:因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;以小车、弹簧和滑块组成的系统,依据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒。

故选B 。

2. (2024春·浙江卷)在爆炸试验基地有一放射塔,放射塔正下方的水平地面上安装有声音记录仪。

爆炸物自放射塔竖直向上放射,上升到空中最高点时炸裂成质量之比为2:1、初速度均沿水平方向的两个碎块。

遥控器引爆瞬起先计时,在5s 末和6s 末先后记录到从空气中传来的碎块撞击地面的响声。

已知声音在空气中的传播速度为340m/s ,忽视空气阻力。

下列说法正确的是( )A. 两碎块的位移大小之比为1:2B. 爆炸物的爆炸点离地面高度为80mC. 爆炸后质量大的碎块的初速度为68m/sD. 爆炸后两碎块落地点之间的水平距离为340m【答案】B【解析】A .爆炸时,水平方向,依据动量守恒定律可知11220mv m v -=因两块碎块落地时间相等,则11220m x m x -=则12211=2x m x m = 则两碎块的水平位移之比为1:2,而从爆炸起先抛出到落地的位移之比不等于1:2,选项A 错误;B .设两碎片落地时间均为t ,由题意可知(5)1=(6)2t v t v --声声 解得t =4s 爆炸物的爆炸点离地面高度为2211104m=80m 22h gt ==⨯⨯ 选项B 正确;CD .爆炸后质量大的碎块的水平位移1(54)340m 340m x =-⨯=质量小的碎块的水平位移2(64)340m 680m x =-⨯=爆炸后两碎块落地点之间的水平距离为340m+680m=1020m 质量大的碎块的初速度为110340m/s 85m/s 4x v t === 选项CD 错误。

历年(2020-2023)全国高考物理真题与模拟题分类(冲量和动量)汇编(附答案)

历年(2020-2023)全国高考物理真题与模拟题分类(冲量和动量)汇编(附答案)

历年(2020-2023)全国高考物理真题与模拟题分类(冲量和动量)汇编一、单选题1.(2022ꞏ天津)如图所示,边长为a 的正方形铝框平放在光滑绝缘水平桌面上,桌面上有边界平行、宽为b 且足够长的匀强磁场区域,磁场方向垂直于桌面,铝框依靠惯性滑过磁场区域,滑行过程中铝框平面始终与磁场垂直且一边与磁场边界平行,已知a b <,在滑入和滑出磁场区域的两个过程中( )A .铝框所用时间相同B .铝框上产生的热量相同C .铝框中的电流方向相同D .安培力对铝框的冲量相同2.(2022ꞏ重庆)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,某小组得到了假人头部所受安全气囊的作用力随时间变化的曲线(如图)。

从碰撞开始到碰撞结束过程中,若假人头部只受到安全气囊的作用,则由曲线可知,假人头部( )A .速度的变化量等于曲线与横轴围成的面积B .动量大小先增大后减小C .动能变化正比于曲线与横轴围成的面积D .加速度大小先增大后减小3.(2022ꞏ海南)在冰上接力比赛时,甲推乙的作用力是1F ,乙对甲的作用力是2F ,则这两个力( ) A .大小相等,方向相反 B .大小相等,方向相同 C .1F 的冲量大于2F 的冲量D .1F 的冲量小于2F 的冲量4.(2022ꞏ湖北)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v 。

前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2。

下列关系式一定成立的是( ) A . 213W W =,213I I ≤ B . 213W W =,21I I ≥ C .217W W =,213I I ≤D .217W W =,21I I ≥5.(2020ꞏ全国)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。

若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积6.(2022ꞏ江苏)上海光源通过电子-光子散射使光子能量增加,光子能量增加后( )A.频率减小B.波长减小C.动量减小D.速度减小-图像中的一个点。

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)

十年高考物理真题(2011-2023)分类汇编专题08 动量定理及动量守恒定律(解析版)一、动量定理动量定理是描述物体运动的一个基本定理,它指出:在一个封闭系统内,当外力作用于物体上时,物体的动量变化等于作用在该物体上的外力。

动量定理可以表示为以下公式:物体的动量变化 = 外力的冲量其中,冲量定义为力对时间的积分,即:冲量= ∫(F dt)根据动量定理,我们可以推导出一些物体运动的关系。

1. 动量定理的应用动量定理在物理学中有着广泛的应用。

以下是一些常见的应用场景:a) 车辆碰撞在车辆碰撞中,动量定理可以通过计算碰撞前后物体的动量来判断碰撞力的大小和方向。

例如,当两辆车以不同的速度相撞时,根据动量定理可以计算出它们的相对速度和撞击力。

b) 弹丸射击在弹丸射击中,动量定理可以用来计算弹丸的速度和撞击力。

通过测量弹丸的质量和速度,可以使用动量定理来推导出撞击目标的力度。

c) 物体的反弹当一个物体在碰撞后发生反弹时,动量定理可以用来解释反弹的原理。

根据动量守恒定律,碰撞前后物体的总动量保持不变,因此在撞击后物体会反弹。

2. 动量定理的示例题目下面是一道常见的动量定理示例题目:题目:一个质量为1kg的物体以2m/s的速度在空中自由运动,受到一个水平方向的2N的恒力作用,请问物体在2秒钟后的速度是多少?解答:根据动量定理,我们可以将物体的动量变化表示为:物体的动量变化= 外力的冲量。

根据题目,外力的大小为2N,恒力作用时间为2s,因此冲量可以计算为2N * 2s = 4Ns。

根据动量定理,我们可以得到动量变化等于冲量的公式:物体的动量变化 = 4Ns。

根据动量的定义,我们可以将物体的动量表示为动量 = 质量 * 速度。

根据题目,物体的质量为1kg,所以物体的动量可以表示为动量 = 1kg * 2m/s = 2kg·m/s。

根据物体的动量变化等于冲量的公式,我们可以得到2kg·m/s = 4Ns,解方程得到物体的速度为2m/s。

动量高考物理近三年真题分项汇编

动量高考物理近三年真题分项汇编

动量2022年高考真题1、(2022·湖南卷·T7)神舟十三号返回舱进入大气层一段时间后,逐一打开引导伞、减速伞、主伞,最后启动反冲装置,实现软着陆。

某兴趣小组研究了减速伞打开后返回舱的运动情况,将其运动简化为竖直方向的直线运动,其v t 图像如图所示。

设该过程中,重力加速度不变,返回舱质量不变,下列说法正确的是( )A 在10~t 时间内,返回舱重力的功率随时间减小 B. 在10~t 时间内,返回舱的加速度不变 C. 在21~t t 时间内,返回舱的动量随时间减小 D. 在23~t t 时间内,返回舱的机械能不变2、(2022·湖南卷·T4)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成。

如图,中子以速度0v 分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为1v 和2v 。

设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是( )A. 碰撞后氮核的动量比氢核的小B. 碰撞后氮核的动能比氢核的小C. 2v 大于1vD. 2v 大于0v3、(2022·山东卷·T2)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。

如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。

从火箭开始运动到点火的过程中( )A. 火箭的加速度为零时,动能最大B. 高压气体释放的能量全部转化为火箭的动能C. 高压气体对火箭推力的冲量等于火箭动量的增加量D. 高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量4、(2022·全国乙卷·T20)质量为1k g的物块在水平力F的作用下由静止开始在水平地面上做直线运动,F与时间t的关系如图所示。

已知物块与地面间的动摩擦因数为0.2,重力加速度大小取2=g。

则()10m/sA. 4s时物块的动能为零B. 6s时物块回到初始位置C. 3s时物块的动量为12k g m/s⋅D. 0~6s时间内F对物块所做的功为40J5、(2022·浙江6月卷·T20)如图所示,在竖直面内,一质量m的物块a静置于悬点O正下方的A点,以速度v逆时针转动的传送带MN与直轨道AB、CD、FG处于同一水平面上,AB、MN、CD的长度均为l。

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编( 含答案 )一、高考物理精讲专题动量定理1.半径均为R 5 2m的四分之一圆弧轨道 1 和 2 如下图固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R,让质量为 1kg 的小球从圆弧轨道 1 的圆弧面上某处由静止开释,小球在圆弧轨道 1 上转动过程中,协力对小球的冲量大小为5N s ,重力加快度 g 取10m / s2,求:(1)小球运动到圆弧轨道 1 最低端时,对轨道的压力大小 ;(2)小球落到圆弧轨道 2 上时的动能大小。

【答案】( 1)5(22)N (2)62.5J 2【分析】【详解】(1)设小球在圆弧轨道 1 最低点时速度大小为v0,依据动量定理有I mv0解得 v05m / s在轨道最低端,依据牛顿第二定律,2F mg m v0R2N解得 F 5 22依据牛顿第三定律知,小球对轨道的压力大小为 F 522N 2(2)设小球从轨道 1 抛出抵达轨道 2 曲面经历的时间为t,水平位移:x v0t竖直位移:y 1gt 2 2由勾股定理:x2 y2R2解得 t1s竖直速度:v y gt 10m / s 可得小球的动能E k 1 mv21m v02v y262.5J222.如下图,一质量m1=0.45kg 的平顶小车静止在圆滑的水平轨道上.车顶右端放一质量m2=0.4 kg 的小物体,小物体可视为质点.现有一质量m0 =0.05 kg 的子弹以水平速度v0=100 m/s射中小车左端,并留在车中,已知子弹与车互相作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最后小物体以 5 m/s的速度走开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】( 1)4.5N s( 2)5.5m【分析】① 子弹进入小车的过程中,子弹与小车构成的系统动量守恒,有:m0 v o (m0 m1 )v1,可解得 v110m / s ;对子弹由动量定理有:I mv1mv0 ,I4.5N s (或kgm/s);② 三物体构成的系统动量守恒,由动量守恒定律有:(m0 m1 )v1 (m0m1 )v2m2 v ;设小车长为 L,由能量守恒有:m2 gL 1( m0 m1 )v121(m0 m1 )v221m2v2 222联立并代入数值得 L= 5.5m;点睛:子弹击中小车过程子弹与小车构成的系统动量守恒,由动量守恒定律能够求出小车的速度,依据动量定理可求子弹对小车的冲量;对子弹、物块、小车构成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律能够求出小车的长度.3.质量0.2kg 的球 ,从 5.0m高处自由着落到水平钢板上又被竖直弹起,弹起后能达的最大高度为 4.05m. 假如球从开始着落到弹起达最大高度所用时间为 1.95s,不考虑空气阻力,g 取210m/s .求小球对钢板的作使劲.【分析】【详解】自由落体过程v12= 2gh1,得 v1=10m/s;v1=gt1得 t1=1s小球弹起后达到最大高度过程0- v22= -2 gh2,得 v2=9m/s0-v2=-gt2得 t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t ′=mv2-( -mv1)此中 t′=t-t1-t2 =0.05s得 F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作使劲大小为78N,方向竖直向下;4.如图,一轻质弹簧两头连着物体 A 和 B,放在圆滑的水平面上,某时辰物体小为的水平初速度开始向右运动。

高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。

高考物理动量定理真题汇编(含答案)精选全文完整版

高考物理动量定理真题汇编(含答案)精选全文完整版

可编辑修改精选全文完整版高考物理动量定理真题汇编(含答案)一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。

其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

(1)请通过计算分析cd 棒的运动情况;(2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少?【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s ;(3)43.2J【解析】【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。

(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W '-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s解得:43.2J F W '=2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

2017-2022年近6年全国卷高考物理真题分类汇编:动量守恒定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:动量守恒定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:动量守恒定律学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共5小题)1.(2020·全国·高考真题)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。

已知甲的质量为1kg,则碰撞过程两物块损失的机械能为()A.3 J B.4 J C.5 J D.6 J2.(2020·全国·高考真题)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。

若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积3.(2019·全国·高考真题)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg4.(2017·全国·高考真题)如图所示,PQS是固定于竖直平面内的光滑的14圆周轨道,圆心O在S的正上方,在O和P两点各有一质量为m的小物块a和b,从同一时刻开始,a自由下落,b沿圆弧下滑。

以下说法正确的是()A .a 比b 先到达S ,它们在S 点的动量不相等B .a 与b 同时到达S ,它们在S 点的动量不相等C .a 比b 先到达S ,它们在S 点的动量相等D .b 比a 先到达S ,它们在S 点的动量不相等5.(2017·全国·高考真题)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30kg m/s ⋅B .5.7×102kg m/s ⋅C .6.0×102kg m/s ⋅D .6.3×102kg m/s ⋅二、多选题(本大题共6小题)6.(2021·全国·高考真题)质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。

高考物理考点《动量守恒定律》真题练习含答案

高考物理考点《动量守恒定律》真题练习含答案

高考物理考点《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

高考物理最新力学知识点之动量全集汇编及答案

高考物理最新力学知识点之动量全集汇编及答案

高考物理最新力学知识点之动量全集汇编及答案一、选择题1.光滑水平地面上,A,B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩到最短时 ( )A.A、B系统总动量为2mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等2.如图,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是()A.mhM m+B.MhM m+C.cotmhM mα+D.cotMhM mα+3.运动员向静止的球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s 停下来,则运动员对球的冲量为()A.1000 N•sB.500 N•sC.0 N•sD.无法确定4.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打入木块A及弹簧被压缩的过程中,子弹、两木块和弹簧组成的系统()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能也不守恒5.“轨道电子俘获”是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子转变为中子,从而变成一个新核(称为子核),并且放出一个中微子的过程。

中微子的质量极小,不带电,很难探测到,人们最早就是通过子核的反冲而间接证明中微子存在的。

若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则()A.母核的质量数大于子核的质量数B.母核的电荷数大于子核的电荷数C.子核的动量与中微子的动量相同D.子核的动能大于中微子的动能6.如图所示是一种弹射装置,弹丸质量为m,底座质量为3m,开始时均处于静止状态,当弹簧释放将弹丸以相对地面v的速度发射出去后,底座的反冲速度大小是()A.3v/4B.v/4C.v/3D.07.如图所示,在冰壶世锦赛上中国队以8:6战胜瑞典队,收获了第一个世锦赛冠军,队长王冰玉在最后一投中,将质量为19kg的冰壶推出,运动一段时间后以0.4m/s的速度正碰静止的瑞典冰壶,然后中国队冰壶以0.1m/s的速度继续向前滑向大本营中心.若两冰壶质量相等,则下列判断正确的是()A.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是弹性碰撞B.瑞典队冰壶的速度为0.3m/s,两冰壶之间的碰撞是非弹性碰撞C.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是弹性碰撞D.瑞典队冰壶的速度为0.5m/s,两冰壶之间的碰撞是非弹性碰撞8.一个不稳定的原子核质量为M,处于静止状态.放出一个质量为m的粒子后反冲,已知放出的粒子的动能为E0,则原子核反冲的动能为A.E0B.mME0C.mM m-E0D.MmM m-E09.如图所示,甲木块的质量为1m,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为2m的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后A.甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成的系统的动量守恒D .甲、乙两木块所组成的系统的动能守恒10.从同一高度的平台上,抛出三个完全相同的小球,甲球竖直上抛,乙球竖直下抛,丙球平抛,三球落地时的速率相同,若不计空气阻力,则( ) A .抛出时三球动量不都相同,甲、乙动量相同,并均小于丙的动量 B .落地时三球的动量相同C .从抛出到落地过程,三球受到的冲量均不相同D .从抛出到落地过程,三球受到的冲量均相同11.一种未知粒子跟静止的氢原子核正碰,测出碰撞后氢原子核的速度是7v 。

电磁感应+动量(原卷版)—三年(2022-2024)高考物理真题汇编(全国通用)

电磁感应+动量(原卷版)—三年(2022-2024)高考物理真题汇编(全国通用)

电磁感应+动量考点01 电磁感应+动量定理1. (2024年高考湖南卷)某电磁缓冲装置如图所示,两足够长的平行金属导轨置于同一水平面内,导轨左端与一阻值为R 的定值电阻相连,导轨BC 段与11B C 段粗糙,其余部分光滑,1AA 右侧处于竖直向下的匀强磁场中,一质量为m 的金属杆垂直导轨放置。

现让金属杆以初速度0v 沿导轨向右经过1AA 进入磁场,最终恰好停在1CC 处。

已知金属杆接入导轨之间的阻值为R ,与粗糙导轨间的摩擦因数为μ,AB BC d ==。

导轨电阻不计,重力加速度为g ,下列说法正确的是( )A. 金属杆经过1BB 的速度为02v B. 在整个过程中,定值电阻R 产生的热量为201122mv mgd μ-C. 金属杆经过11AA B B 与11BB C C 区域,金属杆所受安培力的冲量相同D. 若将金属杆的初速度加倍,则金属杆在磁场中运动的距离大于原来的2倍2. (2023年高考湖南卷)如图,两根足够长的光滑金属直导轨平行放置,导轨间距为L ,两导轨及其所构成的平面均与水平面成q 角,整个装置处于垂直于导轨平面斜向上的匀强磁场中,磁感应强度大小为B .现将质量均为m 的金属棒a b 、垂直导轨放置,每根金属棒接入导轨之间的电阻均为R .运动过程中金属棒与导轨始终垂直且接触良好,金属棒始终未滑出导轨,导轨电阻忽略不计,重力加速度为g .(1)先保持棒b 静止,将棒a 由静止释放,求棒a 匀速运动时的速度大小0v ;(2)在(1)问中,当棒a 匀速运动时,再将棒b 由静止释放,求释放瞬间棒b 的加速度大小0a ;(3)在(2)问中,从棒b 释放瞬间开始计时,经过时间0t ,两棒恰好达到相同的速度v ,求速度v 的大小,以及时间0t 内棒a 相对于棒b 运动的距离x D .3.(2023年全国高考新课程卷)(20分)一边长为L 、质量为m 的正方形金属细框,每边电阻为R 0,置于光滑的绝缘水平桌面(纸面)上。

高考物理《动量和动量定理》真题练习含答案

高考物理《动量和动量定理》真题练习含答案

高考物理《动量和动量定理》真题练习含答案1.[2024·江苏省徐州市期中考试]两个具有相同动能的物体A 、B ,质量分别为m A 、m B ,且m A >m B ,比较它们的动量,则( ) A .物体B 的动量较大 B .物体A 的动量较大 C .动量大小相等 D .不能确定 答案:B解析:根据动能的表达式E k =12 m v 2,动量的表达式p =m v ,联立可得p =2mE k ,物体A 、B 动能E k 相同,m A >m B ,则p A >p B ,即物体A 的动量较大,B 正确.2.[2024·河北省唐山市十县一中联盟联考]质量为0.5 kg 的金属小球,从距水平地面3.2 m 的高处以6 m/s 的速度水平抛出,g 取10 m/s 2,小球落地的运动过程中( ) A .物体的初动量大小16 kg·m/s B .物体的末动量大小19 kg·m/s C .重力的冲量大小2 N·s D .重力的冲量大小4 N·s 答案:D解析:物体的初动量大小p 1=m v 0=0.5×6 kg·m/s =3 kg·m/s ,A 错误;竖直方向小球做自由落体运动,则v 2y =2gh ,小球落地时竖直方向的分速度v y =2gh =2×10×3.2 m/s =8 m/s ,小球落地时的合速度v =v 20 +v 2y =62+82 m/s =10 m/s ,物体的末动量大小p 2=m v =0.5×10 kg·m/s =5 kg·m/s ,B 错误;由h =12gt 2得t =2hg= 2×3.210s =0.8 s ,重力的冲量大小I =mgt =0.5×10×0.8 N·s =4 N·s ,C 错误,D 正确.3.[2024·湖南省名校联合体联考]如图,某物体在恒定拉力F 的作用下没有运动,经过时间t 后,则( )A .拉力的冲量为0B .合力的冲量为0C .重力的冲量为0D .拉力的冲量为Ft cos θ 答案:B解析:拉力的冲量为Ft,重力的冲量为mgt,物体处于静止状态,根据动量定理可知合力的冲量为0,B正确.4.[2024·江苏省无锡市教学质量调研]一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒击打后,反向水平飞回,速度大小为45 m/s,以垒球初速度的方向为正方向,则垒球被棒击打前后动量变化量为()A.+3.6 kg·m/s B.-3.6 kg·m/sC.+12.6 kg·m/s D.-12.6 kg·m/s答案:D解析:初动量为p1=m v1=0.18×25 kg·m/s=4.5 kg·m/s,击打后动量为p2=m v2=0.18×(-45)kg·m/s=-8.1 kg·m/s,动量变化为Δp=p2-p1=-12.6 kg·m/s,D正确.5.[2024·江苏省连云港市期中考试]如图所示,将一杯水放在桌边,杯下压一张纸条.若缓慢抽出纸条,杯子会滑落;若快速抽出纸条时,杯子并没有滑落.对于该实验,下列说法正确的是()A.缓慢抽出时,杯子获得的动量较小B.快速抽出时,杯子获得的动量较大C.缓慢抽出过程中,摩擦力对杯子的冲量较大D.快速抽出过程中,摩擦力对杯子的冲量较大答案:C解析:根据题意可知,无论缓慢抽出还是快速抽出,纸条和杯子间的摩擦力不变,缓慢抽出时间长,由公式I=ft可知,缓慢抽出过程中,摩擦力对杯子的冲量较大,由动量定理可知,缓慢抽出时,杯子获得的动量较大,C正确.6.[2024·广东省江门市一模](多选)数据表明,在电动车事故中,佩戴头盔可防止85%的头部受伤,大大减小损伤程度.头盔内部的缓冲层与头部的撞击时间延长至6 ms 以上,人头部的质量约为2 kg ,则下列说法正确的是( )A.头盔减小了驾驶员头部撞击过程中的动量变化率 B .头盔减少了驾驶员头部撞击过程中撞击力的冲量C .事故中头盔对头部的冲量与头部对头盔的冲量大小相等D .若事故中头部以6 m/s 的速度水平撞击缓冲层,则头部受到的撞击力最多为2 000 N 答案:ACD解析:根据F ·Δt =Δp 得F =ΔpΔt,头盔内部的缓冲层与头部的撞击时间延长了,头盔减小了驾驶员头部撞击过程中的动量变化率,A 正确;同理,可知头盔并没有减少驾驶员头部撞击过程中撞击力的冲量,B 错误;根据I =F ·Δt ,头盔对头部的作用力与头部对头盔的作用力等大反向,作用时间相同,所以事故中头盔对头部的冲量与头部对头盔的冲量大小相等,C 正确;撞击力F =2×66×10-3 N =2 000 N ,事故中头部以6 m/s 的速度水平撞击缓冲层,则头部受到的撞击力最多为2 000 N ,D 正确.7.[2024·安徽省部分学校一模]如图,在光滑的水平桌面上,质量为m 的小球在轻绳的作用下,绕O 点以速率v 做匀速圆周运动.已知轻绳长为l .对小球由A 转过90°到B 的过程,下列说法正确的是( )A .小球重力冲量大小为0B .绳子拉力冲量大小为πm v2C .小球动量的变化量大小为0D .小球动量的变化率大小为m v 2l答案:D解析:小球由A 转到B 的过程,所需时间为t =14×2πl v =πl2v ,小球重力冲量大小为I G=mgt =mg πl2v ,A 错误;小球动量的变化量大小Δp =m Δv =2 m v ,C 错误;由动量定理可得I F =Δp =2 m v ,B 错误;根据F ·Δt =Δp 可知小球动量的变化率大小为F =ΔpΔt,又F=m v 2l ,联立解得Δp Δt =m v 2l,D 正确.8.[2024·江苏省苏州市期中考试]如图所示,一大型气球初始时悬停在空中,喷气口被绳系着,某时刻系在喷气口的绳子突然松开,内部气体竖直向下喷出,由于反冲作用气球开始向上运动.已知内部气体的密度为ρ,气球连同内部气体最初的质量为m ,喷气口的横截面积为S ,绳子松开瞬间喷出气体的速度为v ,重力加速度为g ,不计空气阻力,则绳子松开瞬间气球的加速度大小为( )A .ρS v 2mB .ρS v 2m -gC .ρS v 2m +gD .ρS v m答案:B解析:取极短时间Δt 内喷出的气体为研究对象,根据动量定理得F Δt =(ρv ΔtS )v -0,解得F =ρv 2S ,根据牛顿第三定律知气体对气球的作用力大小为ρv 2S ,方向竖直向上.对气球,根据牛顿第二定律得ρv 2S -mg =ma ,解得a =ρS v 2m-g ,B 正确.9.[2024·河北省沧州市月考]在光滑水平面上,一质量为4 kg 的滑块以1 m/s 的速率沿x 轴负方向运动,某时刻开始给滑块施加作用力F ,F 随时间变化的图像如图所示,其中4~8 s 和8~12 s 的两段曲线关于点(8,0)中心对称.规定力F 沿x 轴正方向时为正,滑块在12 s 末的速度大小为( )A .3 m/sB .4 m/sC .5 m/sD .6 m/s 答案:B解析:由图像围成的面积物理意义为F 的冲量即合外力的冲量,根据动量定理得I 0~4=I 0~12=m v -m v 0,解得v =m v 0+I 0~4m =-4+5×44m/s =4 m/s ,B 正确. 10.东京奥运会女子蹦床决赛,整套动作完美发挥的朱雪莹,以56.635分夺得金牌,帮助中国蹦床队时隔13年重获该项目冠军.队友刘灵玲收获一枚银牌.已知朱雪莹的体重为45 kg ,在比赛中,朱雪莹从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知朱雪莹与网接触的时间为0.15 s ,g 取10 m/s 2,求:(1)朱雪莹下落接触网面前瞬间的速率v 1和上升离开网面瞬间的速率v 2; (2)网面对朱雪莹的平均作用力F 的大小. 答案:(1)8 m/s ,10 m/s (2)5 850 N 解析:(1)运动员下落接触网面前瞬间的速度大小为 v 1=2gh 1 =2×10×3.2 m/s =8 m/s 运动员上升离开网面瞬间的速度大小为 v 2=2gh 2 =2×10×5.0 m/s =10 m/s(2)取竖直向上为正方向,运动员和网接触过程中,由动量定理知(F -mg )t =m v 2-m (-v 1)可解得F =m v 2-m (-v 1)t+mg=45×10-45×(-8)0.15N +45×10 N =5 850 N11.小明家里有一个喷泉,喷泉竖直喷出的水柱和小明一样高,小明身高1.8 m ,喷管的面积为S =10 cm 2,当小明把一个玩具放在水柱上时,玩具能稳定地悬停在空中,玩具底面相对于喷口的高度为1 m ,玩具底部为平板(面积略大于喷泉横截面积),水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开,水的密度为ρ=103 kg/m 3,不考虑空气阻力,g 取10 m/s 2.求:(1)喷泉喷水的初速度大小;(2)用于喷泉喷水的电动机的输出功率; (3)玩具的质量.答案:(1)6 m/s (2)108 W (3)1.6 kg解析:(1)设喷泉的初速度为v 0,则有v 20 =2gH解得v 0=6 m/s(2)设在喷水口处很短Δt 时间内喷出水的质量为Δm ,则Δm=ρ·v0·S·ΔtΔt时间内电动机做功PΔt=12Δm v2解得P=108 W(3)设水柱冲击玩具的速度为v,则有v2-v20=-2gh解得v=4 m/s很短Δt′时间内,冲击玩具水柱的质量Δm′=ρ·v·S·Δt′对该部分水柱由动量定理得(F+Δm′g)·Δt′=Δm′·v由于Δt′很小,Δm′gΔt′也很小,可以忽略,则F·Δt′=Δm′·v 又因为玩具能稳定地悬停在空中,有F=Mg解得M=1.6 kg.。

高考物理动量守恒定律真题汇编(含答案)及解析

高考物理动量守恒定律真题汇编(含答案)及解析

4.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
试题分析:(1)P1
滑到最低点速度为
v1,由机械能守恒定律有:
1 2
mv02
mgR
1 2
mv12
解得:v1=5m/s
P1、P2 碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为 v1 、 v2
则由动量守恒和机械能守恒可得: mv1 mv1 mv2
1 2
mv12
1 2
mv12
1 2
mv22
解得: v1 0 、 v2 5m/s
(2)P2 向右滑动时,假设 P1 保持不动,对 P2 有:f2=μ2mg=2m(向左) 设 P1、M 的加速度为 a2;对 P1、M 有:f=(m+M)a2
a2
f m M
2m 5m
0.4m/s2
此时对 P1 有:f1=ma2=0.4m<fm=1.0m,所以假设成立.
故滑块的加速度为 0.4m/s2;
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能
守恒定律.
【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正

高考三物理试题分类汇编:动量能量守恒(含解析)

高考三物理试题分类汇编:动量能量守恒(含解析)

高考三物理试题分类汇编:动量能量守恒(含解析)动量、能量守恒二、非选择题6. 江苏省淮阴中学2021届高三摸底考试质量区分为m 1和m 2的两个小球在润滑的水平面上区分以速度v 1、v 2同向运动并发作对心碰撞,碰后m 2被右侧的墙原速弹回,又与m 1相碰,碰后两球都运动。

求:两球第一次碰后m 1球的速度大小。

解:依据动量守恒定律得:⎩⎨⎧'=''+'=+221122112211v m v m v m v m v m v m〔2分〕解得:1221112m v m v m v +=' 〔2分〕7.福建省龙岩二中2021届高三摸底考试如以下图所示是固定在水平空中上的横截面为〝〞形的润滑长直导轨槽,槽口向上〔图为仰望图〕。

槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形润滑凹槽,木质滑块的宽度为2R ,比〝〞形槽的宽度略小。

现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。

金属小球的质量为m ,木质滑块的质量为3m ,整个运动进程中无机械能损失。

求: 〔1〕当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;〔2〕当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。

解:〔1〕设滑离时小球喝滑块的速度区分为21v v 和,由动量守恒2103mv mv mv +=又2221203212121mv mv mv == 得201v v -= 0221v v = 〔2〕小球过A 点时沿轨道方向两者有共同速度v ,沿切向方向速度为v '22202132121)3(v m mv mv vm m mv '==+= 得002321v v v v ='=8.湖北省众望高中2021届高三周练如下图,长度为L 的轻杆上端连着一质量为m 的体积VV ’α可疏忽的小重物B .杆的下端用铰链固接于水平面上的A 点.同时,置于同一水平面上的立方体C 恰与B 接触,立方体C 的质量为M .今做庞大的扰动,使杆向右倾倒,设B 与C 、C 与水平面间均无摩擦,而B 与C 刚脱离接触的瞬间,杆与空中夹角恰恰为π/6.求B 与C 的质量之比m/M 。

高考物理最新力学知识点之动量分类汇编含答案解析

高考物理最新力学知识点之动量分类汇编含答案解析

高考物理最新力学知识点之动量分类汇编含答案解析一、选择题1.质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来.已知安全带的缓冲时间是1.2s ,安全带长5m ,取210 /g m s =,则安全带所受的平均冲力的大小为( )A .1100NB .600NC .500ND .100N2.如图所示,在光滑水平面上,有质量分别为2m 和m 的A B 、两滑块,它们中间夹着一根处于压缩状态的轻质弹簧(弹簧与A B 、不拴连),由于被一根细绳拉着而处于静止状态.当剪断细绳,在两滑块脱离弹簧之后,下述说法正确的是( )A .两滑块的动量大小之比:2:1AB p p =B .两滑块的速度大小之比A B v v :2:1=C .两滑块的动能之比12::kA kB E E =D .弹簧对两滑块做功之比:1:1A B W W =3.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是( )A .两球的速度方向均与原方向相反,但它们动能仍相等B .两球的速度方向相同,而且它们动能仍相等C .甲、乙两球的动量相同D .甲球的动量不为零,乙球的动量为零4.如图所示,光滑的四分之一圆弧轨道M 静止在光滑水平面上,一个物块m 在水平地面上以大小为v 0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1:2,则此时物块的动能与重力势能之比为(以地面为零势能面)A .1:2B .1:3C .1:6D .1:95.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.0m.小球与软垫接触的时间为1.0s,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2)A.10N·s B.20N·s C.30N·s D.40N·s6.一弹丸在飞行到距离地面5 m高时仅有水平速度 v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g=10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是( )A.B.C.D.7.质量为m的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t速度由v变为-v,则在时间t内A.质点的加速度为2v tB.质点所受合力为2mvtC.合力对质点做的功为2mvD.合力对质点的冲量为08.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变9.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动10.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:411.篮球运动深受同学们喜爱。

历年(2020-2024)全国高考物理真题分类(动量守恒定律及其应用)汇编(附答案)

历年(2020-2024)全国高考物理真题分类(动量守恒定律及其应用)汇编(附答案)

历年(2020-2024)全国高考物理真题与模拟题分类(动量守恒定律及其应用)汇编 1.(2023ꞏ全国)如图,一竖直固定的长直圆管内有一质量为M 的静止薄圆盘,圆盘与管的上端口距离为l ,圆管长度为20l 。

一质量为13m M =的小球从管的上端口由静止下落,并撞在圆盘中心,圆盘向下滑动,所受滑动摩擦力与其所受重力大小相等。

小球在管内运动时与管壁不接触,圆盘始终水平,小球与圆盘发生的碰撞均为弹性碰撞且碰撞时间极短。

不计空气阻力,重力加速度大小为g 。

求(1)第一次碰撞后瞬间小球和圆盘的速度大小;(2)在第一次碰撞到第二次碰撞之间,小球与圆盘间的最远距离;(3)圆盘在管内运动过程中,小球与圆盘碰撞的次数。

2.(2023ꞏ海南)如图所示,有一固定的光滑14圆弧轨道,半径0.2m R =,一质量为B 1kg m =的小滑块B 从轨道顶端滑下,在其冲上长木板C 左端时,给木板一个与小滑块相同的初速度,已知C 3kg m =,B 、C 间动摩擦因数10.2μ=,C 与地面间的动摩擦因数20.8μ=,C 右端有一个挡板,C 长为L 。

求:(1)B 滑到A 的底端时对A 的压力是多大?(2)若B 未与C 右端挡板碰撞,当B 与地面保持相对静止时,B C 、间因摩擦产生的热量是多少? (3)在0.16m 0.8m L <<时,B 与C 右端挡板发生碰撞,且碰后粘在一起,求B 从滑上C 到最终停止所用的时间。

3.(2023ꞏ浙江)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角37θ=︒的直轨道AB 、螺旋圆形轨道BCDE ,倾角37θ=︒的直轨道EF 、水平直轨道FG 组成,除FG 段外各段轨道均光滑,且各处平滑连接。

螺旋圆形轨道与轨道AB 、EF 相切于()B E 处.凹槽GHIJ 底面HI 水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁GH 处,摆渡车上表面与直轨道下FG 、平台JK 位于同一水平面。

高考物理真题分类汇编动量专题学生版

高考物理真题分类汇编动量专题学生版

第十六章动量守恒定律(选修3-5)一、子弹打木块模型及拓展应用动量守恒定律应用中有一类典型的物理模型——子弹打木块模型.此类模型的特点:1.由于子弹和木块组成的系统所受合外力为零(水平面光滑),或者内力远大于外力,故系统动量守恒.2.由于打击过程中,子弹与木块间有摩擦力的作用,故通常伴随着机械能与内能之间的相互转化,故系统机械能不守恒.系统损失的机械能等于阻力乘以相对位移,即:ΔE=fx相对.例1一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.求:(1)子弹、木块相对静止时的速度v为多少?(2)系统损失的机械能、系统增加的内能分别为多少?(3)子弹打进木块的深度l深为多少?例2如图所示,有一质量为M的木板(足够长)静止在光滑的水平面上,一质量为m的小铁块以初速度v0水平滑上木板的左端,小铁块与木板之间的动摩擦因数为μ,试求小铁块在木板上相对木板滑动的过程中,若小铁块恰好没有滑离木板,则木板的长度至少为多少?二、动量和能量综合问题分析动量和能量综合问题往往涉及的物体多、过程多、题目综合性强,解题时要认真分析物体间相互作用的过程,将过程合理分段,明确在每一个子过程中哪些物体组成的系统动量守恒,哪些物体组成的系统机械能守恒,然后针对不同的过程和系统,选择动量守恒定律或机械能守恒定律或能量守恒定律列方程求解.例3如图2所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=40kg的小车B静止于轨道右侧,其板与轨道底端靠近且在同一水平面上,一个质量m=20kg的物体C以2.0m/s的初速度从轨道顶端滑下,冲上小车B后经一段时间与小车相对静止并继续一起运动.若轨道顶端与底端水平面的高度差h为0.8 m,物体与小车板面间的动摩擦因数μ为0.40,小车与水平面间的摩擦忽略不计,(取g=10 m/s2)求:(1)物体与小车保持相对静止时的速度;(2)物体冲上小车后相对于小车板面滑动的距离.三、碰撞中的临界问题分析相互作用的两个物体在很多情况下皆可当作碰撞处理,那么对相互作用中两物体相距恰“最近”、相距恰“最远”或恰上升到“最高点”等一类临界问题,求解的关键都是“速度相等”.1.涉及弹簧类的临界问题:对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等.2.涉及相互作用最大限度类的临界问题:在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向上的分速度等于零.3.子弹打木块类的临界问题:子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同.4.滑块—木板模型的临界问题:滑块在光滑木板上滑行的距离最远时,滑块和木板的速度相同. 例4一轻质弹簧,两端各连质量均为m 的滑块A 和B ,静放在光滑水平面上,滑块A 被水平飞来的质量为m 4、速度为v 0的子弹击中且没有穿出(如图3所示),求: (1)子弹击中滑块A 的瞬间,A 和B 的速度各多大;(2)以后运动过程中弹簧的最大弹性势能.2015年高考物理真题分类汇编:动量专题【2015重庆-3】.高空作业须系安全带.如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为A.2m gh mg + B.2m gh mg - C.m gh mg + D.m gh mg -【2015天津-9】9.(I)如图所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置.B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3:1,A 球垂直撞向挡板,碰后原速率返回。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[] F 单元 动量动量 冲量 动量定理1. (2014·北京大兴期末)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量1.B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.动量守恒定律4.[2014·重庆卷] 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D4.B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34mv 甲+14mv 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.22.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′;(3) A 和B 整体在桌面上滑动的距离l .22.[答案] (1)2 m/s (2)1 m/s (3)0.25 m[解析] 设滑块的质量为m .(1)根据机械能守恒定律有mgR =12mv 2 解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有mv =2mv ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s. (3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 2.( 2014·漳州质检)质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D.2.2 m/s,向左2.D[解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m1+m2)v0=m1v1+m2v2,整理可得v1=v0+m2m1(v0-v2),故D项正确.5.(2014·北京西城一模)冰壶运动深受观众喜爱,图X29-1甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图()图X29-15.B[解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A错误;碰后冰壶A在冰壶B的左边,选项C错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B正确,选项D错误.7.(2014·海淀一模)下图X29-2是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X29-2A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同7.D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D 正确.动量综合问题10.[2014·天津卷] 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.10.(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v=1 m/s④(3)设A、B发生碰撞前,A的速度为v A,对A、B发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦35.(2)如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度;(2)P 点距离地面的高度.(2)解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12mv ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦ 联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧21.[2014·全国卷] 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A (A +1)2D.(A +1)2(A -1)221.A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确. 8.(2014·西安五校联考)如图X29-6所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5 kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小;(2)A 、B 滑上圆弧轨道的最大高度.图X29-68.(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有Ft =m A v ′1-m A ·(-v 1)解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得12(m A+m B )v 2=(m A +m B )gh 解得h =0.45 m.22. 力学观点的综合应用35.(18分)图24 的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .35.(1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J[解析] (1)P 1、P 2碰撞过程动量守恒,有mv 1=2mv解得v =v 12=3 m/s 碰撞过程中损失的动能为ΔE =12mv 21-12(2m )v 2 解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2 v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s≤t ≤4 s 所以解得v 1的取值范围10 m/s≤v 1≤14 m/sv 2的取值范围1 m/s≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度v 3=v 22-2μgL 则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 24.[2014·全国卷] 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小;(2)碰撞中总机械能的损失.24.[答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有mv -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12mv 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④实验:验证碰撞中的动量守恒。

相关文档
最新文档