模糊神经网络PID设计方法及其优缺点
基于模糊PID控制器的控制方法研究

同时,可以考虑将其他先进的控制算法如神经网络、滑模控制等与模糊PID控 制相结合,以提高控制系统的综合性能。
此外,为了更好地应对复杂多变的实际情况,可以对控制系统进行在线调整和 优化。例如,通过实时监测水温及其变化趋势,自适应调整模糊PID控制器的 参数,以适应不同的工况条件。这样的自适应控制策略能够使控制系统更加智 能化,提高其应对各种复杂情况的能力。
2、易于实现智能化。模糊控制器可以通过模糊规则和隶属度函数对人类的控 制经验进行模拟,从而实现智能化控制。
3、易于实现自适应控制。模糊控制器可以根据被控对象的变化自动调整模糊 规则和隶属度函数,从而适应不同的被控对象和工况条件。
参考内容
一、引言
在控制系统中,PID控制器是一种广泛使用的调节器,其通过比例、积分和微 分三个环节对系统输出进行调节,以达到对系统性能的优化。然而,传统的 PID控制器设计方法往往需要根据经验或者实验调整其参数,而且对于一些复 杂的系统,其参数调整可能会非常困难。为了解决这个问题,我们提出了一种 基于模糊控制理论的PID控制器设计方法。
二、模糊控制理论
模糊控制理论是一种基于模糊集合论和模糊推理的控制理论。它通过将输入变 量模糊化,将精确的输入变量转化为模糊变量,然后通过模糊推理得到输出变 量的模糊值,最后再通过反模糊化得到精确的输出值。这种控制方法能够处理 不确定性和非线性的问题,因此在许多领域得到了广泛的应用。
三、基于模糊控制理论的PID控 制器设计
基于模糊PID控制器的控制方 法研究
基本内容
本次演示旨在探讨模糊PID控制器在控制方法中的应用与研究。首先,我们将 简要介绍PID控制方法的基本原理和应用,然后分析模糊控制器相较于传统 PID控制器的优势。接下来,我们将通过一个具体的工业控制案例来研究模糊 控制器的应用效果及优缺点。最后,对本次演示的主要观点和结论进行总结, 并展望未来基于模糊控制器的控制方法的发展前景。
模糊神经网络的优缺点分析

模糊神经网络的优缺点分析前言模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。
本文旨在分析模糊神经网络的优缺点及其用途。
模糊神经网络简介模糊神经网络是一种集模糊逻辑推理的强大结构性知识表达能力与神经网络的强大自学习能力于一体的技术,它是模糊逻辑推理与神经网络有机结合的产物。
一般来讲,模糊神经网络主要是指利用神经网络结构来实现模糊逻辑推理,从而使传统神经网络没有明确物理含义的权值被赋予了模糊逻辑中推理参数的物理含义。
以下主要讨论神经网络与模糊系统的融合技术、模糊推理神经网络的初步研究、模糊推理神经网络。
模糊神经网络的优缺点神经网络控制的优点从控制角度看,与传统方法相比,神经网络对自动控制具有多种的特征和优势:(1)并行分布式信息处理。
神经网络具有并行结构,可以进行并行数据处理。
这种并行机制可以解决控制系统中大规模实时计算问题,并且并行计算中的冗余性可以使控制系统具有很强的容错性和鲁棒性。
(2)神经网络是本质非线性系统。
理论上,神经网络能以任意精度实现任意非线性映射,网络还可以实现较其他方法更优越的系统建模。
这种特性使神经网络在解决非线性控制问题中具有广阔的前景。
(3)学习和自适应能力。
神经网络是基于所研究系统过去的数据记录来进行训练的。
当提供给网络的输入不包含在训练集中时,一个经过训练的网络具有归纳能力。
神经网络也可以在线进行自适应调节。
(4)多变量系统。
神经网络可以处理很多输入信号,并具有很多输出量,所以很容易用于多变量系统。
模糊神经网络用途模糊神经网络可用于模糊回归、模糊控制器、模糊专家系统、模糊谱系分析、模糊矩阵方程、通用逼近器。
在控制领域中,所关心的是由模糊神经网络构成的模糊控制器。
在这一章中.介绍模糊神经网络的基本结构、遗传算法、模糊神经网络的学习算法,以及模糊神经网络的应用模糊神经网络有如下三种形式:1.逻辑模糊神经网络2.算术模糊神经网络3.混合模糊神经网络模糊神经网络就是具有模糊权系数或者输入信号是模糊量的神经网络。
模糊PID控制

模糊PID控制综述摘要:PID控制以其原理简单,使用方便,适应性强,制时精度低、抗干扰能力差等缺点,提出了一种参数自适应模糊PID控制方法。
本文通过介绍模糊PID控制在几种不同系统应用的实例,以体现模糊PID控制有较强的鲁棒性、具有更好的动、静态性能和抗干扰能力。
关键词:PID、模糊控制、仿真1. PID控制:所谓 PID 控制,就是集成了比例、积分和微分的控制。
比例控制器是自动控制原理中最典型的,用途也比较广泛,可以看作是个成比例的放大器。
比例控制器最主要的优点是其简单性,但是它的缺点是存在有稳态误差。
消除稳态误差的方法可以用一个积分控制器,积分控制式:其中,表示积分增益。
积分控制器的优点在于输出比例于积累的误差,缺点是会使系统的稳定性见效,原因是积分控制是在原点处增加了一个极点,而在前行通路增加极点则会使得原根轨迹向右半平面弯曲。
消除稳态误差还可以用微分控制器,微分控制式:其中,表示微分增益。
微分控制器的优点是在误差变大之前就提供一个较大的校正,而缺点则是在误差不变化时,不产生输出控制,并且对噪声敏感,会放大高频噪声。
PID 控制器,顾名思义,就是综合了比例控制,积分控制和微分控制三者的特点,将这三种控制器联合起来使用所得到的控制器。
PID 控制器可以消除单一控制器带来的缺点,可以表示为如下式:式中,kp与表示比例增益,ki表示积分增益,kd表示微分增益。
PID 控制器的设计过程中,其重点就是要选取合适的参数,以使得控制系统能够达到预期的控制目标。
2.模糊PID控制PID 控制要求对控制器的参数进行严格的整定,使得当参数变化时,PID控制器参数不能随着被控对象的变化而作相应的调整,进行自我优化,导致系统超调量较大。
由于比例、积分和微分系数的数值固定,在变负载、慢时变参数的情况下,需要人工干预去重新整定控制器的参数,这既降低了工作效率,又增加了成本,且效果不佳。
为了实现较为精确的控制,引入了模糊算法,提高控制精度。
基于模糊神经网络的智能优化PID控制器研究的开题报告

基于模糊神经网络的智能优化PID控制器研究的开题报告题目:基于模糊神经网络的智能优化PID控制器研究研究背景:PID控制器是一种经典的控制器,具有计算简单、易于实现、稳定性好等优点,广泛应用于工业控制系统中。
但是,传统的PID控制器存在参数难以确定、适应性不强等问题,难以满足某些特定的控制需求。
因此,如何提高PID控制器的性能一直是研究的热点。
研究内容:本研究旨在探究基于模糊神经网络的智能优化PID控制器。
具体研究内容如下:1. 分析PID控制器的特点及存在的问题。
2. 分析模糊神经网络的原理及优点。
3. 建立基于模糊神经网络的智能优化PID控制模型。
4. 根据实际需求设计模糊神经网络的输入输出变量,并训练网络。
5. 在仿真平台上验证该控制方法的性能,对比传统PID控制器的控制效果。
研究意义:本研究将探究基于模糊神经网络的智能优化PID控制方法,具有以下意义:1. 提高PID控制器的性能,使得控制更加准确、稳定。
2. 增强PID控制器的适应性,使得其能够应对更加复杂的控制需求。
3. 推广模糊神经网络在控制领域的应用,为智能控制技术的发展做出贡献。
研究方法:本研究采用理论分析与仿真实验相结合的方法,具体研究流程如下:1. 对PID控制器进行理论分析,分析其特点及存在的问题。
2. 学习模糊神经网络原理,设计模型并进行模拟实验。
3. 设计仿真实验,对比模糊神经网络优化PID控制器与传统PID控制器的控制效果。
研究计划:本研究预计分为以下几个阶段:1. 第一阶段:研究PID控制器原理,了解控制器的特点及存在的问题。
2. 第二阶段:学习模糊神经网络原理,设计模型并进行模拟实验。
3. 第三阶段:设计仿真实验,对比模糊神经网络优化PID控制器与传统PID控制器的控制效果。
4. 第四阶段:进行实验数据分析,撰写论文。
研究预期成果:1. 提出基于模糊神经网络的智能优化PID控制方法。
2. 仿真实验验证该控制方法的有效性。
基于神经网络的模糊PID控制器设计与实现

基于神经网络的模糊PID控制器设计与实现随着科技的不断发展,控制技术在工业自动化中的应用越来越广泛。
PID控制器因其简单易懂、易实现的特点而被广泛使用,但是传统的PID控制器在某些场合下会出现失效的情况。
为了解决这一问题,研究者们开始着手开发基于神经网络的模糊PID控制器。
本文将介绍基于神经网络的模糊PID控制器的设计与实现。
一、控制器介绍基于神经网络的模糊PID控制器是一种新型的控制器,它将模糊控制的优点与神经网络的处理能力相结合,形成了一种高效的自适应控制器。
该控制器利用神经网络的学习算法实现自适应参数的调节,将模糊控制中的模糊规则与神经网络的处理能力相结合,形成一种新的控制方法。
该控制器的核心思想是利用神经网络对系统进行建模,通过学习算法自适应地调节系统参数,从而实现对系统的控制。
其中,模糊控制器用于对输出进行模糊处理,神经网络用于对输入和输出进行处理,从而实现对系统的控制。
二、控制器设计基于神经网络的模糊PID控制器的设计需要以下几个步骤:1.系统建模系统建模是设计基于神经网络的模糊PID控制器的第一步。
系统建模的目的是构建系统的数学模型,以便于后续的设计过程。
在建模过程中,需要考虑系统的类型、运动方程、非线性因素等因素。
2.控制器设计控制器的设计是基于神经网络的模糊PID控制器设计的核心。
控制器的设计包括神经网络的结构设计、神经网络权值的选择、模糊控制的设计等。
3.参数调节参数调节是控制器设计的重要环节。
由于系统的运动方程等因素的影响,不同系统的参数可能不同。
因此,在实际应用中需要根据实际情况对控制器进行参数调节。
三、控制器实现基于神经网络的模糊PID控制器的实现需要以下步骤:1.数据采集数据采集是基于神经网络的模糊PID控制器实现的第一步。
数据采集的目的是获取系统的输入输出,以便为神经网络提供数据。
2.神经网络训练神经网络训练是实现控制器的关键步骤。
在训练过程中,通过对神经网络进行学习,让它逐渐对系统的输入输出进行建模。
基于模糊神经网络PID的复合控制策略

基于模糊神经网络PID的复合控制策略基于模糊神经网络(Fuzzy Neural Network,FNN)的复合控制策略是一种融合了模糊控制和神经网络控制技术的控制方法。
它可以通过学习样本数据和自适应调整网络参数,提高控制系统的鲁棒性和泛化能力。
下面将详细介绍基于模糊神经网络PID的复合控制策略原理和应用。
基于模糊神经网络PID的复合控制策略是由模糊控制器、神经网络控制器和PID控制器组成的。
其中,模糊控制器主要负责处理模糊化和解模糊化过程,神经网络控制器用于学习和逼近未知系统的非线性特性,PID控制器用于处理系统的稳态误差。
在复合控制策略中,首先通过模糊化将系统状态转化为模糊集合,然后使用模糊规则对输入输出进行模糊匹配。
接着,利用神经网络控制器对模糊控制器的输出进行修正和优化,使系统可以更好地适应不确定性和非线性特性。
最后,利用PID控制器对系统的稳态误差进行补偿,达到控制目标。
模糊神经网络PID的复合控制策略具有以下几个优势:首先,模糊控制器可以通过建立模糊规则库来描述模糊规律,相比传统的控制方法更加灵活和直观。
它可以处理非线性、不确定性和复杂系统,适用于各种工程控制场景。
其次,神经网络控制器可以通过学习样本数据和调整网络参数来自适应系统的非线性特性。
它可以通过反向传播算法或遗传算法等方法来优化网络结构和权值,提高系统的控制性能和鲁棒性。
最后,PID控制器作为经典的控制器,主要用于处理系统的稳态误差和快速响应。
它可以通过调整比例、积分和微分参数来实现良好的控制效果。
基于模糊神经网络PID的复合控制策略在许多领域都得到了应用。
例如,在机器人控制、电力系统和过程控制等领域,通过融合模糊控制和神经网络控制技术,可以更好地处理系统的非线性、不确定性和复杂性问题,提高系统的控制性能和鲁棒性。
此外,由于PID控制器在工业控制中应用广泛,复合控制策略可以与传统的控制方法相结合,弥补传统控制方法的不足,提高整体控制系统的性能。
飞行器控制中的模糊PID控制策略研究

飞行器控制中的模糊PID控制策略研究飞行器控制是一项非常重要的技术,它对于安全、舒适的飞行和有效的任务完成起着关键作用。
控制飞行器的关键是要保持其飞行姿态的稳定。
而PID控制器是其中一种常用的控制策略,它可以通过反馈控制来将系统保持在目标状态,但是在某些情况下,PID控制器更难以处理,此时就需要使用模糊PID控制策略来解决问题。
一、PID控制器的优缺点PID控制器被广泛应用于飞行器控制中,其优点在于简单易用,拥有很好的干扰鲁棒性和稳定性。
在PID控制器中,输出产生的偏差经过比例、积分、微分三个环节得出控制量,使得飞行器能够保持目标状态。
虽然PID控制器具有这些优点,但是其在某些情况下也有缺点。
例如,PID控制器的响应速度较慢,容易因参数调节不当而产生过调和欠调等问题。
因此,它并非在所有情况下都能够产生理想效果。
二、模糊PID控制器的原理模糊PID控制器是一种PID控制器的改进。
它可以通过模糊逻辑控制的方法来对PID控制器进行优化。
模糊PID控制器的原理是把PID控制器的三个环节的控制误差和变化率转化为模糊度量,然后使用模糊逻辑控制器进行处理,最后再转化为输出量。
模糊PID控制器可以分为两个部分:一是前馈回路,用于测量控制器输入量的变化率;二是反馈回路,用于根据控制器输入量和目标输出量的误差进行调节。
三、模糊PID控制器的优缺点相比于PID控制器,模糊PID控制器具有更好的鲁棒性、稳定性和响应速度。
这是因为模糊PID控制器能够通过控制静态误差和变化率来调整输出量,从而实现更精确的控制。
此外,模糊PID控制器还能够自适应环境和参数变化,有效应对不确定性问题。
然而,模糊PID控制器相较于PID控制器也存在一些缺点。
首先,模糊PID控制器需要复杂的算法,并且调试参数是非常困难的。
其次,模糊PID控制器需要进行系统建模,需要消耗更多的计算资源。
四、应用举例模糊PID控制器的在飞行器控制中的应用,可以举出一些例子。
PID及模糊控制算法

PID及模糊控制算法背景介绍PID控制是一种常见的控制方法,它通过不断调整系统的输出使得系统的反馈信号与参考信号趋于一致。
控制器的功能是计算出控制信号使得系统输出与参考信号的差值最小化。
PID控制器可以广泛应用于机械、电子、化工、航空等领域。
虽然在实际控制中,PID控制器的效果非常好,但是在某些场合,PID控制器无法满足要求。
因此,近年来,模糊控制算法得到了广泛发展和应用。
模糊控制算法采用模糊逻辑建立控制系统,能够处理一些非线性、复杂的系统,并且控制效果也非常不错。
PID控制算法PID控制器是由比例环节(P)、积分环节(I)和微分环节(D)组成的。
PID 控制器的原理如下:1.假设系统的输出为y,参考信号为r,控制器的输出为u;2.平衡方程为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt;其中e(t)= r(t) - y(t);3.将u(t)作为系统输入控制器,通过调节Kp、Ki和Kd参数使得系统输出y(t)达到参考信号r(t);4.在实际应用中,PID控制器常根据具体需要对Kp、Ki和Kd参数进行调整。
虽然PID控制器能够有效地控制系统,提高系统稳定性和精度,但是在一些非线性、时变、复杂的系统中,其控制效果并不理想。
模糊控制算法模糊控制算法是一种基于模糊逻辑的控制算法,它通过建立模糊推理规则,实现输出和输入的模糊化和去模糊化。
模糊控制器的基本结构如下:1.模糊化:将输出和输入变量映射为模糊集合,通过模糊运算得到规则库中的模糊。
2.规则库:建立模糊推理规则,将模糊化的输出和输入变量映射到规则库中,得到模糊。
3.去模糊化:将模糊映射为实际控制信号,并输出到被控制系统。
模糊控制算法能够有效地处理非线性、复杂的控制问题,并且其控制效果也非常优秀。
尤其是在多变量控制、非线性控制、自适应控制等方面得到了广泛应用。
模糊PID控制算法模糊PID控制算法综合了PID控制算法和模糊控制算法的优点,是一种非常优秀的控制方法。
模糊PID控制的研究与设计

模糊PID控制的研究与设计摘要:常规PID控制具有原理简单,使用方便等优点。
所以时至今日,在各种控制系统中仍有大量的控制回路具有PID结构。
然而面对存在非线性,时变的复杂控制对象,常规PID 控制器一组整定好的参数往往不能满足控制要求。
而模糊控制是以先验知识和专家经验为控制规则的一种智能控制技术,可以模拟人的推理和决策过程,尤其适用于模型未知的,复杂的非线性系统的控制。
将模糊控制与常规PID控制相结合,利用模糊推理的思想,对PID 控制的参数进行在线整定,构成模糊PID控制。
该控制方法可改善系统的动静态性能,提升控制效果。
关键词:PID控制模糊控制模糊PID控制引言:PID控制时最早发展起来的控制策略之一,由于其具有结构简单,容易实现,控制效果好等优点,且PID算法原理简明,参数物理意义明确,理论分析体系完善,所以以PID 控制为控制策略的各种控制器仍是过程控制中不可或缺的基本控制单元。
但是,实际上一些工业过程不同程度的存在非线性,大滞后,时变性和模型不确定性,采用具有一组整定好的参数的常规PID控制难以获得满意的控制效果。
而模糊控制具有算法简单,易于掌握,无需知晓被控对象的精确数学模型,动态特性较好等优点。
本文将模糊控制与PID控制相结合,构成模糊PID控制,在线修正PID参数,扬长避短,不仅能发挥模糊控制的鲁棒性、动态响应好,上升时间快和超调小的特点,还具有PID控制的动态品质好和稳态精度高的优点。
模糊控制模糊控制是以模糊集合论,模糊数学,模糊语言变量及模糊逻辑为基础的闭环计算机。
模糊控制系统的基本构成如图1所示。
包括输入通道,模糊控制器,输出通道,执行机构,传感器及被控对象。
其中模糊控制器是模糊控制系统的核心部件,其组成结构如图2所示。
图1.模糊控制系统基本结构图2.模糊控制器组成结构PID 控制PID 控制时偏差比例,偏差积分,偏差微分控制的简称。
模拟PID 控制系统原理框图如图3所示。
pid模糊控制算法

PID模糊控制算法介绍PID控制算法在控制系统中,PID是一种常用的控制算法,其全称为比例-积分-微分控制(Proportional-Integral-Derivative Control)算法。
PID控制是一种反馈控制算法,通过根据系统输出和预期输出之间的误差来调整控制器的输出,以使系统输出逼近预期输出。
PID控制算法被广泛应用于工业控制、机器人控制、自动驾驶等领域。
PID控制算法由三个部分组成: - 比例(Proportional):比例控制部分根据误差的大小,产生一个与误差成正比的控制量。
比例控制可以实现快速响应,但可能产生稳态误差。
- 积分(Integral):积分控制部分根据误差的累积值,产生一个与误差积分成正比的控制量。
积分控制可以消除稳态误差,但可能导致超调和振荡。
- 微分(Derivative):微分控制部分根据误差的变化率,产生一个与误差导数成正比的控制量。
微分控制可以增加系统的稳定性,减少超调和振荡,但可能引入噪声。
模糊控制模糊控制是一种基于模糊逻辑的控制方法,与传统的精确控制方法相比,模糊控制更适用于处理不确定性、模糊性和非线性的问题。
模糊控制使用模糊规则来描述输入和输出之间的映射关系,通过模糊推理和模糊集合运算来产生控制量。
PID模糊控制PID模糊控制是将PID控制算法与模糊控制相结合的一种控制方法。
PID模糊控制通过将PID控制器的参数调整为模糊集合,以便更好地适应系统的动态特性和非线性特性。
PID模糊控制可以克服PID控制算法在处理非线性系统时的局限性,提高控制系统的性能和鲁棒性。
PID模糊控制的基本原理PID模糊控制的基本原理是将PID控制器的输入和输出转换为模糊集合,通过模糊推理和模糊集合运算来确定最终的控制量。
具体步骤如下: 1. 确定模糊控制器的输入和输出变量:通常将系统误差和误差变化率作为模糊控制器的输入变量,将控制量作为输出变量。
2. 设计模糊规则库:根据经验和专家知识,设计一组模糊规则,来描述输入和输出之间的映射关系。
模糊pid与传统pid的性能比较与适应场合分析

比较二者的优缺点ꎮ
其中传递函数为:
G =
10
( S + 1) ( S + 2) ( S + 3) ( S + 4)
(1)
其控制规律为:
53
u( t) = Kp[ e p ( t) +
∫
d ( t)
1
e( t) d( t) + T d e
]
Ti
dt
(2)
ciples of the two. The analysisꎬ first analyze their structural compositionꎬ and then the function of each part. They studied
their strengths and weaknesses and compared their advantages and disadvantages to understand the application. Thenꎬ the
pidcontroller?controleffect?interference社会进入到了物联网的时代?特别是现在5g技术的推广应用?使得更多的设备实现了自动化智能化?这也使得好的控制系统越来越被人们所需要3?与传统的pid控制系统相比较?模糊pid控制系统在逐渐应用到人们生产和生活中去?虽然到目前为止?传统的pid控制系统仍然是主流控制系统?技术发展的比较完善?应用范围较广?但随着科技的进步?人们遇到了许多传统pid控制系统不能做得很好甚至无法应用的领域?这就需要尝试模糊pid控制系统4?模糊pid虽然到目前为止还没有传统pid控制系统完善?但它有自身优点?为了搞明白两者的特点?对模糊pid控制系统进行设计并且与传统pid进行比较分析?1设计被控对象为了具体比较传统pid控制器与模糊pid控制器的不同?经过查阅资料选定以炼钢厂炉温的传递函数为被控量?通过具体的生活中的被控对象来比较二者的优缺点?其中传递函数为
PID控制和模糊\神经元PID控制比较研究与仿真

PID控制和模糊\神经元PID控制比较研究与仿真工业控制过程中存在很多复杂的非线性过程、难以建立精确的数学模型,传统控制方法很难实现精度要求。
本文将传统PID控制、模糊PID控制和神经元PID控制方法进行比较分析,进行了仿真结果比较,可以看出智能PID控制具有较大的优势。
标签:PID控制模糊控制神经元PID 仿真现代工业控制中很多被控制对象存在着非线性严重和较大的时间滞后性,难以建立精确的数学模型,用传统PID控制难于达到满意的控制效果。
本文将传统PID控制方法、模糊PID控制和神经元PID控制方法进行比较分析,通过仿真结果,可以看出这智能控制方法的优势。
1 模糊PID控制器设计模糊PID控制是通过计算系统误差e和误差变化ec,进行模糊推理,查询模糊矩阵,对PID三参数进行在线修改,从而使被控对象具有良好的动、静态性能,控制器结构如图1所示。
此模糊控制器为2输入,3输出系统,定义误差e、误差变化ec和Kp,Ki,Kd的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB},物理意义为:{负大,负中,负小,零,正小,正中,正大}。
误差e的基本论域定为[-6,6]、误差变化ec的基本论域为[-3,3],取量化因子Ke=0.5,Kec=1,Kp,Ki,Kd三个参数的比例因子分别为:Kup=1,Kui=0.001,Kud=1,采用最大隶属度法。
2 神经元PID控制器设计单神经元控制具有结构简单、易于计算、自组织、自学习等特点,适合实时控制。
为此在增量式PID控制器基础上设计了神经元自适应PID控制器。
增量式PID控制器算法:Ki为积分系数,Kp为比例增益,Kd为微分系数,△2为差分的平方,△2=1-2z-1+z-2。
控制器结构如图2所示。
图中:rin(k)为设定值,yout(k)为输出值,x1,x2,x3是经转换器转换成为神经元的输入量,w1,w2,w3为对应于x1,x2,x3输入的加权系数,为神经元的比例系数:则单神经元自适应PID的控制算法为:权系数学习规则采用有监督Hebb学习规则,它与神经元的输入、输出和输出偏差三者函数关系如下:式中:ri(k)为递进信号,ri(k)随过程进行逐渐衰减,权系数wi(k)正比于递进信号ri(k);z(k)为输出误差信号,c为智能控制比例因子,η 为学习速率,η>0。
模糊神经网络PID设计方法及其优缺点

模糊神经网络PID设计方法及其优缺点模糊神经网络(FNN)PID设计方法是结合了模糊控制和神经网络技术的一种控制方法。
它将模糊控制的模糊推理和神经网络的学习能力相结合,既保留了模糊控制的灵活性和鲁棒性,又克服了传统模糊控制中参数调整困难的问题。
下面将从模糊神经网络PID设计方法的步骤和优缺点两个方面进行详细介绍。
1.建立模糊控制器:基于经验规则和专家知识,设计出模糊控制器的输入、输出变量和规则库,建立模糊推理机制。
2.构建神经网络:选择合适的神经网络结构,如多层前馈神经网络,确定网络的输入、输出节点数量,并初始化网络权值和偏置。
3.训练神经网络:将模糊控制器的输入、输出与期望的控制效果作为训练样本,通过反向传播算法对神经网络的权值和偏置进行训练优化,使得网络能够逼近模糊控制器的行为。
4.联合优化:通过联合调整模糊控制器的输入输出参数和神经网络的权值和偏置,得到最佳的控制器性能。
1.灵活性强:可以根据具体的控制需求和控制对象进行个性化设计,适用于各种复杂的非线性系统。
2.鲁棒性好:在面对系统参数变化和外部扰动等问题时,模糊神经网络PID控制器能够保持较好的控制性能。
3.自适应性强:模糊神经网络PID控制器具有自学习的能力,能够根据实际控制效果进行调整和优化。
1.参数选择困难:模糊神经网络PID设计涉及到许多参数的选择,如模糊控制器的输入输出变量划分和规则库的设计,神经网络的结构和初始权值等,参数选择不当可能导致控制性能差。
2.计算复杂度高:由于模糊神经网络PID设计方法需要进行模糊推理和神经网络训练,在实际应用中可能会面临计算复杂度高的问题。
3.调试和调整难度大:由于模糊神经网络PID控制器的结构复杂性,需要对模糊控制器的规则库和神经网络的权值和结构进行调试和调整,这增加了工程师的设计、调试和优化难度。
总结起来,模糊神经网络PID设计方法是一种结合了模糊控制和神经网络技术的控制方法,具有灵活性强、鲁棒性好和自适应性强的优点。
模糊控制算法PID算法比较分析

徐磊学号:10310070电气学院控制理论与控制工程专业模糊控制算法PID算法比较分析一:题目对于已知系统的传递函数为:G(S) - e"S,假设系统给定为阶跃值10S+1DR=1,系统的初始值R(0)=0,试分析设计1〉常规的PID控制器2〉常规的模糊控制器3〉比较两种控制器的控制效果当通过改变模糊控制器的比例因子时,分析系统响应有什么变化?二:思路对于模糊控制,采用二维输入,分别是误差e和误差变化率/e,然后通过增益放大,输入到模糊控制器中,然后模糊控制器输出也通过增益放大。
模糊控制器的输入、输出论域取值为[-6,6],隶属度均匀划分为五个区域,隶属度函数采用梯形和三角形函数。
程序框图如下:Scope:程序clear; num=1; den=[10,1];[a1,b,c,d]=tf2ss(num,den); x=[0]; % 状态变量初始T=0.01; % 采样周期h=T;N=10000; % 采样次数td=0.5; % 延时时间Nd=50; % 延时周期R=1*ones(1,N); % 输入信号e=0;de=0;ie=0; % 误差,误差导数,积分kp=12.5;ki=0.8;kd=0.01;for k=1:Nuu(1,k)=-(kp*e+ki*de+kd*ie); %PID 输出序列ifk<=Ndu=0;else u=uu(1,k-Nd);end %龙格库塔法仿真k0=a1*x+b*u;k1=a1*(x+h*k0/2)+b*u; k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2)+b*u; x=x+(k0+2*k1+2*k2+k3)*h/6;y=c*x+d*u;e1=e; e=y(1,1)-R(1,k); de=(e1-e)/T; ie=ie+e*T;yy1(1,k)=y;end %设计模糊控制器a=newfis('Simple');a=addvar(a,'input','e',[-6,6]);a=addmf(a,'input',1,'NB','trapmf',[-6 -6 -5 -3]);a=addmf(a,'input',1,'NS','trapmf',[-5 -3 -2 0]);a=addmf(a,'input',1,'ZR','trimf',[-2 0 2]);a=addmf(a,'input',1,'PS','trapmf',[0 2 3 5]);a=addmf(a,'input',1,'PB','trapmf',[3 5 6 6]);a=addvar(a,'input','de',[-6 6]);a=addmf(a,'input',2,'NB','trapmf',[-6 -6 -5 -3]);a=addmf(a,'input',2,'NS','trapmf',[-5 -3 -2 0]);a=addmf(a,'input',2,'ZR','trimf',[-2 0 2]);a=addmf(a,'input',2,'PS','trapmf',[0 2 3 5]);a=addmf(a,'input',2,'PB','trapmf',[3 5 6 6]);a=addvar(a,'output','u',[-6 6]);a=addmf(a,'output',1,'NB','trapmf',[-6 -6 -5 -3]);a=addmf(a,'output',1,'NS','trapmf',[-5 -3 -2 0]);a=addmf(a,'output',1,'ZR','trimf',[-2 0 2]);a=addmf(a,'output',1,'PS','trapmf',[0 2 3 5]);a=addmf(a,'output',1,'PB','trapmf',[3 5 6 6]); %规则表rr=[5 5 4 4 35 4 4 3 34 4 3 3 24 3 3 2 23 3 2 2 1];r1=zeros(prod(size(rr)),3);% 初始化%r1 赋值k=1;for i=1:size(rr,1)for j=1:size(rr,2)r1(k,:)=[i,j,rr(i,j)];k=k+1;endendr2=ones(25,2); rulelist=[r1,r2];% 得到规则表a=addrule(a,rulelist); e=0;de=0;ie=0;x=[0]; ke=8.5;kd=0.5;ku=2.2;% 增益,比例因子ki=0.01;for k=1:Ne1=ke*e; de1=kd*de;if e1>=6e1=6;elseif e1<=-6e1=-6;endif de1>=6de1=6;elseif de1<=-6de1=-6;endin=[e1 de1];uu(1,k)=ku*evalfis(in,a)-ie*ki;if k<=Ndu=0;elseu=uu(1,k-Nd);endk0=a1*x+b*u; k1=a1*(x+h*k0/2)+b*u;k2=a1*(x+h*k1/2)+b*u; k3=a1*(x+h*k2)+b*u;x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u;yy(1,k)=y;e1=e;e=y-R(1,k);de=(e-e1)/T;end%画图kk=[1:N]*T; figure(1); plot(kk,R,'k',kk,yy,'r',kk,yy1,'b'); xlabel('time');ylabel('output');四:结论运行后,1208-a~~■0.6 •0 402Q r I I I H N I I I I 」'■ 010 20 30 40 50 60 70 80 90 100time如图,红色的为模糊控制输出,蓝色的为PID控制器输出。
基于模糊神经网络的PID控制器设计研究

基于模糊神经网络的PID控制器设计研究在自动控制领域中,PID控制器是应用最广泛的一种控制器,也是控制理论中的基础知识。
PID控制器的优点是简单易用,但是在某些复杂控制系统中,仅仅利用PID控制器进行控制却难以达到较好的控制效果。
由此,设计一套基于模糊神经网络的PID控制器成为了必要的措施。
一、模糊神经网络模糊神经网络“Fuzzy Neural Network”是一种结合了模糊逻辑和神经网络的控制器。
模糊神经网络继承了模糊控制和神经网络的优点,而且还具有简单、直观、适应能力强等优点。
它可以用于解决模糊、不确定性较大的控制问题,因此,被广泛应用于某些环境及时间难以确定的系统,可实现自动控制、诊断、监测等多种功能。
二、PID控制器常见的PID控制器是由比例控制器、积分控制器和微分控制器组成,称为PID控制器。
比例控制器将当前偏差放大后与设定值进行比较,输出控制信号;积分控制器对过去一段时间内的偏差进行积分,用于消除稳态误差;微分控制器则对偏差变化率进行处理,用于快速响应于设定值的变化,并防止超调现象的产生。
三、模糊PID控制器在某些非线性、耦合、时变的系统中,常规PID控制器容易出现“齐次问题”,导致控制效果不佳。
而模糊PID控制器则能够有效的应对这些问题。
模糊PID控制器的核心是模糊化,通过将控制问题中的模糊变量(如偏差、偏差变化率等)映射为隶属函数,降低了控制误差,提高了控制效能。
而神经网络则具有强大的非线性拟合能力,能够处理噪声和非线性问题,完善了模糊PID控制器的输入和输出。
模糊PID控制器的主要设计步骤:(1)模糊化:将输入与输出变量进行模糊化,即将实际控制量按照一定规则进行量化,转化为模糊化的“模糊量”。
(2)知识库:将PID控制器中的三种控制模式(比例、积分、微分)映射为不同的规则模式,构建基于控制规则的知识库。
(3)模糊推理:通过将控制规则进行模糊化处理,实现对控制对象进行控制。
(4)去模糊:将模糊化后的输出信号恢复为实际输出信号,并输出到控制对象中进行控制。
神经pid,模糊pid,常规pid的matlab比较

图4.BP神经网络PID系统输出响应曲线图6. PID 参数自适应模糊控制器系统框图图7.e,ec,Kp,Ki,Kd的隶属度函数通过不断进行仿真实验和借鉴专家经验可以得到如下的49条规则:图8.模糊PID控制系统输出曲线图9.模糊PID控制系统误差曲线图中1为常规整定PID 阶跃响应曲线,2为BP 神经网络PID 阶跃响应曲线,3为模糊自适应整定PID 阶跃响应曲线。
从曲线中以看出,三种PID控制方式中模糊PID几乎没有超调,调节时间短,控制效果最好;BP 网络PID效果次之;都比常规PID 效果好。
比较图5神经PID与图9模糊PID的误差曲线可以看出,模糊PID具有更短的学习时间。
仿真和实验结果均证明了神经网络PID 控制算法能有效地控制大时滞大惯性的温控系统,将神经网络与PID控制相结合,可以在线调整PID控制器的各个参数,减少了凭经验整定参数带来的误差,提高了温控系统的鲁棒性和自适应性。
此外,神经网络PID控制器还能有效的抑制干扰,而且对对象模型要求不高,具有较好的抗干扰性。
同时也可以进一步优化BP神经网络的结构和算法,使温度控制最终趋于最优,更好地满足实际生产对温度控制的要求。
但是由于该控制器的初始权值是随机值,控制输出在开始时波动很大,随着网络的自学习,不断调整权值控制输出来跟踪输入。
由于神经网络收敛速度慢,回到稳定状态所需时间较长,这个问题有待进一步研究解决。
,模糊PID控制响应几乎没有超调,但是响应速度较慢;在模型失配的情况下,模糊PID虽然产生了震荡,超调量也有所增加,但总体来说还能够保持稳定;在添加干扰后,系统持续产生小幅震荡,但超调量很小,系统整体还是稳定的,抗干扰能力强。
参考文献:1、陶永华.新型PID控制及其应用(第二版) [ M].北京:机械工业出版社,2002.2、杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述[ J ].化工自动化及仪表,2 005,32 ( 5 ):1-7 .3、杨智.工业自整定P ID调节器关键设计技术综述[J].化工自动化及仪表,2000,27 ( 2 ):5-10.4、王伟,张晶涛,柴天佑.PID参数先进整定方法综述[ J ].自动化学报,2000,26 (5):347-355.5、何宏源,徐进学,金妮.PID继电自整定技术的发展综述[ J ].沈阳工业大学学报,2005,27 (4):4 09-413.6、叶岚.基于继电反馈的PI D控制器的参数整定[ D].上海:上海交通大学自动化系,2007.7、李少远.基于继电反馈的PID控制器的参数整定[D].上海:上海交通大学自动化系,2007.8、吴泽宁等.BP神经网络的改进及应用[J ].河南科学,2003-4:202 -2069、李遵基编著.热工自动控制系统[M].中国电力出版社,1997.1010、俞海斌,褚健.CFB锅炉汽包水位的专家PID控制[J].机电工程,2000(3):103~10611、潘祥高等.模糊PID控制在工业锅炉控制系统中的应用[J].工业出版社,200412、刘金琨.先进PID 控制MA TLAB仿真M7.2 版.北京电子工业出版社,200413、薛定宇.控制系统计算机辅助设计MA TLAB 语言与应用M7.2 版.北京清华大学出版社,2006常规PID实现程序:clear all;close all;ts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'z oh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;y_3=0;error_1=0;error_2=0;ei=0;for k=1:1:1000time(k)=k*ts;yout(k)=-den(2)*y_1+num(2)*u_6;rin(k)=1;error(k)=rin(k)-yout(k);ei=ei+error(k)*ts;kp=0.03;kd=1;ki=0.004;u(k)=kp*error(k)+kd*(error(k)-error_1)/ts+ki*ei; if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endu_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_3=y_2;y_2=y_1;y_1=yout(k);error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,u,'r');xlabel('time(s)');ylabel('u');BP神经网络PID程序:%BP based PID Controlclear all;close all;xite=0.9;IN=4;H=5;Out=3; %NN Structurewi=[-0.6394 -0.2696 -0.3756 -0.7023;-0.8603 -0.2013 -0.5024 -0.2596;-1.0749 0.5543 -1.6820 -0.5437;-0.3625 -0.0724 -0.6463 -0.2859;0.1425 0.0279 -0.5406 -0.7660];%wi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325;-0.1146 0.2949 0.8352 0.2205 0.4508;0.7201 0.4566 0.7672 0.4962 0.3632];%wo=0.50*rands(Out,H);wo_1=wo;wo_2=wo;wo_3=wo;x=[0,0,0];du_1=0;u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;u_6=0;y_1=0;y_2=0;Oh=zeros(H,1); %Output from NN middle layerI=Oh; %Input to NN middle layererror_2=0;error_1=0;ts=10;for k=1:1:1000time(k)=k*ts;rin(k)=1.0;%Unlinear modelyout(k)=0.9355*y_1+0.0645*u_6;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)-error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi';for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd endkp(k)=K(1);ki(k)=K(2);kd(k)=K(3);Kpid=[kp(k),ki(k),kd(k)];du(k)=Kpid*epid;u(k)=u_1+du(k);dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));%Output layerfor j=1:1:OutdK(j)=2/(exp(K(j))+exp(-K(j)))^2;endfor l=1:1:Outdelta3(l)=error(k)*dyu(k)*epid(l)*dK(l);endfor l=1:1:Outfor i=1:1:Hd_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);endendwo=wo_1+d_wo+alfa*(wo_1-wo_2);%Hidden layerfor i=1:1:HdO(i)=4/(exp(I(i))+exp(-I(i)))^2;endsegma=delta3*wo;for i=1:1:Hdelta2(i)=dO(i)*segma(i);endif k==200u(k)=u(k)+1;endd_wi=xite*delta2'*xi;wi=wi_1+d_wi+alfa*(wi_1-wi_2);%Parameters Updatedu_1=du(k);u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);wo_3=wo_2;wo_2=wo_1;wo_1=wo;wi_3=wi_2;wi_2=wi_1;wi_1=wi;error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');figure(4);subplot(311);plot(time,kp,'r');xlabel('time(s)');ylabel('kp');subplot(312);plot(time,ki,'g');xlabel('time(s)');ylabel('ki');subplot(313);plot(time,kd,'b');xlabel('time(s)');ylabel('kd');模糊PID程序:clear all;close all;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','t rimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %Parameter ec a=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','t rimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','t rimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','t rimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %Parameter kp a=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','t rimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','t rimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','t rimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %Parameter kia=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','t rimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]);a=addmf(a,'output',2,'Z','t rimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','t rimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %Parameter kpa=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','t rimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','t rimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','t rimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 6 2 1 1 1;1 4 6 2 1 1 1;1 5 5 3 1 1 1;1 6 4 4 2 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 1 3 1 1;2 3 6 2 1 1 1;2 4 5 3 2 1 1;2 5 5 3 2 1 1;2 6 4 43 1 1;2 7 34 4 1 1;3 1 6 1 4 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 45 3 2 1 1;3 5 4 4 3 1 1;36 3 5 3 1 1;37 3 5 4 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 3 5 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;5 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 4 7 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 4 2 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','centroid');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PID Controllerts=10;sys=tf([1],[150,1],'inputdelay',50);dsys=c2d(sys,ts,'t ustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;u_4=0.0;u_5=0.0;u_6=0.0;y_1=0;y_2=0;x=[0,0,0]';error_2=0;error_1=0;e_1=0.0;ec_1=0.0;kp0=0.0929;kd0=0.0078;ki0=0.0518;for k=1:1:1000time(k)=k*ts;rin(k)=1;%Using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endif k==200u(k)=u(k)+1;endyout(k)=-den(2)*y_1+num(2)*u_6;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%Return of PID parameters%%%%%%%%%%%%%%% u_6=u_5;u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_2=y_1;y_1=yout(k);x(1)=error(k); % Calculating Px(2)=error(k)-error_1; % Calculating Dx(3)=x(3)+error(k); % Calculating Ie_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u');。
模糊PID控制器的设计及可靠性分析

模糊PID控制器的设计及可靠性分析摘要: PID 控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好及可靠性高,被广泛应用于过程控制和运动控制中,尤其适用于可建立精确数学模型的确定性系统。
然而对于系统惯性大、滞后现象严重,难以建立精确的数学模型,就给控制过程带来很大难题. 本文以电锅炉为研究对象,研究一种最佳的控制方案,以达到系统稳定、调节时间短,超调量小的性能指标。
本文对电锅炉可采用的控制方案进行了深入研究,首选的研究方案是 PID 控制。
温度 PID 控制器的原理,是将温度偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制,PID 控制的重点是参数的调节。
第二个研究方案是模糊控制,研究了模糊控制的机理,确定了电锅炉模糊控制器的结构。
通过对电锅炉温升特点的分析,建立了模糊控制规则表。
借助 matlab 中的 Simulink 和 Fuzzy 工具箱,对电锅炉 PID 控制系统和模糊控制系统进行仿真分析。
结果表明当采用 PID 算法时,系统的超调量与调节时间,不能同时满足技术要求。
当采用模糊控制时,超调量与调节时间虽然同时满足技术要求,但系统出现了稳定误差。
因此本文将模糊控制的智能性与 PID 控制的通用性、可靠性相互结合,设计了一种参数自整定模糊 PID 控制器,采用模糊推理的方法实现 PID 参数 K p 、K i 和 K d 的在线整定。
经仿真研究,参数自整定模糊 PID 控制效果达到了电锅炉温度控制系统的性能指标,是一种较为理想的智能性控制方案。
关键词:PID控制;模糊PID控制;模糊自组织PID控制;参数整定;仿真模糊控制是利用模糊数学的基本思想和理论的控制方法。
在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。
然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。
模糊PID控制系统设计的特点、优势详解

一些医疗检测仪器在检测时需要模拟人体温度环境以确保检测的精确性,本文以STM32为主控制器,电机驱动芯片DRV8834 为驱动器,驱动半导体致冷器(帕尔贴)给散热片加热或者制冷。
但由于常规的温度控制存在惯性温度误差的问题,无法兼顾高精度和高速性的严格要求,所以采用模糊自适应PID控制方法在线实时调整PID参数,计算PID参数Kp、Ki、Kd调整控制脉冲来控制驱动器的使能。
从simulink仿真的和实验结果来看模糊PID控制系统精度高、响应速度快,能达到预期效果。
温度参数是工业生产中常用的被控对象之一,在化工生产、冶金工业、电力工程和食品加工等领域广泛应用,在医疗检测设备中时常需要模拟人体温度进行成分检测。
采用直流电机驱动芯片DRV8834驱动帕尔贴的制冷和加热过程。
温度随时间的变化率和变化的方向不确定且可能大幅度的变化,要求系统的实际温度快速和精确地跟踪设定温度以满足加工工艺的要求。
时间程序温度控制系统具有强烈的非线性、强耦合、大时滞和时变等特点,传统PID控制虽然算法简单易于实现且调整时间较快、精度较高,但是抗干扰能力不强,容易产生振荡;模糊PID不需要精确的数学模型,能较好的处理时变、非线性、滞后等问题,有很好的鲁棒性,响应速度快。
1 过程分析及常规控制方法恒温控制系统具有制冷、加热等功能,箱体内的温度传感器DS18B20通过不断地检测温度,与设置的很定温度作比较,当室内温度低于设置温度值时,加热模块工作,使DRV 8834输出正向直流,驱动帕尔贴元器件,使其加热;当温度高于设置温度值时,使DRV8834输出反向直流,驱动帕尔贴元器件,使其工作在制冷功能。
使室内温度在设定值范围内震荡,最终趋向于稳定。
同时,控制系统将协调控制制冷和加热系统,以达到箱温波动值最小、高精度控温的目标。
所以温度控制成为恒温控制系统的核心问题。
2 模糊PID温度控制系统的硬件电路设计如图1,系统主要包括以下几个部分:1)数字温度传感器:DS18B20是一种“一线总线”接口的温度传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称一.实验目的1.了解掌握传统PID控制原理及其基本的参数整定方法;2.了解掌握模糊控制原理及其优缺点;3.了解掌握神经网络原理及其优缺点;4.掌握将传统PID控制与模糊控制结合、传统PID控制与神经网络控制结合以及将传统PID控制、模糊控制与神经网络控制三者结合起来有效地解决控制问题。
二.实验内容1.分别改变PID参数中的Kp,Ti,Td,比较PID参数对控制系统的影响;2.选取Ziegler-Nichols法则对传统PID经行参数整定;3.选取合适的隶属度函数设计模糊控制PID;4.选取一种合适方式,设计神经网络与模糊控制结合的PID控制器。
三.实验原理1.常规PID原理常规PID控制系统框图如图3-1所示。
控制系统由PID控制器和被对象组成。
图3-1.传统PID控制系统原理图PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差e(t)=r(t)一y(t)将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制,其控制规律为u (t )=K P (e (t )+1T I ∫e (t )dtt0+T D de(t)dt)或写成传递函数形式:G (s )=U(s)E(s)=K p (1+1T is +T d s)式中:Kp ——比例系数;Ti ——积分时间常数;Td 微分时间常数;2.Ziegler-Nichols 法则整定PID基于临界增益Kcr 和临界周期Pcr 的2. Ziegler-Nichols 整定法则3.模糊PID 控制器设计原理模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机智能控制。
模糊控制的基本原理框图如图3-2所示。
它的核心部分为模糊控制器,模糊控制器的控制规律由计算机的程序实现。
实现一步模糊控制算法的过程描述如下:微机经终端采样获取被控制量的精确值,然后将此量与给定值比较得到偏差信号E ,一般选偏差信号E 作为模糊控制器的一个输入量。
把偏差信号E 的精确量进行模糊化变成模糊量。
偏差E 的模糊量可用相应的模糊语言表示,得到偏差E 的模糊语言集合的一个子集e ,再由e 和模糊控制规则R(模糊算子)根据推理的合成规则进行模糊决策,得到模糊控制量U 。
图3-2模糊控制原理图自适应模糊PID控制器是采用一个两输入、三输出的模糊控制器,以偏差e和偏差变化ec作为模糊控制器的输入,利用模糊控制规则在线对PID参数进行修改,并以PID 参数的修正量(△Kp,△Ti,△Td)为输出,以满足不同时刻偏差和偏差变化对PID参数整定的要求。
图3-4.自适应模糊PID控制器系统设计框图我们将系统偏差e和偏差变化ec以及三个输出△Kp、△Ti和△Td的变化范围都定义为模糊集上的论域:e,ec=-6、-4、-2、0,2、4、6,设其模糊子集为e、ec、△Kp、△Ti、△Td;NB、NM、NS、ZO、PS、PM、PB、且设e、ec和△Kp、△Ti、△Td均服从三角形隶属函数曲线分布。
图3-4.e、ec和△Kp、△Ti、△Td的隶属度函数图4.模糊-神经PID控制器设计原理PID 控制适用于可建立精确数学模型的确定性系统,然而实际工业生产过程往往具有非线性、时变不确定性,难以建立精确的数学模型,在实际生产中,常规 PID 控制器参数往往整定不良、性能欠佳,对运行工况的适应性很差。
在 PID 控制器设计中,寻找合适的控制算法来实现 Kp、Ki、Kd 参数的整定至关重要i。
BP 神经网络是目前应用较多的一种神经网络结构,能够实现输入输出的非线性映射关系,具有很好的逼近非线性映射的能力,因此神经网络在运用于工业控制时具有其独特的优势。
本文在研究了基于神经网络的控制器结构和算法的基础上,用改进共扼梯度算法对神经网络控制器参数进行在线整定。
仿真结果表明,这种改进方案不仅能够提高算法在训练过程中的收敛速度,而且训练后的神经网络具有较强的自适应和自学习能力,对控制器参数实现在线整定,从而进一步提高了控制器的性能。
神经网络模糊PID控制器结构如图3—5所示。
图3-5.模糊神经网络PID控制器结构图控制器由三部分组成:1.传统PID控制器,直接对被控对象进行闭环控制。
2.模糊化模块,对系统的状态变量进行模糊量化和归一化处理,再把归一化后的输入数值根据输入变量模糊子集的隶属函数找出相应的隶属度,送给神经网络。
3.神经网络,用于表示模糊规则。
即经过神经网络的学习,将模糊规则以加权系数的形式表现出来,规则的生成就转化为加权系数的确定和修改。
其中输出层神经元的输出就对应于PID控制器的三个可调参数Kp、Ti、Td。
根据系统的运行状态,通过神经网络的自学习和加权系数的调整,来调节PID控制器的参数,以期达到某种性能指标的最优化。
四.实验方法及步骤1.常规PID参数对控制系统的影响系统的开环参数如图4-1所示:图4-1.系统开环传递函数采用传统PID控制,分别改变PID中的参数Kp,Ti,Td,观察比较改变PID参数中的单一参数对被控系统单位阶跃响应曲线的影响。
程序如下:>> grid on;% 改变参数Kp对单位阶跃响应影响>> hold on;>> G=tf(1,[1 6 5 0]);>> a=[0.05 0.1 0.3 0.5 0.8 1.0 1.2 1.5 2.0 4.0];>> for i=1:10 %%改变参数Kp对单位阶跃响应影响Kp=18*a(i); Ti =1.4025; Td=0.3506;Gc=Kp*tf([Ti*Td Ti 1],[Ti 0]);G1=G*Gc; G1_=feedback(G1,1); step(G1_)end>>for i=1:7 %%改变参数Ti对单位阶跃响应影响Kp=18; Ti =1.4025*a(i);Td=0.3506;Gc=Kp*tf([Ti*Td Ti 1],[Ti 0]);G1=G*Gc; G1_=feedback(G1,1); step(G1_)>>end>>a=[0.1 0.25 0.65 1.0 1.7 4.0 8.0];>>for i=1:7 %%改变参数Td对单位阶跃响应影响Kp=18; Ti =1.4025; Td=0.3506*a(i);Gc=Kp*tf([Ti*Td Ti 1],[Ti 0]);G1=G*Gc; G1_=feedback(G1,1); step(G1_);end2.传统PID参数整定方法常规PD控制器的参数整定一般可采用Ziegler-Nichols法、Cohn.Coon 法、衰减曲线法、临界比例度法或经验试凑法(直接通过调试PID控制算法取经验值),离线地找到一组合适的参数KP,KI,KD,使系统基本接近最佳工况。
控制的开环传递函数为图4-1所示,采用Ziegler-Nichols法则计算PID参数为Kcr=30;Pcr=2.8050;则PID擦参数为:Kp=18 ; Ti =1.4025 ; Td=0.3506;根据计算所得参数绘制单位阶跃响应曲线。
>> G=tf(1,[1 6 5 0]);>> Gc=18*tf([Ti*Td Ti 1],[Ti 0]);>> G1=G*Gc; G_=feedback(G,1); G1_=feedback(G1,1);>> step(G_,'-b'); step(G1_,'-r');3.模糊PID控制器设计方法模糊控制器是模糊控制系统的核心。
一个模糊控制系统的性能优劣,主要取决于模糊控制器的结构、所采用的模糊规则、合成推理算法以及模糊决策的方法等因素。
糊控制器的设计主要包括以下几项内容:(1)确定模糊控制器的输入变量和输出变量:(2)设计模糊控制器的控制规则:(3)确立模糊化和解模糊(又称清晰化)的方法;(4)选择模糊控制器的输入变量及输出变量论域并确定模糊控制器的参数如量化因子、比例因子;(5)编制模糊控制算法的应用程序;(6)合理选择模糊控制算法的采样时间。
表4-1.Kp隶属度变化表根据各模糊子集的隶属度赋值表、隶属函数曲线和各参数模糊控制模型,应用模糊合成推理建立PID参数的模糊矩阵表,在线运行,通过微机测控系统通过对模糊逻辑规则的结果处理、查表和运算,对Kp、Ti、Td进行在线自调整。
e=O;de=O;ie=O;m=zeros(1,3);kpl=0.2;kil=0.16;kdl=0.16;x=zeros(1ength(den)-l,1);[a1,b,c,d]=tf2ss(num,den);ke=20;kec=80;ku=O.005;for k=l:Nel=ke*e:del=kec*de;if el>=6el=6;elseif el<=6el=6;endif del>=6del=6;elseif del<=6del=-6:endin=[el,del];m=ku*evams(in,a);n1=O.4*m(1,1);n2=0.32*m(1,2);n3=0.32*m(1,3);kp=kpl+nl;ki=kil+n2;kd=kdl+n3;uu(1,k)=(kp*e+ki*ie+kd*de);u=uu(1,k);k0=al*x+u;kl=al*(x+h*k0/2)+b*u;k2=a1*(x+h*kl/2)+b*u;k3=al*(x+h*k2)+b*u;x=x+(k0+2*kl+2*k2+k3)*h/6;y=c*x+d*u:el=e;e=R(1,k)-y;de=(e-e1)/T;ie=e*T+ie;yy3(1,k)=y;end4.模糊-神经PID控制器设计方法我们分别设计了三个BP网络,其中每一个BP网络都具有如图4-2的结构。
它有两个输入,分别对应系统的偏差e和偏差变化ec,并具有4层隐层和一个输出层,其中第一层隐层的神经元为7个,分别对应输入的7个模糊子集NB,NM,NS,ZO,PS,PM,PB,第二层隐层的神经元取为49个.对应自适应模糊PID控制器的49条规则。
第四层隐层的神经元也为7个,对应输出的7个模糊子集。
我们将输入变量e、ec和3个BP网络的输出变量AKP、AKI、AKD的模糊论域设为[一6,6],模糊子集NB,NM,NS,ZO,PS,PM,PB分别用一6,-4,-2,0,2,4,6来表示,对表4-1,4-2,4-3,所示的模糊控制规则进行训练。
通过BP网络对基手工程实践和专家经验的模糊规则表的训练,相当于寻找从输入e、ec分别到输出△Kp、△Ti、△Td的非线性映射关系,其实质是确定BP网络各层神经元的连接权值和阈值。