刚体的运动学与动力学问题

合集下载

大学物理试题库刚体力学 Word 文档

大学物理试题库刚体力学 Word 文档

大学物理试题库刚体力学 Word 文档大学物理试题库刚体力学word文档第三章刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【】a;各质元具备相同的角速度;b:各质元具备相同的角加速度;c:各质元具备相同的线速度;d:各质元具备相同的角位移。

2、半径为0.2m的飞轮,从静止开始以20rad/s2的角加速度做定轴转动,则t=2s时,飞轮边缘上一点的切向加速度a?=____________,法向加速度an=____________,飞轮转过的角位移为_________________。

3、刚体任何复杂的运动均可理解为_____________和______________两种运动形式的合成。

二、转动惯量1、刚体的转动惯量与______________和___________________有关。

2、长度为l,质量为m的光滑木棒,顾其一端a点旋转时的转动惯量ja=_____________,拖其中心o点旋转时的转动惯量jo=_____________________。

3、半径为r、质量为m的光滑圆盘拖其中心轴(旋转轴盘面)旋转的转动惯量j=___________。

4、【】两个匀质圆盘a和b的密度分别就是?a和?b,若?a??b,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为ja和jb则:(a)ja?jb;(b)ja?jb(c)ja?jb(d)不能确定三、刚体动力学----旋转定理、动能定理、角动量定理、角动量动量1、一短为l的轻质细杆,两端分别紧固质量为m和2m的小球,此系统在直角平面内可以绕开中点o且与杆横向的水平扁平紧固轴(o轴)旋转.已经开始时杆与水平成60°角,处在静止状态.无初输出功率地释放出来以后,杆球这一刚体系统拖o轴旋转.系统拖o轴的转动惯量j=___________.释放出来后,当杆转至水平边线时,刚体受的合外力矩m=______;角加速度______.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩mr外,还受到恒定外力矩m的作用.若m=20nm,轮子对固定轴的转动惯量为j=15kgm2.在t=10s内,轮子的角速度由??=0增大到?=10rad/s,则mr=_______.3、【】银河系有一可以视作物的天体,由于引力汇聚,体积不断膨胀。

分析刚体的运动学和动力学问题

分析刚体的运动学和动力学问题

分析刚体的运动学和动力学问题摘要本文主要介绍了刚体的运动学和动力学问题。

首先,我们介绍了刚体的概念及其特点,解释了什么是刚体运动学和动力学。

其次,我们详细讨论了刚体的运动学问题,包括刚体的位移、速度和加速度的计算方法,以及刚体的角位移、角速度和角加速度的计算方法。

然后,我们深入探讨了刚体的动力学问题,包括刚体的受力分析、刚体平衡条件的推导,以及刚体的动量和动能的计算方法。

最后,我们还介绍了一些常见的刚体运动学和动力学问题,并给出了相应的实例分析。

关键词:刚体,运动学,动力学,位移,速度,加速度,角位移,角速度,角加速度,受力分析,平衡条件,动量,动能1. 引言刚体是物理学中一个重要的概念,广泛应用于力学、工程、机械等领域。

刚体的运动学和动力学问题是研究刚体运动规律的基础,对于理解和应用刚体的运动行为具有重要意义。

2. 刚体的概念及特点刚体是指在外力作用下始终保持形状不变的物体,其内部各个点间的相对位置和相对距离不会发生变化。

刚体的特点是分子之间的相对位置保持不变,相互作用力保持不变,因此刚体具有固定的外形和尺寸。

3. 刚体运动学问题刚体运动学是研究刚体的位置、速度和加速度随时间变化的规律。

对于刚体的位移、速度和加速度的计算,我们可以从两方面来考虑:3.1 刚体的直线运动对于刚体的直线运动,我们可以利用刚体的质心来进行计算。

刚体的质心是所有质点的质量之和与各质点质量的加权平均值。

通过计算刚体的质心的位移、速度和加速度,我们可以得到刚体的直线运动规律。

3.2 刚体的转动运动对于刚体的转动运动,我们需要引入刚体的转动轴和转动角。

刚体的转动轴是通过刚体上的一个点且与刚体的质心相距一定距离的直线。

刚体的转动角是刚体围绕转动轴旋转过的角度。

通过计算刚体的转动角、角速度和角加速度,我们可以得到刚体的转动运动规律。

4. 刚体动力学问题刚体动力学是研究刚体受力分析、平衡条件和动量、动能的变化规律。

对于刚体的受力分析,我们可以利用牛顿第二定律和刚体的转动惯量来进行计算。

第4章刚体的运动学和动力学

第4章刚体的运动学和动力学

P
II
M
d d 2 2 f " (t ) ቤተ መጻሕፍቲ ባይዱt dt
当 β c
0 t 1 2 ( ) t t 0 2 2 2 0 2 ( 0 )
z ω,
与质点的匀加速直线运动公式相象
二. 定轴转动刚体上各点的速度和加速度
端,试计算飞轮的角加速 解 (1) Fr J
(2) mg T ma
rO
T
Fr 98 0.2 39.2 rad/s 2 J 0.5
mgr J mr 2
两者区别
F
mg
Tr J a r
98 0.2 2 21 . 8 rad/s 0.5 10 0.22
例如 T' T
x dx
x
• 在定轴转动中,力矩可用代数值进行计算
T' T
M i TR T' R
M i TR T' r
二. 刚体对定轴的转动定律
实验证明 当 M 为零时,则刚体保持静止或匀速转动 当存在 M 时, 与 M 成正比,而与J 成反比
M J
刚体的转动定律
M kJ
例 一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动,初始时它在水平位置 m l x O 求 它由此下摆 角时的 解 取一质元
M xdm g g xdm

C
mg
dm
M mgxC
1 M mgl cos 2
xdm mxC
重力对整个棒的合力矩等于重力全部 集中于质心所产生的力矩
L x
J
1 x dx ML2 3

刚体转轴知识点总结

刚体转轴知识点总结

刚体转轴知识点总结一、刚体转轴的概念刚体转轴是指刚体绕某一确定点进行旋转运动时的轴线。

在刚体的运动学和动力学中,刚体的旋转运动通常是绕着固定的点或者固定的轴线进行的,而这个固定的点或轴线就被称为刚体的转轴。

在实际应用中,我们经常会遇到刚体转轴的相关问题,比如物体的转动惯量、角动量等。

二、刚体转轴的性质1. 刚体转轴是刚体旋转的轴线,刚体可以绕着转轴进行自旋运动。

2. 对于任意一个刚体的旋转运动来说,都必须存在一个转轴。

3. 刚体的转轴可以是固定的,也可以是随时间变化的。

4. 对于平面刚体来说,其转轴通常是固定的,而对于空间刚体来说,其转轴可以是随着时间变化的。

三、刚体转轴与刚体运动的关系1. 刚体转轴与刚体的自旋运动密切相关,刚体绕着转轴进行自旋运动。

2. 刚体转轴的位置和方向决定了刚体的旋转运动的性质,对于不同位置和方向的转轴,刚体的旋转运动是不同的。

3. 对于不同形状和质量分布的刚体来说,其转轴的位置和方向也是不同的。

四、刚体转轴的应用1. 在机械工程中,刚体转轴广泛应用于各种机械设备和工具中,比如转轴的设计和制造、转轴的定位和安装等。

2. 在航空航天领域,刚体转轴常常用于飞行器和卫星的姿态控制系统中,用来控制飞行器的姿态和稳定性。

3. 在物理学和工程学中,刚体转轴被用来研究停车、转弯、滚动等运动现象,以及相关的力学和动力学问题。

五、刚体转轴的相关定理和定律1. 旋转惯量定理:刚体围绕着转轴做直线运动,它的动能是角动能 -- 这是刚体转动的基本定理。

2. 平行轴定理:将刚体的质心转移到刚体质心轴上的转动惯量,通过一个和刚体质心轴平行的轴线,刚体的转动惯量。

这是把刚体坐标原点转移到质心坐标原点的矢量转换法。

3. 垂直轴定理:刚体被转移到刚体质心轴上的转动惯量通过垂直于刚体的质心轴平行轴的平方。

这个震动也可以通过用刚体质心轴和刚体的垂直轴的垂直轴定理来推导。

4. 平均定理:当刚体平衡的时候,它转动惯量与异常性能合,并等于它的权重力面在平衡上的较小平均动能/较大转动惯量5. 平界定理:当刚体平衡时,它围绕它的质心旋转的转动惯量和围绕其他类的质心转动的转动惯量之间的比率和围绕它的转动惯量之间的比率相等。

大学刚体知识点总结

大学刚体知识点总结

大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。

刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。

这意味着刚体是刚性的,并且不会发生形变。

2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。

(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。

刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。

(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。

在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。

二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。

平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。

2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。

刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。

(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。

刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。

(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。

三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。

转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。

2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。

角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。

(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。

动力学中的质点和刚体质点和刚体的运动规律与特性是什么

动力学中的质点和刚体质点和刚体的运动规律与特性是什么

动力学中的质点和刚体质点和刚体的运动规律与特性是什么动力学中的质点和刚体运动规律与特性动力学是物理学的一个重要分支,研究物体的运动原因、规律以及运动过程中的相互作用。

在动力学中,质点和刚体是常见的研究对象,它们具有不同的特性和运动规律。

本文将就质点和刚体的运动特性和规律进行探讨。

一、质点的运动规律与特性在动力学中,质点是一个理想化的物体,假设它的质量集中于一个点,不考虑其大小和形状。

质点的运动规律可以通过牛顿力学中的运动定律来描述。

1. 质点的第一定律:质点将保持静止或以匀速直线运动,除非受到外力的作用。

这一定律也被称为惯性定律,它说明了质点的惯性属性。

2. 质点的第二定律:当质点受到合外力作用时,它的加速度与所受力成正比,与质点的质量成反比。

具体而言,质点的加速度等于作用在质点上的合外力与质点的质量的比值。

3. 质点的第三定律:对于任意两个相互作用的物体,彼此之间的作用力大小相等、方向相反。

这一定律也被称为作用反作用定律,它将物体的运动视作相互作用的结果。

质点的运动特性包括速度、加速度和位移等。

速度是质点在单位时间内所改变的位置,加速度是质点在单位时间内所改变的速度。

通过运动学方程可以计算质点在运动过程中的速度和加速度,进而得到位移的大小和方向。

二、刚体的运动规律与特性刚体是指在运动过程中,各个质点间的相对位置保持不变的物体。

刚体运动的研究同样遵循牛顿力学中的定律,但相对于质点,刚体又具有一些特殊的运动规律和性质。

1. 刚体的运动学性质:刚体的运动可以通过绕固定轴旋转和平动两种方式进行。

绕固定轴旋转时,刚体上的各个质点围绕轴线进行圆周运动;平动则是刚体的质心沿着直线运动。

2. 刚体的运动动力学性质:刚体的运动规律与质点不同,因为刚体上的各个质点之间存在相互作用力。

在描述刚体运动时,除了质点的运动定律,还需要考虑刚体的转动惯量、角速度和角加速度等概念。

3. 刚体的转动定律:刚体绕固定轴的转动可以通过转动惯量和角动量来描述。

刚体的知识点总结

刚体的知识点总结

刚体的知识点总结一、刚体的概念刚体是物理学中的一个重要概念,它是指在运动或静止过程中,形状和大小不发生改变的物体。

刚体具有以下特点:1. 刚体的分子结构相对固定,对外力的变形能力非常小。

2. 刚体受到外力作用时,其内部分子之间的相对位置发生微小变化,但整体上保持不变。

3. 刚体在变形后会恢复原状,即使外力作用消失后也会保持所受外力时的状态。

刚体的概念在物理学中有重要的应用,在力学、动力学、静力学等领域都有广泛的应用。

二、刚体的基本性质1. 自由度刚体在运动过程中具有自由度的概念,即刚体在空间中的自由度是指其可以围绕固定坐标系的运动方式。

2. 平移运动刚体在空间中可以进行平移运动,即整个刚体的位置随时间发生变化,但其形状和大小保持不变。

3. 旋转运动刚体在空间中也可以进行旋转运动,即围绕某一固定点或者固定轴进行旋转运动,这种运动称为刚体的自由旋转。

4. 刚体的定点定轴运动刚体在空间中也可以进行以某一固定点为中心或者以某一固定轴为旋转轴的运动,这种运动称为刚体的定点定轴运动。

5. 定点定轴自由度刚体在空间中具有三个定点定轴自由度,即刚体的位置可以变化,且可以绕三个固定轴进行旋转运动。

6. 刚体的平移自由度刚体在空间中具有三个平移自由度,即刚体在空间中可以相对于三个坐标轴进行平移运动。

7. 刚体的旋转自由度刚体在空间中具有三个旋转自由度,即刚体在空间中可以绕三个坐标轴进行旋转运动。

以上是刚体的基本性质,了解这些性质有助于我们在物理学研究中更深入地理解刚体的运动规律。

三、刚体的运动学分析1. 刚体的速度刚体在空间中的运动状态可以用速度来描述,刚体的速度分为线速度和角速度。

线速度是描述刚体中任一点的速度,通常用矢量来表示,可以用向量表示。

角速度则是描述刚体的旋转运动状态,通常用矢量来表示,可以用向量表示。

2. 刚体的加速度刚体在运动中会受到外力的影响,导致其速度发生变化,这种速度变化的率就是刚体的加速度。

刚体的静力学与动力学

刚体的静力学与动力学

刚体的静力学与动力学刚体是物理学中的重要概念之一,它是指一类在力的作用下没有形变的物体。

刚体的运动可以通过静力学和动力学来描述。

本文将对刚体的静力学和动力学进行探讨。

一、刚体的静力学静力学研究的是物体在力的作用下处于静止状态的力学性质和规律。

对于刚体的静力学分析,我们需要了解以下几个基本概念和定律。

1. 力矩力矩是刚体静力学中的重要概念,它描述了力对刚体产生转动的效应。

力矩等于力乘以作用点到旋转轴的距离,可以用以下公式表示:M = F × d其中,M表示力矩,F表示力的大小,d表示作用点到旋转轴的距离。

2. 杠杆原理杠杆原理是刚体静力学中的基本原理之一,它描述了力矩的平衡条件。

根据杠杆原理,如果一个杠杆系统在平衡状态下,力矩的总和为零:ΣM = 0即所有力矩的代数和等于零。

3. 平衡条件在刚体的静力学中,平衡条件是指物体在力的作用下保持平衡的条件。

根据平衡条件,刚体在平衡状态下,必须满足以下两个条件:(1) 力的合力为零,即ΣF = 0;(2) 力矩的总和为零,即ΣM = 0。

二、刚体的动力学动力学研究的是物体在力的作用下的运动学性质和规律。

对于刚体的动力学分析,我们需要了解以下几个基本概念和定律。

1. 动量和角动量动量是刚体动力学中的重要概念,它描述了物体的运动状态。

对于一个刚体,其动量等于质量乘以速度,可以用以下公式表示:p = mv其中,p表示动量,m表示质量,v表示速度。

角动量是刚体动力学中与转动相关的物理量,对于一个刚体,其角动量等于惯性矩乘以角速度,可以用以下公式表示:L = Iω其中,L表示角动量,I表示惯性矩,ω表示角速度。

2. 牛顿第二定律牛顿第二定律是刚体动力学的基本定律之一,它描述了力对物体的加速度产生的影响。

对于一个刚体,其受力等于质量乘以加速度,可以用以下公式表示:F = ma其中,F表示力,m表示质量,a表示加速度。

3. 动力学定律刚体的动力学定律包括动量定理和角动量定理。

大学物理刚体习题

大学物理刚体习题

大学物理刚体习题在大学物理的学习中,刚体是一个重要的概念。

刚体是指物体内部各点之间没有相对位移,不发生形变,整体运动状态一致的理想化模型。

在解决物理问题时,刚体的性质为我们提供了极大的便利。

以下是一些常见的大学物理刚体习题。

一、基本概念题1、什么是刚体?列举一些常见的刚体实例。

2、刚体在什么情况下可以被视为刚体?其基本性质是什么?3、描述刚体的运动,并解释相关概念,如转动、角速度、角加速度等。

二、刚体的动力学问题4、一个刚体绕固定轴转动,在某时刻受到一个外力矩的作用,求该刚体接下来的运动状态。

41、一个刚体在平面上做纯滚动,如何计算其加速度和速度?411、一个刚体在重力场中处于平衡状态,求其重心的位置。

三、刚体的静力学问题7、一个刚体受到两个大小相等、方向相反的力作用,求该刚体的平衡状态。

71、一个刚体在平面上受到一个力矩的作用,求该刚体的转动效果。

711、一个刚体在三个不在同一直线上的力作用下处于平衡状态,求该刚体的重心位置。

四、刚体的运动学问题10、一个刚体绕固定轴转动,其角速度与时间成正比,求该刚体的角加速度和转速。

101、一个刚体在平面上做纯滚动,其速度与时间成正比,求该刚体的加速度和转速。

1011、一个刚体受到一个周期性外力矩的作用,求该刚体的运动状态。

以上就是一些常见的大学物理刚体习题。

解决这些问题需要我们深入理解刚体的性质和相关的物理概念,如力、力矩、重心等。

通过这些习题的练习,我们可以更好地掌握刚体的相关知识,提高我们的物理水平。

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

刚体动力学运动学问题专题讲解

刚体动力学运动学问题专题讲解
S
Ml s lS mM
lS
ml S mM
例2质心运动定律来讨论以下问题
一长为l、密度均匀的柔软链条,其单位长度 的质量为λ.将其卷成一堆放在地面.若手提 链条的一端,以匀速v 将其上提.当一端被提 离地面高度为 y 时,求手的提力.
y y yC o
F
c
解:建立图示坐标系
i 竖直方向作用于链条的合外力为
例3
设有一质量为2m的弹丸,从地面斜抛出去,它飞行在
最高点处爆炸成质量相等的两个碎片,其中一个竖直自由下落,另 一个水平抛出,它们同时落地.问第二个碎片落地点在何处?
解:选弹丸为一系统,爆炸前、 后质心运动轨迹不变.建立 图示坐标系.
2m O
m
m1 m2 m x1 0
xC为弹丸碎片落地时质心 离原点的距离. xC
xC
C
xC
m x
x2
m1 x1 m2 x2 m1 m2
x2 2 xC
7
/12
2. 质心运动定理 dri mi miv i drc d t • 质心的速度 vc dt m m
P mvc —— 质点系的总动量
Pi m

质心的加速度和动力学规律
v R
4m gh 2m M R
例题3 一质量为m、半径为R的均质圆柱,在水 平外力作用下,在粗糙的水平面上作纯滚动,力 的作用线与圆柱中心轴线的垂直距离为l,如图所 示。求质心的加速度和圆柱所受的静摩擦力。 解:设静摩擦力 f 的方向如 图所示,则由质心运动方程

l ac
F
圆柱对质心的转动定律:
二、质心
1. 质心
质心运动定理

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

第十三讲刚体的运动和动力学问题 (1)

第十三讲刚体的运动和动力学问题 (1)

第十三讲 刚体的运动学与动力学问题一 竞赛内容提要 1、刚体;2、刚体的平动和转动;3、刚体的角速度和角加速度;4、刚体的转动惯量和转动动能;5、质点、质点系和刚体的角动量;6、转动定理和角动量定理;7、角动量守恒定律。

二 竞赛扩充的内容1、刚体:在外力的作用下不计形变的物体叫刚体。

刚体的基本运动包括刚体的平动和刚体绕定轴的转动,刚体的任何复杂运动均可由这两种基本运动组合而成。

2、刚体的平动;刚体的平动指刚体内任一直线在运动中始终保持平行,刚体上任意两点运动的位移、速度和加速度始终相同。

3、刚体绕定轴的转动;刚体绕定轴的转动指刚体绕某一固定轴的转动,刚体上各点都在与转轴垂直的平面内做圆周运动,各点做圆周运动的角位移Φ、角速度ω和角加速度β相同(可与运动学的s 、v 、a 进行类比)。

且有:ω=t t ∆∆Φ→∆lim 0;β=t t ∆∆→∆ωlim0。

当β为常量时,刚体做匀加速转动,类似于匀加速运动,此时有:ω=ω0+βt ; Φ=Φ0+ω0t+βt 2/2;ω2-ω02=2β(Φ-Φ0)。

式中,Φ0、ω0分别是初始时刻的角位移和角速度。

对于绕定轴运动的刚体上某点的运动情况,有:v=ωR , a τ=βR , a n =ω2R=v 2/R, 式中,R 是该点到轴的距离,a τ、a n 分别是切向加速度和法向加速度。

例1 有一车轮绕轮心以角速度ω匀速转动,轮上有一小虫自轮心沿一根辐条向外以初速度v 0、加速度a 作匀加速爬行,求小虫运动的轨迹方程。

例2 一飞轮作定轴转动,其转过的角度θ和时间t 的关系式为:θ=at+bt 2-ct 3,式中,a 、b 、c 都是恒量,试求飞轮角加速度的表示式及距转轴r 处的切向加速度和法向加速度。

例3 如图所示,顶杆AB 可在竖直槽K 内滑动,其下端由凸轮K 推动,凸轮绕O 轴以匀角速度ω转动,在图示瞬间,OA=r ,凸轮轮缘与A 接触处,法线n 与OA 之间的夹角为α,试求此瞬时顶杆OA 的速度。

大物刚体知识点总结

大物刚体知识点总结

大物刚体知识点总结一、刚体的定义1. 刚体是指物体的形状和体积在力作用下不发生变化的物体。

在刚体下,物体各质点的相对位置和方向保持不变,即不发生变形。

二、刚体的运动1. 刚体的平动运动:平动运动是指刚体的质心随时间变化的运动。

在平动过程中,刚体的形状保持不变,但质心的位置会随时间而发生改变。

2. 刚体的转动运动:转动运动是指刚体沿着固定轴线进行的运动。

在转动过程中,刚体的质点围绕着轴线作圆周运动,形成了转动运动。

三、刚体的运动学1. 刚体的位移:刚体的位移是指刚体在运动过程中位置的变化。

对于平动运动的刚体,位移是指质心位置的变化;对于转动运动的刚体,位移是指刚体围绕轴线旋转的角度。

2. 刚体的速度:刚体的速度是指刚体在单位时间内的位移变化量。

在平动运动中,刚体的速度等于质心的速度;在转动运动中,刚体的速度等于刚体围绕轴线旋转的角速度。

3. 刚体的加速度:刚体的加速度是指刚体速度在单位时间内的变化量。

在平动运动中,刚体的加速度等于质心的加速度;在转动运动中,刚体的加速度等于刚体围绕轴线旋转的角加速度。

四、刚体的动力学1. 刚体的力:刚体受到外力时会发生平动运动或转动运动。

外力可以分为两种:切向力和法向力。

切向力可以使刚体产生转动运动,而法向力可以使刚体产生平动运动。

2. 刚体的力矩:力矩是指外力在刚体上产生转动效果的力。

力矩的大小等于力的大小乘以力臂的长度,方向由右手螺旋定则确定。

3. 刚体的转动惯量:转动惯量是描述刚体对转动运动的惯性大小的物理量。

转动惯量的大小取决于刚体的质量分布和转动轴的位置,通常用I表示。

4. 刚体的角动量:刚体的角动量是描述刚体旋转速度和转动惯量之间的关系的物理量。

角动量的大小等于刚体的转动惯量与角速度之积,通常用L表示。

五、刚体的静力学1. 刚体的平衡:刚体在受力作用下处于平衡状态时,受力点所受的合力和合力矩均为零。

平衡状态分为稳定平衡、不稳定平衡和中立平衡。

2. 刚体的支反力:刚体在受力作用下,支持刚体静止的力叫做支持力,与支持力相抵消的力叫做反力。

机器人的动力学建模

机器人的动力学建模

机器人的动力学建模机器人的动力学是研究机器人在运动过程中的力学特性以及对环境的相互作用的学科。

动力学建模是为了描述机器人的运动过程,从而能够更好地控制和规划机器人的动作。

本文将介绍机器人动力学建模的基本原理和方法。

一、机器人建模的基本原理机器人动力学建模包括刚体的运动学和力学问题。

刚体的运动学描述的是机器人的位置、速度和加速度等与运动有关的几何参数,力学描述的是机器人在运动过程中受到的力和力矩。

1. 刚体的运动学刚体的运动学用来描述机器人的运动状态,包括位置、速度和加速度。

位置可以用位置向量表示,速度用速度向量表示,加速度用加速度向量表示。

2. 刚体的动力学刚体的动力学描述的是机器人在运动过程中受到的力和力矩的关系。

根据牛顿第二定律,机器人所受的合力与加速度成正比,力矩与角加速度成正比。

二、机器人动力学建模的方法机器人动力学建模的方法可以分为数值方法和解析方法两种。

1. 数值方法数值方法是利用数值计算的方法对机器人的动力学进行建模。

常用的数值方法有有限差分法、有限元法和刚体动力学学习等。

2. 解析方法解析方法是利用解析的方式对机器人的动力学进行建模。

解析方法通常会利用数学方程和物理模型来描述机器人的运动过程。

三、机器人动力学建模的应用机器人动力学建模在机器人技术的研究和应用中具有广泛的应用价值。

1. 机器人轨迹规划与运动控制通过对机器人的动力学建模,可以进行机器人的轨迹规划和运动控制。

机器人的轨迹规划是指确定机器人在空间中的路径,使得机器人在运动过程中能够达到预设的位置、速度和加速度要求。

运动控制是指通过对机器人的动力学建模,计算机器人所需施加的力和力矩,从而实现对机器人运动的控制。

2. 机器人力学仿真通过对机器人的动力学建模,可以进行机器人的力学仿真。

力学仿真可以模拟机器人在不同环境下的运动过程,包括受力情况、运动轨迹和力矩分布等。

力学仿真可以帮助机器人设计者更好地了解机器人的动态特性,从而进行机器人的优化设计。

刚体的运动学与动力学问题

刚体的运动学与动力学问题

刚体的运动学与动力学问题(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--刚体的运动学与动力学问题编者按中国物理学会全国中学生物理竞赛委员会 2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从 2002 年起在复赛题与决赛题中使用提要中增补的内容.一、竞赛涉及有关刚体的知识概要1. 刚体在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.2 . 刚体的平动和转动刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.3. 质心质心运动定律质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力 F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.4 . 刚体的转动惯量J刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即J=miri2.从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.5. 描述转动状态的物理量对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=( 1 / 2 )mv2;描述刚体定轴转动状态的物理量有:角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即L=miviri=(miri2)ω=Jω.转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质量为mi,离转轴垂直距离为ri,则其转动动能为( 1 / 2 )mivi2=( 1 / 2 )miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即Ek=( 1 / 2 )(miri2)ω2=( 1 / 2 )Jω2.6 . 力矩M力矩的功W冲量矩I如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即M=Fd.类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.7. 刚体绕定轴转动的基本规律转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是M=ΔL/Δt.转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即W=( 1 / 2 )Jω12-( 1 / 2 )Jω O2.该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即MΔt=L1-L0=Jωt-Jω0.该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表 1 所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.表 1质点的直线运动刚体的定轴转动位移s角位移θ速度vv=Δs/Δt角速度ωω=Δθ/Δt加速度aa=Δv/Δt角加速度αα=Δω/Δt匀速直线运动s=vt匀角速转动θ=ωt匀变速直线运动v1=v0+ats=v0t+( 1 / 2 )at2vt2-v02= 2 as匀变速转动ω1=ω0+αtθ=ω0t+( 1 / 2 )αt2ω t2-ω O2= 2αθ牛顿第二定律F=ma转动定理M=Jα动量定理Ft=mvt-mv0(恒力)角动量定理Mt=Jωt-Jω0动能定理Fs=( 1 / 2 )mvt2-( 1 / 2 )mv02转动动能定理Mθ=( 1 / 2 )Jω t2-( 1 / 2 )Jω O2动量守恒定律mv=常量角动量守恒定律Jω=常量二、确定物体转动惯量的方法物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:1. 从转动惯量的定义来确定对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.例 1 如图 1 所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.图 1分析与解这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/ 2 )·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有J=Ji.图 2现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图 2 所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/n的窄条,则有J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]=m[(h2/n)+(i2/n3)b2]=m(h2+(b2/ 3 )).回到先前的六棱柱薄壳元上,如图 1 所示,由对称性可知其中第i个薄壳元的hi=ia/ 2 n,b=ia/ 2 n.薄壳元对轴OO′的转动惯量是 1 2 J板,即Ji =1 2ρl(a/ 2 n)(ia/ 2 n)[(ia/ 2 n)2+( 1 / 3 )(ia/ 2 n)2].式中,ρ是六棱柱体的密度,即ρ=M/ 6 ×( 1 / 2 )·a2·(/ 2 )l= 2 M/ 3 a2l.则六棱柱体对中心对称轴OO′的转动惯量为J= 1 2 ρl·(a/n)·(/ 2 )·(ia/ 2 n)[((ia/n)·(/2 ))2+( 1 /3 )(ia/ 2 n)]= 1 2 ρl·(a4/ 4 )·(i3/n4)·[ 3 / 4 + 1 / 1 2 ]=( 5 Ma2/ 3 )i3/n4=( 5 Ma2/ 3 )( 1 /n4)( 1 3+ 2 3+…+n3)=( 5 Ma2/ 3 )( 1 /n4)·(n2(n+ 1 )2/ 4 )= 5 Ma2/ 1 2 .2 . 借助于平行轴定理在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中 d 为两轴之间的距离,M为物体的质量.图 3证明:如图 3 所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为J=miri2=mi(Ri2+d2- 2 dRicosθ)=miRi2+mid2- 2 dmiRicosθi.上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md2,M是刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有mixi= 0 ,所以J=JC+Md2.在上述例 1 中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为J′=( 5 / 1 2 )Ma2+Ma2=( 17 / 1 2 )Ma2.3. 运用垂直轴定理对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、 z 轴的转动惯量分别为Jx、Jy、J2,ri是质元到坐标原点的距离.z,可以证明Jx+Jy+Jz= 2 miri图 4证明:如图 4 所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为Jx=mi(yi2+zi2),Jy=(xi2+zi2),Jz=mi(xi2+yi2).则Jx+Jy+Jz= 2 mi(xi2+yi2+zi2)= 2 miri2.这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.例 2 从一个均匀薄片剪出一个如图 5 所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.图 5分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的转动惯量为miri2 = JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则JC+JD= 2 J=JO,JC1+JD1= 2 J1=JO,于是有 2 J= 2 J1,即J1=J.4 . 巧用量纲分析法根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解.例 3 如图 6 甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.图 6分析与解如图 6 (甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为(kM/ 4 )·(l/ 2 )2=kMl2/ 1 6 .如图 6 乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/ 1 6 )+(M/ 4 )D2(两个质心与C轴距离为D的小正方形)或(kMl2/ 1 6 )+(M/ 4 )d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即kMl2= 2 ((kMl2/ 1 6 )+(M/ 4 )D2)+ 2 ((kMl2/ 1 6 )+(M/4 )D2).整理可得( 3 / 2 )kl2=(D2+d2).而由几何关系,可得D=(l/ 2 )·(/ 2 )sin(π/ 4 +α),d=(l/ 2 )·(/ 2 )sin(π/ 4 -α),故有( 3 / 2 )kl2=(l2/ 8 )[sin2(π/ 4 +α)+sin2(π/ 4 -α)],则k= 1 / 1 2 .于是求得正方形木板对过其中心O的轴的转动惯量为J=( 1 / 1 2 )Ml2,且与角α无关.5 .一些规则几何体的转动惯量一些规则几何体的转动惯量如表 2 所示.表 2三、刚体运动问题例析根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.例 4 在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图 7 甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:( 1 )重锤的质量m和滚轮的质量M之比;( 2 )滚轮对平面的最小动摩擦因数.图 7分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.( 1 )当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为( 1 / 2 )MR2,分析滚轮受力情况如图 7 乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有mgtanθ=ma,(mg/cosθ)-T′=ma,则T=T′=m-ma.再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为( 3 / 2 )MR2,对滚轮运用转动定律,有(m-ma)( 1 -(a/))R=( 3 / 2 )MR2·(a/R).解之得m/M= 3 a/ 2 (-a)2.( 2 )对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有f-Tsinθ=Ma,N-Tcosθ=Mg,其中sinθ=a/,cosθ=g/,那么,动摩擦因数满足μ≥f/N=a/g.在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.例 5 如图 8 甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.图 8分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.如图 8 乙所示,设杆 1 在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得I=mvC,由刚体的角动量定理,得I·l/ 2 =Jω=( 1 / 1 2 )ml2ω.则杆 1 的动能为Ek 1 =( 1 / 2 )mvc2+( 1 / 2 )Jω2=( 1 / 2 )m(I/m)2+( 1 / 2 )J(Il/ 2 J)2=(I2/ 2 m)+( 3 I2/ 2 m)= 2 I2/m.如图 8 丙所示为杆 2 的左、右两段受力情况,当在杆 2 左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆 2 左段,有I-I1=(m/ 2 )vC1,(I+I1)·(l/ 4 )=(ml2/ 9 6 )ω1,对杆 2 右段,有I1′=(m/ 2 )vC 2 ,I1′·l/ 4 =(ml2/ 9 6 )ω2.由连接处“不分离”条件得左、右两段的速度与角速度的关系是vC 1 -ω1·(l/ 4 )=ω2·(l/ 4 )+vC 2 ,由以上各式,可得ω1= 1 8 I/ml,ω2=- 6 I/ml,vC 1 = 5 I/ 2 m,vC 2 =I/ 2 m,于是可计算杆 2 的动能为Ek 2 =( 1 / 2 )·(m/ 2 )(vC 1 2+vC 2 2)+( 1 / 2 )·(J/ 2 )(ω12+ω22)= 7 I2/ 2 m.易得 1 、 2 两杆的动能之比为E1∶E2= 4 ∶7 .本题求解中,抓住杆 2 左、右两段连接处速度相同的相关关系,全盘皆活.例 6 形状适宜的金属丝衣架能在如图 9 所示的平面里的几个平衡位置附近做小振幅摆动.在位置甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处摆动周期是多少(第 13 届IPhO试题)图 9图 10分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图 1 0 所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得mgl( 1 -cosθ)=( 1 / 2 )Jω′2.①ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有mgl( 1 -cosθ)=( 1 / 2 )mv2=( 1 / 2 )m(lω)2=( 1 / 2 )m(Aω0)2.②②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A = l),ω0是摆球振动的圆频率.可知ω0=.将①式变形为mgl( 1 -cosθ)=( 1 / 2 )Jω′2=( 1 / 2 )m(l·ω′)2=( 1 / 2 )m(Aω0′)2,比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为ω0′=ω0=,那么复摆的周期公式为T= 2π.图 11由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图 11 所示,质心O到转轴A、B、C的距离设为a、b、c,由图 9 甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有(JO+ma2)/mga=(JO+mc2)/mgc,即(JO-mac)(c-a)= 0 ,显然c≠a,则可知JO=mac;又有(JO+ma2)/mga=(JO+mb2)/mgb,即(JO-mab)(b-a)= 0 ,此式中因c>b,故(JO- mab)≠ 0 ,则必有a=b,即质心位于AB之中点.衣架周期为T = 2π= 2π.根据图 9 标注的尺寸可知a= 5 cm,c=cm≈ 2 1 . 6 cm,代入后得T≈1. 0 3 s.本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.例 7 如图 1 2 所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:( 1 )碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表示;( 2 )碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第 24 届IPhO试题)分析与解( 1 )本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.图 12 图 13如图 13 所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知b = (RA + RB)sinθ.对系统,在法向与切向动量均守恒,即mvsinθ=mvAt+mvBt,mvcosθ=mvAn+mvBn,式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即mvb=JAωA+mvAt(RA+RB)+JBωB,该式中,JA=( 1 / 2 )mRA 2 ,JB=( 1 / 2 )mRB 2 ,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有vAt-ωARA=vBt+ωBRB,根据两盘法向相对速度不变有vcosθ=vBn-vAn.对B盘,由动量定理和角动量定理,摩擦力f的作用是f·Δt=mvBt,f·RB·Δt=JBωB,即mvBtRB=JBω B.由上述六个方程,解得ωA=vsinθ/ 3 RA,ωB=vsinθ/ 3 RB,vAt=( 5 / 6 )vsinθ,ωBt=( 1 / 6 )vsinθ,vAn= 0 ,vBn=vcosθ.碰后两盘的质心速度的x分量分别为vAx=vAtsinθ+vAncosθ=( 5 / 6 )vsin2θ,vBx=vBtsinθ+vBncosθ=( 1 / 6 )vsin2θ+vcos2θ,碰后两盘的质心速度的y分量分别为vAy=vAtcosθ-vAnsinθ=( 5 / 6 )vsinθcosθ,vBy=vBtcosθ-vBnsinθ=-( 5 / 6 )vsinθcosθ,其中sinθ=b/(RA+RB),cosθ=/(RA+RB).( 2 )各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是EA= 3 mv2b2/ 8 (RA+RB),EB=( 1 / 2 )mv2( 1 -( 11 b2/ 1 2 (RA+RB)2)).四、CPhO竞赛训练题1 .如图 1 4 所示,质量为m的均匀圆柱体的截面半径为R,长为2 R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.图 14 图 152 .如图 15 所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J.3 .椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.4 .在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系这是什么样的运动重力加速度为 g .5 .如图 16 所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图1 6 甲所示.然后同时轻轻地与地面相接触,如图 1 6 乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.图 16 图 176 .如图 17 所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:( 1 )碰后系统质心的速度及绕质心的角速度;( 2 )实际的转轴(即静止点)位于何处7 .如图 1 8 所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.图 18 图 198 .如图 19 所示,半径为R的乒乓球绕质心轴的转动惯量为J=( 2 / 3 )mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图 1 8 所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.9 .一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=( 1 / 6 )Ma2.图 201 0 .如图 20 所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=( 5 / 12 )Ma2,相对于棱边的转动惯量是J′=( 17 / 1 2 )Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第 2 9 届IPhO试题)五、训练题简答图 21 图 221 .解:如图2 1 所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有J1+J2+J5=J3+J4+J5,J3=( 1 / 2 )mR2,J4=( 7 / 1 2 )mR2,J1=J2,则J1=J2=( 13 / 24 )mR2.2 .解:将立方体等分为边长为a/ 2 的八个小立方体,依照本文例3 分析法用量纲求解,有kma2= 2 ·k(m/ 8 )(a/ 2 )2+ 6 ·[k(m/ 8 )(a/ 2 )2+(m/ 8 )(a/)2],则k= 1 / 6 ,J=( 1 / 6 )ma2.3 .解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)= 1 ,得JB=mA2-(A2/B2)JA.4 .解:由机械能守恒,得mgs=( 1 / 2 )J(ω t2-ω O2)+( 1 / 2 )m(vt2-v02),又ωt/vt=ω0/v0= 2π/s,可得vt2-v02= 2 m/(( 4π2J/s2)+m)g= 2 g′s.故螺帽沿螺杆竖直向下做匀加速直线运动,有vt=v0+g′t,g′=m/((4π2J/s2)+m).5 .解:两轮相对于地面动量守恒,因为μ1>μ2,轮 1 先做纯滚动,轮 2 做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得2 mv0R= 2 mvtR+ 2 ·( 1 / 2 )mR2ω,又vt=ωR,解得vt=( 2 / 3 )v0,ω= 2 v0/ 3 R,t=ω/α2=ωR/ 2μ2g=v0/ 3 μ2g.6 .解:碰后系统质心位置从杆中点右移为Δx=(m/(M+m))·(l/ 2 ).由质心的动量守恒,求得质心速度为vC=(m/(M+m))v0.由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/ 6 处,ω= 6 mv0/(M+ 4 m)l.7 .解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/ 9 .8 .解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得mRvC 0 -Jω0=mRvC+Jω,即vC 0 -vC=( 2 / 3 )R(ω0+ω),达到纯滚动时,有vC=Rω,可得到纯滚时质心速度为vC=( 3 / 5 )vC 0 -( 2 / 3 )Rω0.其中,若vC 0 >( 2 / 3 )Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC 0 <( 2 / 3 )Rω0,则纯滚动后,球向左逆时针方向做纯滚动.质心做匀加速运动,达到纯滚时间设为t,由vC=vC 0 -μgt,可得t= 2 (vC 0 +Rω0)/ 5 μg.9 .解:原薄方板对悬点的转动惯量J0=( 2 / 3 )Ma2,粘上质量为m的质点后有J=( 2 /3 )Ma2+m·x2.振动周期相同,应有J0/Mgl=J/(M+m)gl′,l′=(mx+Ml)/(M+m),l=(/ 2 )a,解得x=( 2 / 3 )a.1 0 .解:设以某棱为轴转动时间Δt,此碰撞瞬间前后的角速度分别为ωi、ωf,时间短,忽略重力冲量及冲量矩,知矢量关系如图23 所示.图 23对质心有NΔt=Ma(ωf-ωi)sin 3 0 °,-fΔt=Ma(ωf-ωi)cos 3 0 °,对刚体有fΔtacos 3 0 °-NΔtasin 3 0 °=( 5 / 1 2 )Ma2(ωf-ωi).解得ωf=( 11 / 17 )ωi,s= 11 / 17 ,r=s2= 1 2 1 / 28 9 .21。

刚体物理知识点总结

刚体物理知识点总结

刚体物理知识点总结一、刚体的定义及特性1. 刚体的定义刚体是指在外力作用下,形状和尺寸不发生变化的物体。

一般来说,刚体是指没有内部相对运动的物体。

2. 刚体的特性刚体有以下几个特性:a. 物体的形状和尺寸在运动过程中不发生变化;b. 物体的不同部分之间不发生相对位移;c. 在极端条件下,刚体也会发生形变,但可以看作是不可压缩的。

二、刚体的平动和转动1. 刚体的平动刚体的平动是指刚体作直线运动的情况。

在平动的过程中,刚体上各点的速度都是相同的,这是因为刚体的各点不能相对位移,所以只能做整体平移运动。

2. 刚体的转动刚体的转动是指刚体作圆周运动的情况。

在转动的过程中,刚体各点的速度和加速度都不相同,这是因为刚体的各点在转动时会有相对位移,出现了圆周运动。

三、刚体的运动学1. 刚体的位移刚体的位移是指刚体某一点经过一定时间后的位置变化,可以用矢量来表示。

2. 刚体的速度刚体的速度是指刚体某一点的位移随时间的变化率,通常表示为瞬时速度或平均速度。

3. 刚体的加速度刚体的加速度是指刚体某一点的速度随时间的变化率,可以用矢量来表示。

4. 刚体的角位移、角速度和角加速度在刚体的转动运动中,还涉及到角位移、角速度和角加速度的概念。

角位移是指刚体某一点的角度随时间的变化量,角速度是指刚体某一点的角位移随时间的变化率,而角加速度是指刚体某一点的角速度随时间的变化率。

四、刚体的动力学1. 牛顿定律在刚体运动中的应用刚体的运动过程中会受到外力的影响,根据牛顿定律可以得到刚体的运动规律。

在刚体的运动过程中,如果受到的合外力不为零,刚体将发生加速度,根据牛顿第二定律可以得到加速度的大小和方向。

2. 刚体的转动惯量和角动量在刚体的转动运动中,需要引入转动惯量和角动量的概念。

转动惯量是衡量刚体抵抗转动的能力大小,它是刚体的质量分布和转动轴的位置决定的。

角动量是刚体的转动运动的物理量,它是刚体的转动惯量和角速度的乘积。

3. 常见刚体的运动条件在刚体的运动过程中,还需要考虑摩擦力、滚动摩擦力、空气阻力等对刚体运动的影响。

分析刚体的运动学和动力学问题

分析刚体的运动学和动力学问题

分析刚体的运动学和动力学问题下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!刚体是物理学中的一个重要概念,它在运动学和动力学中起着重要的作用。

大学物理练习一

大学物理练习一

练习一 力学(质点和刚体、运动学和动力学)一、选择题:1.某质点的运动方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿X 轴正方向. (B)匀加速直线运动,加速度沿X 轴负方向. (C)变加速直线运动,加速度沿X 轴正方向.(D)变加速直线运动,加速度沿X 轴负方向. 2.某物体的运动规律为t kv t v 2d d -=,式中的k 为大于零的常数.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是(A)0221v kt v +=(B)0221v kt v +-= (C)021211v kt v += (D)021211v kt v +-=.3.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A)θcos mg . (B)θsin mg . (C)θcos mg . (D) θsin mg. 4.如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A)g . (B)2/g . (C)3/g . (D)5/4g . 5.对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒?(A)合外力为0. (B)合外力不作功.(C)外力和非保守内力都不作功. (D)外力和保守内力都不作功.6.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G .则当它从距地球中心1R 处下降到2R 处时,飞船增加的动能应等于 (A)2R GMm (B)22R GMm(C)2121R R R R GMm - (D)2121R R R GMm - (E)222121R R R R GMm - 7.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A)动能不变,动量改变. (B)动量不变,动能改变. (C)角动量不变,动量不变.(D)角动量改变,动量改变. (E)角动量不变,动能、动量都改变.8.光滑的水平桌面上有长为l 2、质量为m 的匀质细杆,可绕过其中点O 且垂直于桌面的竖直固定轴自由转动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体的运动学与动力学问题编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002 年起在复赛题与决赛题中使用提要中增补的内容.一、竞赛涉及有关刚体的知识概要1. 刚体在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.2 . 刚体的平动和转动刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.3. 质心质心运动定律质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.4 . 刚体的转动惯量J刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即J=miri2.从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.5. 描述转动状态的物理量对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1 /2 )mv2;描述刚体定轴转动状态的物理量有:角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即L=miviri=(miri2)ω=Jω.转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质量为mi,离转轴垂直距离为ri,则其转动动能为(1 /2 )mivi2=(1 /2 )miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即Ek=(1 /2 )(miri2)ω2=(1 /2 )Jω2.6 . 力矩M力矩的功W冲量矩I如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即M=Fd.类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.7. 刚体绕定轴转动的基本规律转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是M=ΔL/Δt.转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即W=(1 /2 )Jω12-(1 /2 )JωO2.该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即MΔt=L1-L0=Jωt-Jω0.该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表1 所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.表1质点的直线运动刚体的定轴转动位移s角位移θ速度vv=Δs/Δt角速度ωω=Δθ/Δt加速度aa=Δv/Δt角加速度αα=Δω/Δt匀速直线运动s=vt匀角速转动θ=ωt匀变速直线运动v1=v0+ats=v0t+(1 /2 )at2vt2-v02=2 as匀变速转动ω1=ω0+αtθ=ω0t+(1 /2 )αt2ω t2-ωO2=2αθ牛顿第二定律F=ma转动定理M=Jα动量定理Ft=mvt-mv0(恒力)角动量定理Mt=Jωt-Jω0动能定理Fs=( 1 /2 )mvt2-(1 /2 )mv02转动动能定理Mθ=(1 / 2 )Jωt2-( 1 /2 )JωO2动量守恒定律mv=常量角动量守恒定律Jω=常量二、确定物体转动惯量的方法物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:1. 从转动惯量的定义来确定对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.例1 如图1 所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.图 1分析与解这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/ 2 )·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有J=Ji.图 2现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图2 所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/n的窄条,则有J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]=m[(h2/n)+(i2/n3)b2]=m(h2+(b2/ 3 )).回到先前的六棱柱薄壳元上,如图1 所示,由对称性可知其中第i个薄壳元的hi=ia/2 n,b=ia/ 2 n.薄壳元对轴OO′的转动惯量是1 2 J板,即Ji=1 2ρl(a/2 n)(ia/2 n)[(ia/2 n)2+(1 /3 )(ia/ 2 n)2].式中,ρ是六棱柱体的密度,即ρ=M/6 ×(1 /2 )·a2·(/2 )l=2 M/3 a2l.则六棱柱体对中心对称轴OO′的转动惯量为J=1 2 ρl·(a/n)·(/2 )·(ia/2 n)[((ia/n)·(/ 2 ))2+(1 / 3 )(ia/ 2 n)]= 1 2 ρl·(a4/ 4 )·(i3/n4)·[3 /4 + 1 /1 2 ]=( 5 Ma2/3 )i3/n4=( 5 Ma2/3 )(1 /n4)(1 3+2 3+…+n3)=( 5 Ma2/3 )(1 /n4)·(n2(n+1 )2/4 )= 5 Ma2/1 2 .2 . 借助于平行轴定理在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中d 为两轴之间的距离,M为物体的质量.图 3证明:如图3 所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为J=miri2=mi(Ri2+d2- 2 dRicosθ)=miRi2+mid2-2 dmiRicosθi.上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md2,M是刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有mixi=0 ,所以J=JC+Md2.在上述例1 中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为J′=(5 /1 2 )Ma2+Ma2=(17 /1 2 )Ma2.3. 运用垂直轴定理对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、z 轴的转动惯量分别为Jx、Jy、Jz,可以证明Jx+Jy+Jz=2 miri2,ri是质元到坐标原点的距离.图 4证明:如图4 所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为Jx=mi(yi2+zi2),Jy=(xi2+zi2),Jz=mi(xi2+yi2).则Jx+Jy+Jz=2 mi(xi2+yi2+zi2)=2 miri2.这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.例2 从一个均匀薄片剪出一个如图5 所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.图 5分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的转动惯量为miri2 = JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则JC+JD=2 J=JO,JC1+JD1=2 J1=JO,于是有 2 J=2 J1,即J1=J.4 . 巧用量纲分析法根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解.例3 如图6 甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.图 6分析与解如图6 (甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为(kM/4 )·(l/2 )2=kMl2/1 6 .如图 6 乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/1 6 )+(M/ 4 )D2(两个质心与C轴距离为D的小正方形)或(kMl2/1 6 )+(M/ 4 )d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即kMl2=2 ((kMl2/1 6 )+(M/4 )D2)+2 ((kMl2/1 6 )+(M/ 4 )D2).整理可得( 3 /2 )kl2=(D2+d2).而由几何关系,可得D=(l/ 2 )·(/ 2 )sin(π/4 +α),d=(l/2 )·(/2 )sin(π/4 -α),故有( 3 /2 )kl2=(l2/8 )[sin2(π/ 4 +α)+sin2(π/4 -α)],则k= 1 /1 2 .于是求得正方形木板对过其中心O的轴的转动惯量为J=(1 /1 2 )Ml2,且与角α无关.5 .一些规则几何体的转动惯量一些规则几何体的转动惯量如表2 所示.表2三、刚体运动问题例析根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.例4 在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图7 甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:(1 )重锤的质量m和滚轮的质量M之比;(2 )滚轮对平面的最小动摩擦因数.图7分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.(1 )当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为( 1 /2 )MR2,分析滚轮受力情况如图7 乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有mgtanθ=ma,(mg/cosθ)-T′=ma,则T=T′=m-ma.再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为( 3 /2 )MR2,对滚轮运用转动定律,有(m-ma)(1 -(a/))R=(3 /2 )MR2·(a/R).解之得m/M= 3 a/ 2 (-a)2.(2 )对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有f-Tsinθ=Ma,N-Tcosθ=Mg,其中sinθ=a/,cosθ=g/,那么,动摩擦因数满足μ≥f/N=a/g.在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.例5 如图8 甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.图8分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.如图8 乙所示,设杆1 在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得I=mvC,由刚体的角动量定理,得I·l/ 2 =Jω=(1 /1 2 )ml2ω.则杆 1 的动能为Ek1 =( 1 /2 )mvc2+(1 /2 )Jω2=( 1 /2 )m(I/m)2+(1 /2 )J(Il/ 2 J)2=(I2/2 m)+( 3 I2/2 m)= 2 I2/m.如图8 丙所示为杆2 的左、右两段受力情况,当在杆2 左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆 2 左段,有I-I1=(m/2 )vC1,(I+I1)·(l/4 )=(ml2/9 6 )ω1,对杆 2 右段,有I1′=(m/2 )vC2 ,I1′·l/4 =(ml2/9 6 )ω2.由连接处“不分离”条件得左、右两段的速度与角速度的关系是vC1 -ω1·(l/4 )=ω2·(l/4 )+vC2 ,由以上各式,可得ω1=1 8 I/ml,ω2=-6 I/ml,vC1 =5 I/2 m,vC2 =I/2 m,于是可计算杆 2 的动能为Ek2 =(1 /2 )·(m/2 )(vC1 2+vC2 2)+(1 /2 )·(J/2 )(ω12+ω22)=7 I2/2 m.易得 1 、2 两杆的动能之比为E1∶E2=4 ∶7 .本题求解中,抓住杆2 左、右两段连接处速度相同的相关关系,全盘皆活.例6 形状适宜的金属丝衣架能在如图9 所示的平面里的几个平衡位置附近做小振幅摆动.在位置甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处?摆动周期是多少?(第13 届IPhO试题)图9图10分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图 1 0 所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得mgl( 1 -cosθ)=( 1 /2 )Jω′2.①ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有mgl(1 -cosθ)=(1 /2 )mv2=(1 /2 )m(lω)2=( 1 /2 )m(Aω0)2.②②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A= l),ω0是摆球振动的圆频率.可知ω0=.将①式变形为mgl(1 -cosθ)=(1 /2 )Jω′2=(1 /2 )m(l·ω′)2=( 1 /2 )m(Aω0′)2,比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为ω0′=ω0=,那么复摆的周期公式为T=2π.图11由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图11 所示,质心O到转轴A、B、C的距离设为a、b、c,由图9 甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有(JO+ma2)/mga=(JO+mc2)/mgc,即(JO-mac)(c-a)=0 ,显然c≠a,则可知JO=mac;又有(JO+ma2)/mga=(JO+mb2)/mgb,即(JO-mab)(b-a)=0 ,此式中因c>b,故(JO- mab)≠0 ,则必有a=b,即质心位于AB之中点.衣架周期为T= 2π=2π.根据图9 标注的尺寸可知a=5 cm,c=cm≈2 1 .6 cm,代入后得T≈1. 0 3 s.本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.例7 如图1 2 所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:(1 )碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表示;(2 )碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第24 届IPhO试题)分析与解(1 )本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.图12 图13如图13 所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知b= (RA+ RB)sinθ.对系统,在法向与切向动量均守恒,即mvsinθ=mvAt+mvBt,mvcosθ=mvAn+mvBn,式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即mvb=JAωA+mvAt(RA+RB)+JBωB,该式中,JA=( 1 /2 )mRA 2 ,JB=(1 /2 )mRB 2 ,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有vAt-ωARA=vBt+ωBRB,根据两盘法向相对速度不变有vcosθ=vBn-vAn.对B盘,由动量定理和角动量定理,摩擦力f的作用是f·Δt=mvBt,f·RB·Δt=JBωB,即mvBtRB=JBω B.由上述六个方程,解得ωA=vsinθ/3 RA,ωB=vsinθ/3 RB,vAt=(5 /6 )vsinθ,ωBt=(1 /6 )vsinθ,vAn=0 ,vBn=vcosθ.碰后两盘的质心速度的x分量分别为vAx=vAtsinθ+vAncosθ=(5 /6 )vsin2θ,vBx=vBtsinθ+vBncosθ=(1 /6 )vsin2θ+vcos2θ,碰后两盘的质心速度的y分量分别为vAy=vAtcosθ-vAnsinθ=(5 /6 )vsinθcosθ,vBy=vBtcosθ-vBnsinθ=-(5 /6 )vsinθcosθ,其中sinθ=b/(RA+RB),cosθ=/(RA+RB).(2 )各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是EA=3 mv2b2/8 (RA+RB),EB=( 1 /2 )mv2( 1 -(11 b2/ 1 2 (RA+RB)2)).四、CPhO竞赛训练题1 .如图1 4 所示,质量为m的均匀圆柱体的截面半径为R,长为2 R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.图14 图152 .如图15 所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J.3 .椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.4 .在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g .5 .如图16 所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图 1 6 甲所示.然后同时轻轻地与地面相接触,如图1 6 乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.图16 图176 .如图17 所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:( 1 )碰后系统质心的速度及绕质心的角速度;( 2 )实际的转轴(即静止点)位于何处?7 .如图1 8 所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.图18 图198 .如图19 所示,半径为R的乒乓球绕质心轴的转动惯量为J=(2 /3 )mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图 1 8 所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.9 .一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=( 1 /6 )Ma2.图201 0 .如图20 所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=( 5 /12 )Ma2,相对于棱边的转动惯量是J′=(17 /1 2 )Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第 2 9 届IPhO试题)五、训练题简答图21 图221 .解:如图2 1 所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有J1+J2+J5=J3+J4+J5,J3=(1 /2 )mR2,J4=(7 /1 2 )mR2,J1=J2,则J1=J2=(13 /24 )mR2.2 .解:将立方体等分为边长为a/2 的八个小立方体,依照本文例3 分析法用量纲求解,有kma2= 2 ·k(m/8 )(a/2 )2+6 ·[k(m/8 )(a/2 )2+(m/8 )(a/)2],则k= 1 /6 ,J=( 1 / 6 )ma2.3 .解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)=1 ,得JB=mA2-(A2/B2)JA.4 .解:由机械能守恒,得mgs=(1 /2 )J(ωt2-ωO2)+(1 /2 )m(vt2-v02),又ωt/vt=ω0/v0=2π/s,可得vt2-v02= 2 m/((4π2J/s2)+m)g= 2 g′s.故螺帽沿螺杆竖直向下做匀加速直线运动,有vt=v0+g′t,g′=m/((4π2J/s2)+m).5 .解:两轮相对于地面动量守恒,因为μ1>μ2,轮1 先做纯滚动,轮2 做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得2 mv0R=2 mvtR+2 ·(1 /2 )mR2ω,又vt=ωR,解得vt=(2 /3 )v0,ω=2 v0/3 R,t=ω/α2=ωR/2μ2g=v0/3 μ2g.6 .解:碰后系统质心位置从杆中点右移为Δx=(m/(M+m))·(l/2 ).由质心的动量守恒,求得质心速度为vC=(m/(M+m))v0.由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/6 处,ω=6 mv0/(M+ 4 m)l.7 .解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/9 .8 .解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得mRvC0 -Jω0=mRvC+Jω,即vC0 -vC=(2 / 3 )R(ω0+ω),达到纯滚动时,有vC=Rω,可得到纯滚时质心速度为vC=( 3 /5 )vC0 -( 2 /3 )Rω0.其中,若vC0 >(2 /3 )Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC0 <(2 /3 )Rω0,则纯滚动后,球向左逆时针方向做纯滚动.质心做匀加速运动,达到纯滚时间设为t,由vC=vC0 -μgt,可得t=2 (vC0 +Rω0)/5 μg.9 .解:原薄方板对悬点的转动惯量J0=(2 /3 )Ma2,粘上质量为m的质点后有J=(2 /3 )Ma2+m·x2.振动周期相同,应有J0/Mgl=J/(M+m)gl′,l′=(mx+Ml)/(M+m),l=(/2 )a,解得x=( 2 / 3 )a.1 0 .解:设以某棱为轴转动时间Δt,此碰撞瞬间前后的角速度分别为ωi、ωf,时间短,忽略重力冲量及冲量矩,知矢量关系如图23 所示.图23对质心有NΔt=Ma(ωf-ωi)sin3 0 °,-fΔt=Ma(ωf-ωi)cos3 0 °,对刚体有fΔtacos3 0 °-NΔtasin3 0 °=(5 /1 2 )Ma2(ωf-ωi).解得ωf=(11 /17 )ωi,s=11 /17 ,r=s2=1 2 1 /28 9 .。

相关文档
最新文档