磁性材料的基础知识的讲座ppt课件
合集下载
磁性材料——研究生课程PPT课件

e:涡流损耗系数;a:磁滞损耗系数;c是不依赖于f的常数,
来自由磁后效或频散引起的损耗。
*总损耗W既决定于材料,也决定于交变磁场的f和Bm, 因此 讨论W指标时,应注明f和Bm。 ①涡流损耗
*涡流是在迅速变化的磁场中的导体内部产生的感生电流,
因其流线呈闭合漩涡状而得名。f越高,涡流越大。
*涡流不能象导线中的电流那样输送出去,仅使磁芯发 热造成能量损耗。 *一个周期内材料的涡流损耗
*Ni:75%~83%范围时,具有最佳的综合磁性能,但这一范围 时BS较低。 *应用:可用作在弱磁场下具有很高的铁芯材料和磁屏蔽材 料;也可用作要求低剩磁和恒磁导率的脉冲变压器材料;还可 用作各种磁致伸缩合金、热磁合金、矩磁合金等。
2.1.4其它软磁合金 ①铁铝合金
*优点:价格低;通过调解铝的含量,可以获得满足不同要求的
单位磁场强度在磁体中感生的磁化强度。 ⑤磁导率:μ=B/H
单位磁场强度在磁体中感生的磁感应强度。
1.2磁性参量
①初始磁导率:
i
1
B lim H H 0
0
②最大磁导率:
max
1
0
(B H
) max
③饱和磁感应强度Bs:其大小取决于材料的成分,它所
对应的物理状态是材料内部的磁化矢量整齐排列。
④剩余磁感应强度Br:是磁滞回线上的特征参数,H回
*电工纯铁存在时效现象
原因:高温时铁固溶体内溶解有较多的碳或氮,产品快速 冷却到室温时,溶解度减小,Fe3C或Fe4N由固溶体中以细
微弥散形式析出,从而HC增加,i降低。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施, 这样在650-300℃之间Fe3C有足够的时间析出、长大为对磁 性能影响不大的大颗粒夹杂物。
来自由磁后效或频散引起的损耗。
*总损耗W既决定于材料,也决定于交变磁场的f和Bm, 因此 讨论W指标时,应注明f和Bm。 ①涡流损耗
*涡流是在迅速变化的磁场中的导体内部产生的感生电流,
因其流线呈闭合漩涡状而得名。f越高,涡流越大。
*涡流不能象导线中的电流那样输送出去,仅使磁芯发 热造成能量损耗。 *一个周期内材料的涡流损耗
*Ni:75%~83%范围时,具有最佳的综合磁性能,但这一范围 时BS较低。 *应用:可用作在弱磁场下具有很高的铁芯材料和磁屏蔽材 料;也可用作要求低剩磁和恒磁导率的脉冲变压器材料;还可 用作各种磁致伸缩合金、热磁合金、矩磁合金等。
2.1.4其它软磁合金 ①铁铝合金
*优点:价格低;通过调解铝的含量,可以获得满足不同要求的
单位磁场强度在磁体中感生的磁化强度。 ⑤磁导率:μ=B/H
单位磁场强度在磁体中感生的磁感应强度。
1.2磁性参量
①初始磁导率:
i
1
B lim H H 0
0
②最大磁导率:
max
1
0
(B H
) max
③饱和磁感应强度Bs:其大小取决于材料的成分,它所
对应的物理状态是材料内部的磁化矢量整齐排列。
④剩余磁感应强度Br:是磁滞回线上的特征参数,H回
*电工纯铁存在时效现象
原因:高温时铁固溶体内溶解有较多的碳或氮,产品快速 冷却到室温时,溶解度减小,Fe3C或Fe4N由固溶体中以细
微弥散形式析出,从而HC增加,i降低。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施, 这样在650-300℃之间Fe3C有足够的时间析出、长大为对磁 性能影响不大的大颗粒夹杂物。
磁性材料的认识与应用(PPT)

磁畴结构
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
磁性功能材料培训课件(ppt72页).pptx

抗磁性物质:He,Ne,Ar,H2,N2,C,Si, Ge等
(2)顺磁性
χ:10-4-10-5
顺磁性物质的磁结构及磁化率随温度的变化
顺磁性:
原子磁矩的方向是紊乱的;在外加磁场作用下趋于 沿外场方向排列,使磁质沿外场方向产生一定强度 的附加磁场。
磁化率虽小,但大于零。磁化强度随温度的升高而
下降。
顺磁金属主要有Mo,Al,Pt,Sn等。
对于3d金属及合金:λs约为 10-5—10-6。
第一节 铁磁学基础
1.1 物质的磁性 (一) 物质的磁性 磁矩 (二) 基本磁参量 (三) 物质磁性分类 (四) 磁化曲线 磁滞回线 (五) 磁晶各向异性 (六) 磁致伸缩
1.2 磁化过程与技术磁参量 1.3 磁性材料分类
第一节 铁磁学基础
(3)反铁磁性
χ:10-2-10-4
反铁磁性物质的磁结构及磁化率随温度的变化
反铁磁性:
磁化率和温度的关系在涅耳点(TN)有一转折。在TN点以下
为反铁磁性,χ随温度升高而升高。在TN以上,χ随温度升
高而下降,表现如顺磁性行为。
反铁磁性物质中有A、B两个次晶格,其原子磁矩反平行 排列,且大小相等,自发磁化强度相互抵消,总磁矩为零 。
铁磁性物质: ①Fe、Co、Ni等纯金属。某些稀土元素如Gd(钆gá)等 ②含Fe、Co、Ni的合金及化合物; ③某些过渡元素组成的合金。
(5)亚铁磁性
χ : 102 – 106
亚铁磁性物质的磁结构及磁化率随温度的变化
亚铁磁性:
也有两个次晶格,其自发磁化的磁矩方向相反,但大小不等, 总的磁矩为两反平行排列磁矩的和,不为零。
(2) AB阶段,M 随H 急剧增长, 不可逆畴壁移动过程
(2)顺磁性
χ:10-4-10-5
顺磁性物质的磁结构及磁化率随温度的变化
顺磁性:
原子磁矩的方向是紊乱的;在外加磁场作用下趋于 沿外场方向排列,使磁质沿外场方向产生一定强度 的附加磁场。
磁化率虽小,但大于零。磁化强度随温度的升高而
下降。
顺磁金属主要有Mo,Al,Pt,Sn等。
对于3d金属及合金:λs约为 10-5—10-6。
第一节 铁磁学基础
1.1 物质的磁性 (一) 物质的磁性 磁矩 (二) 基本磁参量 (三) 物质磁性分类 (四) 磁化曲线 磁滞回线 (五) 磁晶各向异性 (六) 磁致伸缩
1.2 磁化过程与技术磁参量 1.3 磁性材料分类
第一节 铁磁学基础
(3)反铁磁性
χ:10-2-10-4
反铁磁性物质的磁结构及磁化率随温度的变化
反铁磁性:
磁化率和温度的关系在涅耳点(TN)有一转折。在TN点以下
为反铁磁性,χ随温度升高而升高。在TN以上,χ随温度升
高而下降,表现如顺磁性行为。
反铁磁性物质中有A、B两个次晶格,其原子磁矩反平行 排列,且大小相等,自发磁化强度相互抵消,总磁矩为零 。
铁磁性物质: ①Fe、Co、Ni等纯金属。某些稀土元素如Gd(钆gá)等 ②含Fe、Co、Ni的合金及化合物; ③某些过渡元素组成的合金。
(5)亚铁磁性
χ : 102 – 106
亚铁磁性物质的磁结构及磁化率随温度的变化
亚铁磁性:
也有两个次晶格,其自发磁化的磁矩方向相反,但大小不等, 总的磁矩为两反平行排列磁矩的和,不为零。
(2) AB阶段,M 随H 急剧增长, 不可逆畴壁移动过程
磁性材料的基础知识讲座剖析课件

磁导率和磁阻的变化规律
随着温度和磁场强度的变化,材料的磁导率和磁阻也会产生变化, 呈现出一定的非线性特征。
磁化强度与磁感应强度
01
02
03
磁化强度
指材料内部磁矩的矢量和 ,衡量材料被磁化的程度 。
磁感应强度
指磁场中某点磁场的强弱 和方向,与磁化强度密切 相关。
两者关系
在磁性材料中,磁感应强 度和磁化强度之间存在一 定的关系,可以通过物理 公式进行描述。
化学气相沉积法制备的磁性材料具有高纯度、高密度、高性能等特点,广泛应用于 磁记录、传感器等领域。
化学气相沉积法的优点是可控制膜层的成分和厚度,且工艺温度低、可制备形状复 杂的制品。缺点是设备成本高、工艺时间长,且需要严格控制反应条件。
溅射法
溅射法是一种制备磁性材料的方法,通 过将靶材置于真空室内,利用高能粒子 轰击靶材表面,使靶材原子或分子溅射 出来并沉积在基材上形成薄膜。
元素掺杂
通过在磁性材料中掺入其他元素,以改变其磁学性质。例如,通过掺入稀土元 素,可以提高磁性材料的磁能积和剩磁。
热处理与磁场处理
热处理
通过控制加热和冷却过程,改变磁性材料的晶体结构和相变 ,从而优化其磁学性能。例如,通过控制热处理条件,可以 提高磁性材料的矫顽力和稳定性。
磁场处理
在磁场中处理磁性材料,可以改变其内部的磁畴结构和磁矩 方向,从而优化其磁学性能。例如,通过磁场处理,可以减 小磁性材料的磁损耗和提高磁导率。
磁性材料的基础知识讲座剖析课件
目录
• 磁性材料概述 • 磁性材料的物理性质 • 磁性材料的制备工艺 • 磁性材料的性能优化 • 磁性材料的发展趋势与挑战
01
磁性材料概述
定义与特性
1 2
随着温度和磁场强度的变化,材料的磁导率和磁阻也会产生变化, 呈现出一定的非线性特征。
磁化强度与磁感应强度
01
02
03
磁化强度
指材料内部磁矩的矢量和 ,衡量材料被磁化的程度 。
磁感应强度
指磁场中某点磁场的强弱 和方向,与磁化强度密切 相关。
两者关系
在磁性材料中,磁感应强 度和磁化强度之间存在一 定的关系,可以通过物理 公式进行描述。
化学气相沉积法制备的磁性材料具有高纯度、高密度、高性能等特点,广泛应用于 磁记录、传感器等领域。
化学气相沉积法的优点是可控制膜层的成分和厚度,且工艺温度低、可制备形状复 杂的制品。缺点是设备成本高、工艺时间长,且需要严格控制反应条件。
溅射法
溅射法是一种制备磁性材料的方法,通 过将靶材置于真空室内,利用高能粒子 轰击靶材表面,使靶材原子或分子溅射 出来并沉积在基材上形成薄膜。
元素掺杂
通过在磁性材料中掺入其他元素,以改变其磁学性质。例如,通过掺入稀土元 素,可以提高磁性材料的磁能积和剩磁。
热处理与磁场处理
热处理
通过控制加热和冷却过程,改变磁性材料的晶体结构和相变 ,从而优化其磁学性能。例如,通过控制热处理条件,可以 提高磁性材料的矫顽力和稳定性。
磁场处理
在磁场中处理磁性材料,可以改变其内部的磁畴结构和磁矩 方向,从而优化其磁学性能。例如,通过磁场处理,可以减 小磁性材料的磁损耗和提高磁导率。
磁性材料的基础知识讲座剖析课件
目录
• 磁性材料概述 • 磁性材料的物理性质 • 磁性材料的制备工艺 • 磁性材料的性能优化 • 磁性材料的发展趋势与挑战
01
磁性材料概述
定义与特性
1 2
磁性材料专题教育课件

磁性半导体材料和磁敏材料和器件能够应用于遥感、遥则技术和
机器人。人们正在研究新旳非晶态和稀土磁性材料(如钕铁合金)。 磁性液体已进入实用阶段。
另外,某些新旳物理和化学效应旳发觉(如拓扑效应)也给新磁 性材料旳研制和应用(如磁声和磁热效应旳应用)提供定性。
硬磁材料
2.硬磁材料及其应用
(1)稀土硬磁材料:这是目前最大磁能积最高旳 一大类硬磁材料,为稀土族元素和铁族元素为 主要成份旳金属互化物(又称金属间化合物)。 如钕铁硼稀土合金硬磁材料。
(2)金属硬磁材料:这是一大类发展和应用都较 早旳以铁和铁族元素(如镍、钴等)为主要组元 旳合金型硬磁材料,主要有铝镍钴(AlNiCo)系 和铁铬钴(FeCrCo)系两大类硬磁合金。
电机定子铁芯
变压器铁芯
三.硬磁材料
硬磁材料又称永磁材料,是指被外磁场磁化后, 去掉外磁场后仍能保持着较强旳剩磁旳材料。
1.组织构造与磁性 能关系
1)性能指标:.矫顽 力Hc,剩磁Br,最大磁能 积(BH)m,居里温度Tc, 剩余磁化强度Mr。
2)硬磁材料旳4大特 征:高旳矫顽力,高旳剩
余磁通密度和高旳剩余磁
常用旳磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
铁粉芯 铁粉芯是磁性材料四氧化三铁旳通俗说法,主要应用于电器回
路中处理电磁兼容性(EMC)问题。即用来消除电器回路中因为多 种不同原因产生旳杂波,辐射。
如下图是由铁粉芯制成旳磁环,当一定波段旳杂波经过磁环时, 磁环旳电磁特征造成这一波段旳电流被转化为磁力以及部分热量从 而被消耗掉。来到达降低杂波旳目旳。
(3)铁氧体硬磁材料:这是以Fe2O3为主要组元 旳复合氧化物强磁材料(狭义)和磁有序材料如 反铁磁材料(广义)。其特点是电阻率高,尤其 有利于在高频和微波应用。如钡铁氧体 (BaFe12O19)和锶铁氧体(SrFe12O19)等都有诸 多应用。
机器人。人们正在研究新旳非晶态和稀土磁性材料(如钕铁合金)。 磁性液体已进入实用阶段。
另外,某些新旳物理和化学效应旳发觉(如拓扑效应)也给新磁 性材料旳研制和应用(如磁声和磁热效应旳应用)提供定性。
硬磁材料
2.硬磁材料及其应用
(1)稀土硬磁材料:这是目前最大磁能积最高旳 一大类硬磁材料,为稀土族元素和铁族元素为 主要成份旳金属互化物(又称金属间化合物)。 如钕铁硼稀土合金硬磁材料。
(2)金属硬磁材料:这是一大类发展和应用都较 早旳以铁和铁族元素(如镍、钴等)为主要组元 旳合金型硬磁材料,主要有铝镍钴(AlNiCo)系 和铁铬钴(FeCrCo)系两大类硬磁合金。
电机定子铁芯
变压器铁芯
三.硬磁材料
硬磁材料又称永磁材料,是指被外磁场磁化后, 去掉外磁场后仍能保持着较强旳剩磁旳材料。
1.组织构造与磁性 能关系
1)性能指标:.矫顽 力Hc,剩磁Br,最大磁能 积(BH)m,居里温度Tc, 剩余磁化强度Mr。
2)硬磁材料旳4大特 征:高旳矫顽力,高旳剩
余磁通密度和高旳剩余磁
常用旳磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
铁粉芯 铁粉芯是磁性材料四氧化三铁旳通俗说法,主要应用于电器回
路中处理电磁兼容性(EMC)问题。即用来消除电器回路中因为多 种不同原因产生旳杂波,辐射。
如下图是由铁粉芯制成旳磁环,当一定波段旳杂波经过磁环时, 磁环旳电磁特征造成这一波段旳电流被转化为磁力以及部分热量从 而被消耗掉。来到达降低杂波旳目旳。
(3)铁氧体硬磁材料:这是以Fe2O3为主要组元 旳复合氧化物强磁材料(狭义)和磁有序材料如 反铁磁材料(广义)。其特点是电阻率高,尤其 有利于在高频和微波应用。如钡铁氧体 (BaFe12O19)和锶铁氧体(SrFe12O19)等都有诸 多应用。
磁性材料基本参数详解课件.ppt

磁饱和性: B不会随H的增强而无限增强,H增大到 一定值时,B不能继续增强。
磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变,铁心在交变磁场中反复磁化的过 程中,B的变化总是滞后于H的变化,这种现象称为磁 滞性;当H减为零时B并不为零。
磁性材料基本参数详解课件
磁性参数与测量:磁导率μ (1)
磁芯损耗 (Pcv) Kw/m3
25℃ 60℃ 100℃
1100 800 600
600 450 410
600 400 300
570 250 460
350 250 660
600 400 250
130﹡ 80﹡ 80﹡
680
320
350
290
饱和磁通量密 (Bs)mT
25℃ 60℃ 100℃
520
440
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降
(tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (3)
变温度,在这个温度磁
μi
性材料的磁性将变得很
μi
80% μi
小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着
温度升高,磁导率下降
到最大值的80%及20%
20% μi
时,两点的联线,延长
到与温度轴的交点即为
居里温度。
Tc
T
磁性材料基本参数详解课件
磁性参数与测量:其它参数
磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变,铁心在交变磁场中反复磁化的过 程中,B的变化总是滞后于H的变化,这种现象称为磁 滞性;当H减为零时B并不为零。
磁性材料基本参数详解课件
磁性参数与测量:磁导率μ (1)
磁芯损耗 (Pcv) Kw/m3
25℃ 60℃ 100℃
1100 800 600
600 450 410
600 400 300
570 250 460
350 250 660
600 400 250
130﹡ 80﹡ 80﹡
680
320
350
290
饱和磁通量密 (Bs)mT
25℃ 60℃ 100℃
520
440
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降
(tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
磁性材料基本参数详解课件
磁性参数与测量:磁损耗 (3)
变温度,在这个温度磁
μi
性材料的磁性将变得很
μi
80% μi
小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着
温度升高,磁导率下降
到最大值的80%及20%
20% μi
时,两点的联线,延长
到与温度轴的交点即为
居里温度。
Tc
T
磁性材料基本参数详解课件
磁性参数与测量:其它参数
磁性材料基础知识-ppt课件

求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0
4π
Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
磁性材料的认识与应用(PPT)教学资料

磁铁氧体6 万吨、永磁铁氧体8 万吨、钕铁硼磁体2000 吨。
总之, 从市场发展看, 中国长期在全球磁 性材料市场发展前景是乐观的。
六
1.磁材行业经过“七·五”、“八·五”技术改造, 不少厂家引进了 美、日、德、意等国先进生产线或生产线关键设备, 大都取得了
、
较好的经济效益和社会效益, 但个别单位受骗上当, 交了学费, 尤 其是二手设备的引进, 容易失误。
(1) 铁硅合金: 最常用的软磁材料, 常用作低频变压器、 发电机的铁芯;
铁硅合金
低频变压器
(2)铁镍合金:典型代表材料为坡莫合金,具有高 的磁导率(磁导率μ为铁硅合金的10~20倍)、低的损 耗;并且在弱磁场中具有高的磁导率和低的矫顽力, 但力学性能不太好,通常应用于电子材料;
坡莫合金
电压互感器
最大磁能积:最大磁能积是退磁曲线上磁感应强度(B)和磁场强度 乘积(H)的最大值。这个值越大,说明单位体积内存储的磁能越大, 材料的性能越好。
四、磁性材料的应用
1.永磁材料
永磁材料经磁化后,去除外磁场仍保留磁性,其 性能特点是具有高的剩磁、高的矫顽力。永磁材料包 括铁氧体和金属永磁材料两类。
铁氧体的用量大、应用广泛、价格低,但磁性能 一般,用于一般要求的永磁体。金属永磁材料中钕铁 硼(Nb-Fe-B)稀土永磁,钕铁硼磁体不仅性能优, 而且不含稀缺元素钴,作为稀土永磁材料发展的最新 结果,由于其优异的磁性能而被称为“磁王”。
磁化电流,以至于零,那么该材料得磁化过程就是一连串逐渐缩小而最 终趋于原点的环状曲线,如图2所示。当H减小到零时,B亦同时降为零, 达到完全退磁。
3.磁材料常用的性能参数
饱和磁感应强度Bm:其大小取决于材料的成分,它所对应的物理状态是材 料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bm。 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、 应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密 切相关。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时, 自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器 件工作的上限温度。 磁滞损耗 :铁磁材料在磁化过程中由磁滞现象引起的能量损耗 ,降低磁 滞损耗Ph的方法是降低矫顽力Hc 。
第1章磁学与磁性材料基础知识PPT课件精选全文完整版

( )
H
d
=
NxM xi
+ NyMy
j
+ NzMzk
( )
Fd
=
1 2
m0
N
x
M
2 x
+
N
yM
2 y
+
NzM
2 z
N x + N y + N z = 1
球体:Fd = (1/ 6)m0M 2
( ) 细长圆柱体:Fd = (1/ 4)m0 M x2 + M y2
薄圆板片:Fd = (1/ 2)m0M z2
适用条件:磁体内部均匀一致,磁化均匀。
16
1.2. 材料的磁化
▼磁化曲线
表示磁场强度H与所感生的B或M之间的关系 O点:H=0、B=0、M=0,磁中性或原始退磁状态 OA段:近似线性,起始磁化阶段 AB段:较陡峭,表明急剧磁化 H<Hm时,二曲线基本重合。 H>Hm后,M逐渐趋于一定值 MS(饱和磁化强度),而B 则仍不断增大(原因?) 由B-H(M-H)曲线可求 出μ或 χ
FeO, MnO, NiO, CoO, Cr2O3, FeCl2, FeF2, MnF2, FeS, MnS
右图是1938 年测到的MnO 磁化率温度曲线,它是被 发现的第一个反铁磁物质, 转变温度 122K。
38
T
p
该表取自Kittel 书2005中文版p236,从中看出反铁磁物质的 转变温度一般较低,只能在低温下才观察到反铁磁性。
2
磁极和电流周围都存在磁场,磁场可以用磁力线表示:
磁力线特点:
从N极出发,进入与其最邻近的S极,并形成闭合回路; 通常呈直线或曲线,不存在呈直角拐弯的磁力线; 任意二条同向磁力线之间相互排斥,因此不存在相交的磁力线;
磁性材料ppt课件

磁性是自然科学史上最古老的现象之一
磁性材料是最早被人类认识和利用的功能材料,伴随了人类 文明的发展。 人类对于磁性材料的最初认识源于天然磁石。 公元前三世纪《管子》:“上有慈石者,下有铜金。” 《吕氏春秋》九卷精通篇:“慈招铁,或引之也。”
磁铁矿(Fe3O4) 或磁赤铁矿(γ-Fe2O3)
指南针——磁性材料的最早应用
物质磁性:
物质放入磁场中会表现出不同的磁学特性,称为物质的磁性。
4. 材料磁性的分类及应用
(1) 物质磁性的分类
按物质在磁场中的表现:磁化率的正负、大小及其与温度 的关系来进行分类, 在晶状固体里,共发现了五种主要类型的磁结构物质,它 们的形成机理和宏观特征各不相同,对它们的成功解释形成 了今天的磁性物理学核心内容。 70 年代以后——非晶材料和纳米材料——新的磁性类型,
➢
W. Gilbert 《De Magnete》磁石,最早的著作
➢18世纪 奥斯特 电流产生磁场
➢
法拉弟效应 在磁场中运动导体产生电流
➢
安培定律 构成电磁学的基础, 开创现代电气工业
➢1907年 P. Weiss的磁畴和分子场假说
➢1928年 海森堡模型,用量子力学解释分子场起源
➢1931年 Bitter在显微镜下直接观察到磁畴
基本特征是存在一个磁性转变温度,在此点磁化率温度关系 出现峰值。
文献中也绘成磁化率倒数和温度关系的:
1磁
化 率
表
现
复
杂
Tp
TC
T (K )
铁磁性 T p TC
低温下表现为反铁磁性的物质,超过磁性转变温度
(一般称作Neel温度)后变为顺磁性的,其磁化率温度
关系服从居里-外斯定律: = C
第三章(磁性材料)ppt课件

磁感应强度 /T,不小于 B10 B25 B50 1.71 B100 1.80
不大于 96 72 48 32
1.40 1.50 1.62
B5、B10、B25、B50和B100分别表示H 为500、1000、2500、5000和10000A/m时
的磁感应强度值。
第三章 磁性材料-§3.1 软磁材料
2、影响电工用纯铁性能的因素及改善性能的方法
第三章 磁性材料-§3.1 软磁材料
电工用纯铁的磁性
磁性 等级 普级 高级 特级 超级 牌号 DT3, DT4, DT5, DT6 DT3A, DT4A, DT5A, DT6A DT4E, DT6E DT4C, DT6C Hc /A· m1
m /10-3H· m-1
不小于 7.50 8.75 11.30 15.00 B5
第三章 磁性材料-§3.1 软磁材料
二、软磁材料的基本性能要求
贮能高:要求单位体积贮存的磁能量高。
磁性参量的要求:高的Bs或Br。 灵敏度高:要求在弱磁场中对信号有高灵敏性。
B Br Bs
磁性参量的要求:高的i和m。
效率高:要求在磁场中工作时具有低的磁滞损耗 和涡流损耗。
-Hc O
磁各向异性减小
磁致伸缩效应降低 脆性增大,加工性能差
综合考虑: Si% ≤ 4%
第三章 磁性材料-§3.1 软磁材料
3、高斯织构硅钢片
结构特点:
易磁化方向[100]与轧制方向平行 55 [110] 难磁化方向[111]与轧制方向成55角 横向 中等磁化方向[110]与轧制方向成90角 高斯织构硅钢片具有磁各向异性,沿[100](轧制方向)磁性能最佳。
第三章(磁性材 料)
第三章 磁性材料
磁性材料的基础知识讲座课件

磁性材料的分类
总结词
磁性材料可以根据其磁化强度的不同分为硬磁材料和 软磁材料两类。
详细描述
硬磁材料是指那些具有高剩磁、高矫顽力和高磁能积 的材料,如铁氧体、稀土永磁材料等。这些材料具有 较高的磁能积和矫顽力,因此能够保持较强的剩磁状 态,常用于制造永磁体。软磁材料则是指那些具有低 矫顽力和低剩磁的材料,如硅钢片、纯铁、低碳钢等 。这些材料在磁场中被磁化后容易退磁,因此常用于 制造变压器、电机等需要频繁改变磁场方向的电器设 备。
低成本化与环保化生产
01
02
03
资源勤俭
优化生产工艺,降低生产 成本,提高磁性材料的资 源利用率。
环保材料
研发可降解或可回收的磁 性材料,减少对环境的污 染和破坏。
节能减排
降低生产过程中的能耗和 排放,推广绿色生产技术 。
新应用领域的拓展与开发
新能源领域
利用磁性材料在新能源领域如风 能、太阳能等领域的应用,推动
磁性材料在核磁共振成像 中的应用
核磁共振成像是一种重要的医学检测手段, 而磁性材料在其中扮演着关键角色。超导磁 体是核磁共振成像系统的核心部件,其性能 直接影响到成像质量。随着技术的不断发展 ,对超导磁体的性能要求也越来越高,研究 和开发具有更高磁场强度和稳定性的磁性材
料是未来的重要研究方向。
THANK YOU
感谢各位观看
02
磁性材料的物理性质
磁化曲线与磁滞回线
磁化曲线
描述了材料在磁场变化时磁化强 度与磁场强度的关系。
磁滞回线
表示磁场强度与磁感应强度的关 系,反应了磁性材料在周期性变 化磁场中的磁化过程。
磁导率与矫顽力
磁导率
描述了材料在磁场中的导磁能力,是 衡量材料磁性能的重要参数。
磁性材料及其应用PPT课件(2024版)

磁制冷材料
磁制冷是一种以磁性材料为工质的制冷技术 ,基本原理 是借助磁制冷材料的磁热效应(magnetocaloric effect) 即磁制冷材料等温磁化时向外界放出热量,而等温退磁 时从外界吸取热量,以达到制冷目的
环境友好:无环境污染和破坏 高效节能: 卡诺循环效率可达到 60~70% 稳定可靠
r
0
铁磁物质的相对磁导率
材料 钴 镍 软钢
硅钢片 未经退火的铸铁
已经退火的铸铁
相对磁导率 174
1 120 2 180 7000~10000
240
620
材料 镍铁合金 真空中融化的电解铁 坡莫合金 铝硅铁粉芯 锰锌铁氧体 镍铁铁氧体
相对磁导率 60 000 12 950 115 000 7 5000
用于核磁共振成像仪及磁选 机等的烧结NdFeB永磁材料
各种规格的环形烧结 NdFeB永磁材料
外径Ф3mm~Ф160mm;
内径:Ф1mm~Ф140mm
各种规格的圆片形烧结NdFeB 永磁材料
尺寸范围:外径Ф2mm- Ф160mm;
厚度:0.3mm-60mm
各种规格的圆片形烧结NdFeB
永磁材料
尺寸范围:外径Ф2mm- Ф160mm;
的单位是:亨利/米(H/m)。 不同的物质磁导率不同。
在相同的条件下, 值越大,磁感应强度 B 越大,
磁场越强; 值越小,磁感应强度 B 越小,磁场越弱。
真空中的磁导率是一个常数,用 0 表示 0 = 4 107 H/m
(2)、 相对磁导率
为便于对各种物质的导磁性能进行比较,以真空
磁导率 0 为基准,将其他物质的磁导率 与 0 比较, 其比值叫相对磁导率,用 r 表示,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 表现在性能参数上就是硬磁材料的Br和Hcj很大而且是越大越好, 而软磁材料它的磁导率高,Br特别是Hcj很小、一般的认为是 Hcj<0.8KA/m的材料为软磁材料,而以Hcj>0.8KA/m的材料为硬磁 材料,一般的磁性材料中都含有Fe、Ni、Co三种元素中的一种或 几种。
1
磁性材料的发展:
发明年代 材料名称
3
二、磁性材料的磁性能参数:
• 剩磁Br:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的磁化强度或磁感应 强度,Mr或Br,就是在退磁曲线上磁场强度降为零时显示的磁性能。
• 矫顽力:铁磁体磁化到饱和以后,使它的磁化强度或磁感应强度降低到零所需要 的反向磁场称为矫顽力,分别记作Hcj和Hcb。
• 磁能积BH:表示磁性材料在其退磁曲线上任意一点工作时,能向外部磁路提供的 能量。永磁材料的使用一般都是利用它在磁场源或者说是磁力源在空气隙中产生 的磁场,而磁能积是表征它在空气隙中产生磁场大小的一种参量,因此它是非常 关键的一参数。
• 曲线的方形度Hk/Hcj:Hk指的是J=0.9Br时相对应的磁场,Hk/Hcj可以直 观的表示J退磁曲线方形度。
• 回复磁导率μrec:当磁体受到一个周期的外界反磁场后,它的磁性要下 降,当外磁场消失后它也不能完全回到原来的位置而是要下降一定的值, 此时磁体的工作点将在退磁曲线以下形成一个小回路,不能和退磁曲线 重合,我们称此小回路的斜率为回复磁导率μrec。这个值一般都大于1 它越接近1说明磁体的抗退磁能力越强,越有利。
• 磁体的工作温度Tw:在某一温度下,永磁材料的磁性能指标与室 温相比降低一规定的幅度,将该温度称为磁体的可工作温度。由 于磁性能的这一降低幅度需要视该磁体的应用条件及要求而定, 因此,所谓的磁体的可工作温度Tw对于同一磁体来说是一个待定 值,也就是说,同一永磁体在不同的应用场合可以有不同的可工 作温度。一般的,我们认为磁体在该温度下保温100个小时磁性能 下降在5%之内便认为是合适的。
• 磁体的不可逆损失:磁体经过一定的温度和时间加热后,它的性 能要下降一定的值,称此下降的部分为磁性不可逆损失。
一、磁性材料的定义、种类、特点和用途:
• 定义:可用于制造磁功能器件的强磁性材料称为磁性材料。有硬 磁、软磁、磁薄膜、磁致伸缩材料等。其中应用最广的是硬磁材 料和软磁材料。
• 硬磁材料:是指在外磁场的作用下(即充磁)会带上磁性,外磁 场消失后磁性仍然存在的一种材料。
• 软磁材料:是在外磁场的作用下会带上磁性,外磁场消失后它的 磁性也会跟着消失的一种材料。
4
磁性材料的磁性能参数(2)
• 磁体的表磁或磁通:表磁是指磁体的表面磁场;磁通是指通过线圈单位 面积磁力线的根数。磁体磁参数的测量一般是对规则的圆柱或方块来进 行的,对于一个已加工好的磁性器件因为它的面积已经很难计算得非常 精确,就只能是通过表磁或磁通来反映它磁性能的强弱了。这是大部分 购买磁体的厂家所关心的问题,一般的,磁体沿充磁方向的厚度越厚其 表磁和磁通也会相应增高。
4300
20
15000 40
Tc(℃)
750 750 750 800 800 700 800 465 465 500 40
• 铁氧体:廉价品,应用非常普遍,但性能低 • 铝镍钴:在指针式仪表中占主导地位,年产不到一万吨,工作温度在
450~550℃度内都可以正常工作,是可工作温度最高的一种磁体,但镍、 钴是战略物资价格非常高,而且受国际国内的政治局势影响大; • 钐钴:在军用品和高档消费品中占主导地位,年产1—2千吨,和铝镍钴 相比钐钴的价格更高;但在一些对性能要求很高,而使用温度也很高的 地方就只能使用钐钴,SmCo5工作温度为250℃,Sm2Co17的工作温度在 350℃,因此它仍然会有一定的市场,否则以它的价格早就该淘汰了; • 铂钴:主要在飞机“黑匣子”中应用,产量很少; • 钕铁硼:在电子计算机及其外围设备中已占主导地位;它的磁性最强, 被称为永磁王,价格中等,在表面镀层的保护下,稳定性良好,也就是 说它的性价比最高,综合性能最好,它的应用是越来越广,在很多地方 只要不受温度限制,都有取代其它磁钢的趋势。
• Hg=(BHVm/Vg)1/2=((BH)mVm/Vg)1/2 • 其中Hg指气隙磁场, • Vg指气隙体积 • Vm指磁体的体积 • 由上式可知:气隙磁场强度Hg和(BH)max成平方根的关系,当气隙体积Vg和气隙
磁场强度Hg为一定的情况下,(BH)max大时,磁体的体积Vm可缩小,这也就是现 在很多的电子产品能越做越小的一个原因,如手机现在可以越做越小,有很大的 一个原因是手机上的蜂鸣器磁钢可以做得很小,以前的收音机喇叭要那么大的一 个磁钢,你想把它做得很小本身就是不可能的一件事
成分
十九世纪
十九世纪末 二十世纪初
1940年代 1950年代
1965 1972 1940 1960 1960 1980 1983
碳钢 钨钢 钴钢 铝镍钴5
铝镍钴8、9 钐钴(1:5) 钐钴(2:17)
钡铁氧体 锶铁氧体
铂钴 铂铁 钕铁硼
CFe WFe CoFe AlNiCo AlNiCoTi SmCo5 SmCoFeCuZr BaFe12O19 SrFe12O19 PtCo PtFe Nd2Fe14B
Br(Gs)
9000 10000 9000 13000 10000 10000 11000 4000 4000 7000 10800 13000
Hcj(Oe) (BH) max
50
0.2
170
0.3
260 0.95
500
5
2000 10
20000 24
20000 30
2000
4
4000
4
5000
12
• 值得注意的是,若磁体的B退磁曲线不是直线,则磁体的退磁回复磁导率 μrec在不同的工作点就有不同的值,此时要把磁体设计在最稳定的工作
状态就增加了难度,也显得非常重要。
5
磁性材料的磁性能参数(3)
• 磁体的居里温度Tc:随着温度的升高磁体的磁性能要降低,当温 度升高某一值后,磁性能将消失,也就是对外不显示磁性,称此 温度为居里温度。居里温度只与合金的成分有关,与材料的显微 组织及其分布无关。
1
磁性材料的发展:
发明年代 材料名称
3
二、磁性材料的磁性能参数:
• 剩磁Br:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的磁化强度或磁感应 强度,Mr或Br,就是在退磁曲线上磁场强度降为零时显示的磁性能。
• 矫顽力:铁磁体磁化到饱和以后,使它的磁化强度或磁感应强度降低到零所需要 的反向磁场称为矫顽力,分别记作Hcj和Hcb。
• 磁能积BH:表示磁性材料在其退磁曲线上任意一点工作时,能向外部磁路提供的 能量。永磁材料的使用一般都是利用它在磁场源或者说是磁力源在空气隙中产生 的磁场,而磁能积是表征它在空气隙中产生磁场大小的一种参量,因此它是非常 关键的一参数。
• 曲线的方形度Hk/Hcj:Hk指的是J=0.9Br时相对应的磁场,Hk/Hcj可以直 观的表示J退磁曲线方形度。
• 回复磁导率μrec:当磁体受到一个周期的外界反磁场后,它的磁性要下 降,当外磁场消失后它也不能完全回到原来的位置而是要下降一定的值, 此时磁体的工作点将在退磁曲线以下形成一个小回路,不能和退磁曲线 重合,我们称此小回路的斜率为回复磁导率μrec。这个值一般都大于1 它越接近1说明磁体的抗退磁能力越强,越有利。
• 磁体的工作温度Tw:在某一温度下,永磁材料的磁性能指标与室 温相比降低一规定的幅度,将该温度称为磁体的可工作温度。由 于磁性能的这一降低幅度需要视该磁体的应用条件及要求而定, 因此,所谓的磁体的可工作温度Tw对于同一磁体来说是一个待定 值,也就是说,同一永磁体在不同的应用场合可以有不同的可工 作温度。一般的,我们认为磁体在该温度下保温100个小时磁性能 下降在5%之内便认为是合适的。
• 磁体的不可逆损失:磁体经过一定的温度和时间加热后,它的性 能要下降一定的值,称此下降的部分为磁性不可逆损失。
一、磁性材料的定义、种类、特点和用途:
• 定义:可用于制造磁功能器件的强磁性材料称为磁性材料。有硬 磁、软磁、磁薄膜、磁致伸缩材料等。其中应用最广的是硬磁材 料和软磁材料。
• 硬磁材料:是指在外磁场的作用下(即充磁)会带上磁性,外磁 场消失后磁性仍然存在的一种材料。
• 软磁材料:是在外磁场的作用下会带上磁性,外磁场消失后它的 磁性也会跟着消失的一种材料。
4
磁性材料的磁性能参数(2)
• 磁体的表磁或磁通:表磁是指磁体的表面磁场;磁通是指通过线圈单位 面积磁力线的根数。磁体磁参数的测量一般是对规则的圆柱或方块来进 行的,对于一个已加工好的磁性器件因为它的面积已经很难计算得非常 精确,就只能是通过表磁或磁通来反映它磁性能的强弱了。这是大部分 购买磁体的厂家所关心的问题,一般的,磁体沿充磁方向的厚度越厚其 表磁和磁通也会相应增高。
4300
20
15000 40
Tc(℃)
750 750 750 800 800 700 800 465 465 500 40
• 铁氧体:廉价品,应用非常普遍,但性能低 • 铝镍钴:在指针式仪表中占主导地位,年产不到一万吨,工作温度在
450~550℃度内都可以正常工作,是可工作温度最高的一种磁体,但镍、 钴是战略物资价格非常高,而且受国际国内的政治局势影响大; • 钐钴:在军用品和高档消费品中占主导地位,年产1—2千吨,和铝镍钴 相比钐钴的价格更高;但在一些对性能要求很高,而使用温度也很高的 地方就只能使用钐钴,SmCo5工作温度为250℃,Sm2Co17的工作温度在 350℃,因此它仍然会有一定的市场,否则以它的价格早就该淘汰了; • 铂钴:主要在飞机“黑匣子”中应用,产量很少; • 钕铁硼:在电子计算机及其外围设备中已占主导地位;它的磁性最强, 被称为永磁王,价格中等,在表面镀层的保护下,稳定性良好,也就是 说它的性价比最高,综合性能最好,它的应用是越来越广,在很多地方 只要不受温度限制,都有取代其它磁钢的趋势。
• Hg=(BHVm/Vg)1/2=((BH)mVm/Vg)1/2 • 其中Hg指气隙磁场, • Vg指气隙体积 • Vm指磁体的体积 • 由上式可知:气隙磁场强度Hg和(BH)max成平方根的关系,当气隙体积Vg和气隙
磁场强度Hg为一定的情况下,(BH)max大时,磁体的体积Vm可缩小,这也就是现 在很多的电子产品能越做越小的一个原因,如手机现在可以越做越小,有很大的 一个原因是手机上的蜂鸣器磁钢可以做得很小,以前的收音机喇叭要那么大的一 个磁钢,你想把它做得很小本身就是不可能的一件事
成分
十九世纪
十九世纪末 二十世纪初
1940年代 1950年代
1965 1972 1940 1960 1960 1980 1983
碳钢 钨钢 钴钢 铝镍钴5
铝镍钴8、9 钐钴(1:5) 钐钴(2:17)
钡铁氧体 锶铁氧体
铂钴 铂铁 钕铁硼
CFe WFe CoFe AlNiCo AlNiCoTi SmCo5 SmCoFeCuZr BaFe12O19 SrFe12O19 PtCo PtFe Nd2Fe14B
Br(Gs)
9000 10000 9000 13000 10000 10000 11000 4000 4000 7000 10800 13000
Hcj(Oe) (BH) max
50
0.2
170
0.3
260 0.95
500
5
2000 10
20000 24
20000 30
2000
4
4000
4
5000
12
• 值得注意的是,若磁体的B退磁曲线不是直线,则磁体的退磁回复磁导率 μrec在不同的工作点就有不同的值,此时要把磁体设计在最稳定的工作
状态就增加了难度,也显得非常重要。
5
磁性材料的磁性能参数(3)
• 磁体的居里温度Tc:随着温度的升高磁体的磁性能要降低,当温 度升高某一值后,磁性能将消失,也就是对外不显示磁性,称此 温度为居里温度。居里温度只与合金的成分有关,与材料的显微 组织及其分布无关。