蛋白质合成和转运

合集下载

细胞内蛋白质合成与转运的调控

细胞内蛋白质合成与转运的调控

细胞内蛋白质合成与转运的调控蛋白质是构成生物体的重要基本组成部分,它们在细胞内发挥着各种重要的功能。

细胞内的蛋白质合成和转运过程受到严格的调控,以确保细胞内蛋白质的正常合成和定位。

本文将介绍细胞内蛋白质合成的过程以及调控机制。

一、蛋白质合成的过程蛋白质合成是一个复杂的过程,涉及到多个环节和参与因子。

简单来说,它包括转录、转运和翻译三个主要步骤。

1. 转录转录是将DNA上的遗传信息转录成RNA的过程。

在蛋白质合成中,主要通过基因转录产生mRNA(信使RNA)。

这一过程由RNA聚合酶酶依赖性地进行,通过与DNA模板链上的碱基序列互补配对,合成相应的mRNA分子。

2. 转运转运是将合成的mRNA通过核孔膜转运到细胞质的过程。

核孔膜是细胞核与细胞质之间的界面,具有选择性的通透性,通过核孔膜蛋白形成的核孔实现对mRNA的通行。

3. 翻译翻译是将mRNA的信息转译成蛋白质的过程。

它发生在细胞质中的核糖体上,核糖体是由rRNA(核糖体RNA)和蛋白质组成的复合物。

在翻译过程中,mRNA的三个核苷酸为一个密码子,对应着氨基酸,通过rRNA和tRNA(转运RNA)的配对作用,将氨基酸逐个连接起来,形成多肽链,最终折叠成功能性蛋白质。

二、蛋白质合成与转运的调控为了确保细胞内蛋白质的合成和定位准确无误,细胞发展了一系列的调控机制。

1. 转录调控转录调控主要通过转录因子的调节来实现。

转录因子是一类能够结合到DNA上的蛋白质,它们通过与DNA特定的序列结合,激活或抑制基因的转录活性。

这种调控方式可以在转录起始位点上引导RNA聚合酶的结合,或者阻止其结合,从而影响mRNA的合成速度和数量。

2. 转运调控转运调控主要通过核孔膜复合物的选择性和通透性来实现。

核孔膜复合物是由多个蛋白质组成的复合物,它可以识别和结合mRNA分子,并控制其在核孔膜上的转运速度。

此外,核孔膜蛋白还可以通过与其他蛋白质相互作用,调控细胞内信号转导和蛋白质定位。

蛋白质合成后的加工及转运

蛋白质合成后的加工及转运
SRP与信号序列结合,导致蛋白质合成暂停。
The signal-recog整n理it课io件n particle (SRP)
14
③转移通道:存在与内质网膜上的跨膜通道。
④。 SRP受体(SPR receptor),是膜的整合蛋白, 为异二聚体蛋白,存在于内质网上,可与SRP特异结合。
⑤停止转移序列(stop transfer sequence),肽链上的 一段特殊序列,与转移通道蛋白亲合力很高,能阻止肽 链继续进入内质网腔。
第五节 蛋白质合成后的加 工及转运
整理课件
1
本节内容:
一、蛋白质合成后的细胞定位;
二、蛋白质合成后的转运;
三、蛋白质合成后的加工及修饰;
整理课件
2
一、蛋白质合成后的细胞定位:
1、蛋白质是在细胞中游离的核糖体上或者是在糙面内 质网上的核糖体上合成的。
2、蛋白质合成后需要运转到特定的位点起作用:
(1)、内质网驻留蛋白、高尔基体驻留蛋白质、溶酶 体蛋白质、分泌蛋白质、膜蛋白等这些蛋白是由位于 糙面内质网上的核糖体合成的。然后进入内质网腔或 内质网膜。
输入内质网
-Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-AspIle-
+H3N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-PheLys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-LeuLeu-
-Ser-Lys-Leu-COO-
整理课件
34
(四)、叶绿体的蛋白质转运
转运到基质的前体蛋白具有典型的N端序列。转运到 叶绿体内膜和类囊体膜的前体蛋白含有两个N端信号序 列,第一个被切除后,暴露出第二个信号序列,将蛋白 导向内膜或类囊体膜。

蛋白质合成和转运的分子机制

蛋白质合成和转运的分子机制

蛋白质合成和转运的分子机制蛋白质是构建生命体的重要基础,同时也是调节、催化、运输等多种生命活动的关键物质。

在细胞内,蛋白质的合成和转运是一个非常重要的过程,直接关系到细胞的正常生活活动和生存。

近年来,科学家们在研究蛋白质合成和转运的分子机制方面取得了很多重要进展。

一、蛋白质合成机制蛋白质合成是指通过信息传递过程将mRNA上的暗示信息转化成氨基酸序列,进而合成蛋白质的过程。

它是一种非常复杂的生物过程,既涉及到多种生物大分子,如核酸、RNA和蛋白质等,也涉及到很多分子机制,如转录、翻译、修饰等。

在这一复杂的蛋白质合成过程中,一些关键分子机制起到了非常重要的作用。

1.核糖体核糖体是细胞合成蛋白质时的重要工具。

它是一种特殊的蛋白质-RNA复合物,能够通过无数次反复地转录和翻译,使细胞内大量的蛋白质得以合成。

研究发现,核糖体的合成能力与其结构和配合物有着密不可分的联系,这意味着核糖体的变化可能能够导致蛋白质的合成机制也相应地发生改变。

2.蛋白酶体蛋白酶体是一种细胞内酶类分子,能够参与分解细胞内无法再利用的蛋白质。

蛋白酶体的存在对于蛋白质合成和转运过程有着重要的联系,因为通过蛋白酶体的分解,无效的蛋白质分子可以被重新利用,这样就可节省细胞的合成和修饰成本。

3.蛋白激酶蛋白激酶是一类负责蛋白质合成过程的糖化酶,它能够调节和激活特定的蛋白质,从而影响蛋白质的表达和合成。

蛋白激酶的降解和修饰作用对于蛋白质合成流程中的分子机制和稳定性有着直接的影响。

二、蛋白质转运机制蛋白质转运是指将细胞内合成的蛋白质从一个细胞区域传递到另一个细胞区域的过程。

这个过程与蛋白质的合成过程紧密相连,因为只有先对合成的蛋白质进行修饰和翻译,才能将其转移到特定的细胞区域。

1.肌动蛋白肌动蛋白是一种非常常见的细胞内蛋白质,它在蛋白质转运过程中发挥着非常重要的作用。

研究表明,肌动蛋白能够对蛋白质的运输和聚集起到重要的支配作用。

2.内质网内质网是细胞内的一个非常重要的蛋白质转运和修饰区域。

蛋白质合成的步骤

蛋白质合成的步骤

蛋白质合成的步骤
蛋白质是生命体中最基本的分子之一,它们由氨基酸组成,通过蛋白质合成过程合成。

蛋白质合成的步骤包括:
1. 转录
蛋白质合成的第一步是转录,即将DNA中的基因信息转录成RNA。

这个过程由RNA聚合酶完成,它会在DNA上找到一个起始点,然后开始合成RNA。

RNA聚合酶会将RNA与DNA分离,然后将RNA与DNA互补配对,合成RNA链。

2. 剪切
在RNA合成完成后,需要对其进行剪切。

这个过程由剪切体完成,它会将RNA中的非编码区域剪切掉,只留下编码区域。

这个编码区域被称为外显子,它包含了蛋白质合成所需的信息。

3. 转运
转运是将RNA从细胞核中转移到细胞质中的过程。

这个过程由核孔蛋白完成,它会将RNA从核孔中运输到细胞质中。

4. 翻译
翻译是将RNA转化为蛋白质的过程。

这个过程由核糖体完成,它
会将RNA中的信息翻译成氨基酸序列。

核糖体会在RNA上找到一个起始点,然后开始翻译。

它会将氨基酸一个一个地加入到蛋白质链中,直到遇到终止密码子为止。

5. 折叠
折叠是蛋白质合成的最后一步,它是将蛋白质链折叠成特定的三维结构。

这个过程由分子伴侣完成,它会帮助蛋白质链正确地折叠成特定的结构。

如果蛋白质链没有正确地折叠,它可能会失去功能或者产生毒性。

蛋白质合成的步骤包括转录、剪切、转运、翻译和折叠。

这些步骤是相互关联的,每个步骤都非常重要,缺少任何一个步骤都会影响蛋白质的合成和功能。

细胞内各种蛋白质的合成和转运途径

细胞内各种蛋白质的合成和转运途径

细胞内各种蛋白质的合成和转运途径引言:细胞是生物体的基本单位,其中蛋白质是构成细胞的重要组成部分。

细胞内的蛋白质合成和转运途径是维持细胞正常功能的关键过程。

本文将介绍细胞内蛋白质合成的主要途径,包括转录、翻译和后转录修饰,以及蛋白质的转运途径,包括核糖体、内质网和高尔基体等。

一、蛋白质合成的途径1. 转录蛋白质合成的第一步是转录,即将DNA中的基因信息转录成RNA。

在细胞核中,DNA的双链解旋,RNA聚合酶结合到DNA上,根据DNA模板合成mRNA。

mRNA是一条单链RNA,它携带着从DNA中转录得到的基因信息。

2. 翻译翻译是蛋白质合成的第二步,即将mRNA上的基因信息翻译成蛋白质。

翻译发生在细胞质中的核糖体中。

核糖体由rRNA和蛋白质组成,它能够识别mRNA上的密码子,并将相应的氨基酸连接起来,形成多肽链。

翻译的过程包括起始、延伸和终止三个阶段,通过tRNA和蛋白因子的参与完成。

3. 后转录修饰蛋白质合成的最后一步是后转录修饰,即对新合成的蛋白质进行修饰和折叠。

这一过程发生在内质网和高尔基体中。

内质网是一个复杂的膜系统,它能够将新合成的蛋白质进行折叠和修饰,如糖基化、磷酸化等。

高尔基体则进一步对蛋白质进行修饰,并将其定位到细胞的不同位置。

二、蛋白质的转运途径1. 核糖体核糖体是蛋白质合成的场所,它位于细胞质中。

在核糖体中,mRNA上的密码子与tRNA上的反密码子互补配对,通过蛋白因子的辅助,将氨基酸连接成多肽链。

核糖体能够识别起始密码子和终止密码子,从而控制蛋白质的合成过程。

2. 内质网内质网是一个复杂的膜系统,它位于细胞质中。

内质网上的核糖体能够合成蛋白质,并将其进行折叠和修饰。

折叠不正确的蛋白质将被内质网上的分解酶降解,而正确折叠的蛋白质则会进一步转运到高尔基体或其他细胞器。

3. 高尔基体高尔基体是一个复杂的膜系统,它位于细胞质中。

高尔基体接收来自内质网的蛋白质,并对其进行进一步修饰和定位。

细胞内各种蛋白质的合成和转运途径

细胞内各种蛋白质的合成和转运途径

细胞内各种蛋白质的合成和转运途径细胞是生命的基本单位,其中蛋白质是细胞的重要组成部分。

蛋白质的合成和转运是维持细胞正常功能的关键过程。

本文将从蛋白质的合成和转运途径两个方面进行探讨,旨在揭示细胞内蛋白质的合成和转运机制。

一、蛋白质的合成蛋白质的合成发生在细胞内的核糖体中,包括转录和翻译两个过程。

转录是指DNA序列的信息被转录成RNA分子的过程,而翻译是指RNA分子被翻译成蛋白质的过程。

1. 转录转录是蛋白质合成的第一步,它在细胞核中进行。

转录的过程包括三个主要步骤:起始、延伸和终止。

起始阶段,RNA聚合酶与DNA上的启动子结合,开始合成RNA分子;延伸阶段,RNA聚合酶沿着DNA模板链进行核苷酸的配对合成RNA链;终止阶段,RNA聚合酶在遇到终止信号后停止合成RNA链,释放出已合成的RNA分子。

2. 翻译翻译是蛋白质合成的第二步,它在细胞质中的核糖体中进行。

翻译的过程包括三个主要步骤:启动、延伸和终止。

启动阶段,核糖体与起始tRNA和mRNA上的起始密码子结合,形成翻译复合体;延伸阶段,核糖体沿着mRNA链解读密码子,将相应的氨基酸带入核糖体,形成多肽链;终止阶段,核糖体在遇到终止密码子时停止翻译,释放出已合成的多肽链。

二、蛋白质的转运途径蛋白质合成完成后,需要经过一系列的转运途径才能到达其最终的功能位置。

蛋白质的转运途径包括:核糖体输出通路、内质网转运途径、高尔基体转运途径和细胞膜转运途径。

1. 核糖体输出通路核糖体输出通路是蛋白质从核糖体转运到细胞质的途径。

在核糖体输出通路中,合成的蛋白质通过核孔复合体进入细胞质,并与分子伴侣蛋白结合形成复合物,以保护和引导蛋白质的正确折叠和定位。

2. 内质网转运途径内质网转运途径是蛋白质从核糖体进入内质网的途径。

在内质网转运途径中,合成的蛋白质通过信号肽识别和内质网蛋白质质量控制系统的检查,进入内质网腔室,并在内质网中进行折叠和修饰。

3. 高尔基体转运途径高尔基体转运途径是蛋白质从内质网进入高尔基体的途径。

简述分泌蛋白的运输过程。

简述分泌蛋白的运输过程。

简述分泌蛋白的运输过程。

分泌蛋白的运输过程是细胞内的一项重要生物学过程,它涉及到蛋白质的合成、折叠、包装和运输到目标位置的一系列步骤。

本文将从分泌蛋白的合成开始,详细描述分泌蛋白的运输过程。

一、蛋白质的合成蛋白质的合成发生在细胞内的核糖体中。

在细胞核中,DNA的基因信息被转录成RNA,然后通过核孔运输到细胞质中。

在细胞质中,mRNA被翻译成蛋白质。

翻译过程中,氨基酸按照mRNA上的密码子顺序逐个连接成多肽链。

这个多肽链被称为前蛋白。

二、蛋白质的折叠在合成过程中,前蛋白的氨基酸序列决定了它的三维结构。

蛋白质的折叠是指前蛋白在细胞内的特定环境下,通过一系列的空间构象变化,形成稳定的三维结构。

折叠过程中,通常伴随着分子伴侣的辅助作用,如分子伴侣的折叠机构蛋白、分子伴侣的帮助蛋白等。

这些分子伴侣帮助前蛋白正确地折叠,防止其在细胞内聚集或失活。

三、蛋白质的包装折叠完成的蛋白质需要被包装成适合运输的形式。

在细胞内,蛋白质包装主要通过内质网(endoplasmic reticulum,ER)完成。

内质网是一种网状结构的细胞器,其表面布满了许多小囊泡,称为ER 囊泡。

前蛋白通过囊泡膜上的蛋白通道,进入ER内腔。

在ER内腔中,蛋白质经历了一系列的修饰过程,如糖基化、剪切和折叠状态的检查等。

这些修饰过程有助于确保蛋白质的稳定性和功能。

四、蛋白质的运输经过包装的蛋白质在内质网中形成囊泡,这些囊泡称为转运囊泡。

转运囊泡内的蛋白质可以通过两种方式进行运输:常规分泌和逆向转运。

1. 常规分泌常规分泌是指蛋白质从内质网转运到高尔基体,然后到达细胞膜或胞外。

转运囊泡从内质网膜上脱落,并运输到高尔基体。

在高尔基体中,转运囊泡与高尔基体囊泡融合,释放出蛋白质。

蛋白质经过高尔基体的修饰和分类作用后,进一步运输到细胞膜或胞外。

2. 逆向转运逆向转运是指一部分蛋白质在转运到高尔基体后,被逆向运输回内质网或其他细胞器。

这种逆向转运的蛋白质可能需要进一步修饰或参与其他细胞过程。

蛋白质合成的基本过程简答

蛋白质合成的基本过程简答

蛋白质合成的基本过程简答
蛋白质合成的基本过程包括三个阶段:氨基酸的活化与转运、核糖体循环和多肽链合成后的加工修饰。

1.氨基酸的活化与转运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨酰-tRNA合成酶催化完成。

在此反应中,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨酰-tRNA,从而使活化氨基酸能够被搬运至核糖体上参与多肽链的合成。

2.核糖体循环:为蛋白质合成的中心环节,通常将其分为肽链合成的起始、延长和终止三个阶段。

肽链合成的起始是指由核糖体大、小亚基,模板mRNA及起始tRNA组装形成起始复合物的过程。

肽链的延长是指各种氨基酰tRNA按mRNA上密码子的顺序在核糖体上一一对照入座,其携带的氨基酸依次以肽键缩合形成新生的多肽链。

这一过程由注册、成肽和移位三个步骤循环进行来完成。

肽链合成的终止是指mRNA上的终止密码子出现在核糖体的A位,由此释放出已合成多肽链。

3.多肽链合成后的加工修饰:在已合成的多肽链中,需经过多种方式加工修饰才能成为具有生物活性的蛋白质。

加工修饰包括:切除部分氨基酸残基、肽段折叠成天然构象、二硫键的形成等。

这些过程通常需要多种酶催化和特定的细胞内环境条件。

综上所述,蛋白质合成是一个复杂的过程,涉及多个步骤和酶的催化。

通过了解这个过程,人们可以更好地理解细胞代谢和基因表达的调控机制,为未来的生物工程和药物研发提供更多思路和手段。

蛋白质的生物合成及转运

蛋白质的生物合成及转运

第十二章蛋白质的生物合成及转运蛋白质的生物合成在细胞代谢中占有十分重要的地位。

目前已经完全清楚,贮存遗传信息的DNA并不是蛋白质合成的直接模板,DNA上的遗传信息需要通过转录传递给mRNA。

mRNA才是蛋白质合成的直接模板。

mRNA是由4种核苷酸构成的多核苷酸,而蛋白质是由20种左右的氨基酸构成的多肽,它们之间遗传信息的传递与从一种语言翻译成另一种语言时的情形相似。

所以人们称以mRNA为模板合成蛋白质的过程为翻译或转译(translation)。

翻译的过程十分复杂,几乎涉及到细胞内所有种类的RNA和几十种蛋白质因子。

蛋白质合成的场所是核糖体,合成的原料是氨基酸,反应所需能量由A TP和GTP提供。

蛋白质合成的早期研究工作都是用大肠杆菌的无细胞体系进行的,所以对大肠杆菌的蛋白质合成机理了解最多。

真核细胞蛋白质合成的机理与大肠杆菌的有许多相似之处。

第一节遗传密码任何一种天然多肽都有其特定的严格的氨基酸序列。

有机界拥有1010~1011种不同的蛋白质,构成数目这么庞大的不同的多肽的单体却只有20种氨基酸。

氨基酸在多肽中的不同排列次序是蛋白质多样性的基础。

目前已经清楚,多肽上氨基酸的排列次序最终是由DNA上核苷酸的排列次序决定的,而直接决定多肽上氨基酸次序的却是mRNA。

不论是DNA还是mRNA,基本上都由4种核苷酸构成。

这4种核苷酸如何编制成遗传密码,遗传密码又如何被翻译成20种氨基酸组成的多肽,这就是蛋白质生物合成中的遗传密码的翻译问题。

一、密码单位用数学方法推算,如果mRNA分子中的一种碱基编码一种氨基酸,那么4种碱基只能决定4种氨基酸,而蛋白质分子中的氨基酸有20种,所以显然是不行的。

如果由mRNA 分子中每2个相邻的碱基编码一种氨基酸,也只能编码42=16种氨基酸,仍然不够。

如果采用每3个相邻的碱基为一个氨基酸编码,则43=64,可以满足20种氨基酸编码的需要。

所以这种编码方式的可能性最大。

应用生物化学和遗传学的研究技术,已经充分证明了是293三个碱基编码一个氨基酸。

蛋白质合成及转运生科

蛋白质合成及转运生科
50S大亚基蛋白组分
(2)毒素:
白喉霉素:催化蛋白发生ADP-核糖基化. 共价修饰使EF-2失活 一条多肽单链,2个二硫键,2个结构域 β结构域与细胞表面受体结合→毒素蛋白水解断裂 二硫键还原,产生A、B两片段: B协助A通过细胞膜,A为蛋白修饰酶
(3)抗代谢物:
● 结构与天然代谢物相似. ● 竞争性抑制代谢中酶/反应. 嘌呤霉素:结构与Tyr-tRNA Tyr相似,进入核糖体A位 连于肽链的C端,形成肽酰嘌呤霉素,容易脱落,肽链 合成提前终止. 嘌呤霉素对原/真核生物翻译过程均有干扰,用于肿瘤 治疗.
●蛋白质定位:
1、溶酶体蛋白、分泌蛋白、质膜骨架蛋白:粗面内质网 核糖体. ● 信号肽假说. ● 分泌蛋白质的合成和胞吐作用.
2、线粒体与叶绿体蛋白:游离的核糖体. ● 蛋白质向线粒体和叶绿体的定位机制
●信号肽假说简图:

信号识别体(SRP)
SRP 循环
多肽移位装置

mRNA
内质网膜
核糖体受体
● 由同一种tRNA合成酶合成:起始因子识别tRNAiMet
延伸因子识别tRNAMet
● 原核生物中的第一个蛋氨酸要进行甲酰化 修饰---甲酰Met:
fMet - tRNAiMet
5、翻译起始于mRNA与核糖体的结合:
● 真核生物mRNA分子的5’端有核糖体进入部位: 帽子结构帮助识别mRNA分子与核糖体的结合位点. 核糖体沿着 mRNA分子5’ → 3’扫描至起始密码AUG.
mRNA与小亚基结合
② fMet–tRNAiMet进入
③50S大亚基的结合
A:新进来的氨基酸结合位点. P:肽链结合位点. E:出口(大部分在大亚基上).
7、蛋白合成的延伸(elongation):

蛋白质从细胞内到细胞外的转运方式

蛋白质从细胞内到细胞外的转运方式

蛋白质从细胞内到细胞外的转运方式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!蛋白质在细胞内合成后,需要通过一系列的转运过程才能最终抵达细胞外。

38蛋白质的合成及转运

38蛋白质的合成及转运

就发生转肽反应,由转肽酶催化与A部位结合的氨
酰-tRNA上的氨基酸的氨基亲核进攻与P部位结
合的tRNA上的肽酰基或氨酰基,而形成肽键。于
是,第一个肽键在甲酰甲硫氨酸和第二个氨基酸
之间形成的。
转肽酶催化与A部位结合的氨酰tRNA上的氨基酸的氨基亲核进攻与P 部位结合的tRNA上的肽酰基或氨酰基, 而形成肽键
核糖体种类
亚基
rRNA(相对分子质量) 蛋白质分子数目
原核细胞核糖
30S
16S(5.5x105)
体(以大肠杆 70S
5S (0.4x105)
21
菌为例)Βιβλιοθήκη 50S23S(110x105)
34
40S
18S(~70x105)
~30
真核细胞
核糖体
80S
5S (0.4x105)
~50
60S 28~29S(140~180x105)
蛋白质是在核糖体上组装的 ,原核生物与真核生物在核 糖体的结构上有所不同,它们的主要差别见表 .
通过对不同来源的核糖体的结构进行的比较研究表明核 糖体的结构,尤其是三维结构在进化上是高度保守的,参见 图.
核糖体之所以能充当翻译的场所,是因为它含有多个功 能部位,主要的功能定位见图。
核糖体的结构组成
延伸(进位)反应需要氨酰-tRNA结合因子,细菌中的用 EF-Tu表示。真核生物中用EF-1表示。
氨酰-tRNA结 合因子等均属 于延伸因子
(1)进位(Entry)
延伸进位具体过程: EF-Tu与GTP和氨酰-tRNA首先形成三元复合物, 随后三元复合物进入A部位,密码子与反密码子的相互作用 决定了正确的氨酰-tRNA被A部位接受,而错误的氨酰tRNA很快离开核糖体。

第五节蛋白质合成后的加工及转运课件

第五节蛋白质合成后的加工及转运课件
转运机制
在蛋白质合成过程中,信号识别颗粒与新生蛋白质结合,引导蛋白 质向内质网定位。
作用
确保新生蛋白质正确地转运到内质网,进行进一步的加工和修饰。
跨膜运
跨膜运输
是指蛋白质通过生物膜的运输过 程,包括通过细胞膜、线粒体膜 、叶绿体膜等。
运输方式
包括主动运输和被动运输,其中 主动运输需要消耗能量,而被动 运输则不需要。
多肽链在核糖体上合成的同时,通过 信号肽的引导,进入内质网腔或跨膜 转运至高尔基体、溶酶体和细胞骨架 。
03
膜泡运输
通过形成囊泡的方式,将已经折叠好 的蛋白质从一个膜结构转运到另一个 膜结构。例如,从内质网到高尔基体 ,或从高尔基体到溶酶体。
PART 04
蛋白质合成后的加工和转 运的调节
蛋白质合成后的加工的调节
蛋白质的乙酰化
在蛋白质合成后,某些赖氨酸残基可被乙酰化,从而调节 蛋白质的稳定性。这一过程由乙酰转移酶催化。
蛋白质转运的调节
01
核孔复合体的调节
核孔复合体是细胞核膜上的转运孔道,可选择性地将蛋白质从细胞质转
运到细胞核内或从细胞核转运到细胞质。核孔复合体的转运活性受到多
种因素的调节。
02
囊泡转运的调节
2023-2026
ONE
KEEP VIEW
蛋白质合成后的加工 及转运课件
REPORTING
CATALOGUE
目 录
• 蛋白质合成后的加工 • 蛋白质的转运 • 蛋白质分选的信号和途径 • 蛋白质合成后的加工和转运的调节 • 蛋白质合成后的加工及转运异常与疾病的关系
PART 01
蛋白质合成后的加工
蛋白质二硫键的形成
在蛋白质合成后,某些氨基酸残基需要经过氧化形成二硫 键,以稳定蛋白质的高级结构。这一过程由特异的二硫键 异构酶催化。

第二章 蛋白质的合成、转运、加工与修饰

第二章 蛋白质的合成、转运、加工与修饰

顺反子: 顺反子 : 编码一种多肽链并连同起始信号和终止 信号在内的DNA区段。 区段。 信号在内的 区段 单顺反子mRNA:编码一种多肽链的mRNA分子。 :编码一种多肽链的 分子。 单顺反子 分子 多顺反子mRNA: 编码数种不同多肽链的同一条 : 多顺反子 mRNA分子。多见于原核生物。 分子。 分子 多见于原核生物。 反义链/有意义链 ( ) 模板链 双链DNA分子中 模板链: 反义链 有意义链/(-)链/模板链:双链 有意义链 分子中 被转录成RNA转录本的链。 转录本的链。 被转录成 转录本的链 正义链/无意义链 ( ) 正义链 无意义链/(+)链 无意义链
(S) )
SD 序 列 / 核 糖 体 结 合 位 点 ( ribosomal binding site , RBS) : 原核细胞 的翻译起始密码子AUG的上游 ) 原核细胞mRNA的翻译起始密码子 的翻译起始密码子 的上游 相距8~ 个核苷酸处有一段由 个核苷酸处有一段由4~ 个核苷酸组成的富含 相距 ~13个核苷酸处有一段由 ~6个核苷酸组成的富含 嘌呤的序列, 为核心, 嘌呤的序列 , 以 5’-AGGA-3’为核心,它与核糖体小亚基 为核心 上的16S-rRNA 的近 末端处的一段短序列互补。 的近3’末端处的一段短序列互补 末端处的一段短序列互补。 上的 Kozak序列 Kozak序列:a favorable context for efficient eukaryotic 序列: translation initiation(PuNNATGPu)。(S) ( ) ) 典型的Poly(A)加尾信号:AATAAA。(S) 加尾信号: 典型的 加尾信号 。 ) cDNA 末 端 快 速 扩 增 法 ( rapid amplification of cDNA ends, RACE)(S) , ) )

蛋白质合成及转运优秀课件.ppt

蛋白质合成及转运优秀课件.ppt

肽链合成起始
指mRNA和起始氨基酰-tRNA分别 与核蛋白体结合而形成翻译起始复合物 (translational initiation complex)。
参与起始过程的蛋白质因子称起始 因子(initiation factor,IF)。
蛋白质合成及转运优秀课件
S-D序列: Shine和Dalgarno
tRNA分子具有4个位点:
• 3’CCA-OH氨基酸接受位点 • 识别氨酰-tRNA合成酶位点 • 核糖体识别位点 • 反密码子位点
蛋白质合成及转运优秀课件
(三)核糖体是蛋白质合成的工厂
核蛋白体的组成
核蛋
原核生物
真核生物
白体 蛋白质 S值 rRNA 蛋白质 S值 rRNA
小亚基
大亚基
核蛋白 体
21种 30S 16S 33种 34种 50S 23S 49种
蛋白质合成及转运优秀课件
真核生物翻译起始复合物形成
• 核蛋白体大小亚基分离; • 起始氨基酰-tRNA结合; • mRNA在核蛋白体小亚基就位; • 核蛋白体大亚基结合。
蛋白质合成及转运优秀课件
真核生物翻译起始因子
起始因子
生物功能
eIF-2
促进起始tRNA与小亚基结合
eIF-2B, eIF-3 促进大小亚基分离
——由同一种tRNA合成酶合成
起始因子识别tRNAiMet 延伸因子识别tRNAMet
蛋白质合成及转运优秀课件
原核生物中的甲酰Met
fMet - tRNAiMet
蛋白质合成及转运优秀课件
(五)翻译起始于mRNA与核糖体的结合 原核生物借助SD序列
(六)蛋白因子帮助合成的起始
蛋白质合成及转运优秀课件

蛋白质合成、加工和转运的过程

蛋白质合成、加工和转运的过程

一、蛋白质的合成1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。

2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。

3、蛋白质合成的一般过程:1)氨基酸的活化。

氨基酸和tRNA在氨酰—tRNA合成酶作用下合成活化的氨酰—tRNA。

2)起始、延伸和终止。

3)蛋白质合成后的加工。

肽链N端Met的去除;氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。

二、蛋白质的分泌合成、加工修饰和转运1、信号肽介导分泌性蛋白在粗面内质网的合成。

1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网腔。

2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。

当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结合。

3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。

而SRP则从信号肽—核糖体复合体上解离,返回细胞质基质中重复上述过程。

4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。

随之,信号肽序列被内质网膜戗面的信号肽酶且除,新生肽链继续延伸,直至完成而终止。

最后完成肽链合成的核糖体大、小亚基解聚,并从内质网上解离。

2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋白质,包括分泌蛋白和内质网驻留蛋白。

2)嵌入内质网膜中,形成膜蛋白。

3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。

1)新生多肽链的折叠与装配,与合成同时发生。

内质网为新生多肽链正确的折叠和装配提供了有利的环境。

分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 连续性:两个密码之间没有任何碱基隔开。 • 简并性:64个密码子对应20个氨基酸,同一种氨基酸有
两个或多个密码子的现象为密码子的简并性。 • 变偶性:专一性取决于头两个碱基,tRNA上的反密码子
与mRNA密码子匹配时,第一二碱基严格配对,第三碱基 可以变动。反密码子第一位可为I,可识别更多简并密码 子。这样32种tRNA即可识别61个编码氨基酸的密码子。 • 通用性:共用一套遗传密码。线粒体编码方式有所不同。
以编码多条肽链
2020/4/2
4
资料仅供参考,不当之处,请联系改正。
(二)tRNA:转运活化的AA至mRNA 模板
1、引导氨基酸进入核糖体 2、将mRNA的碱基序列翻译为氨基酸序列 3、tRNA的反密码子与mRNA的密码子碱基互补
2020/4/2
5
资料仅供参考,不当之处,请联系改正。
70~90个核苷酸,分子较小 三叶草形结构 1)含稀有碱基 2)反密码环有三个反密码子 3)氨基酸臂有CCA结构
掺入Met,启动蛋白质合成
(2)tRNAMet:被延伸因子识别,与mRNA之间AUG配 对,掺入Met(延伸)
2)Met的活化产 物
(1)起始位置:Met-
2020/4/2
15
二、翻译的步骤
资料仅供参考,不当之处,请联系改正。
5个阶段 合成方向:N→C端 翻译方向:5’→3’
2020/4/2
16
资料仅供参考,不当之处,请联系改正。
2020/4/2
在核糖体上进行, 且是一个循环过程, 因此也成为核糖体
循环。
17
(一)氨基酸的活化
资料仅供参考,不当之处,请联系改正。
2020/4/2
2
一、蛋白质合成的分子体系 资料仅供参考,不当之处,请联系改正。
(一) mRNA:蛋白质合成的模 板 辨认起始密码子(AUG):
翻译(蛋白质合成)起始的必须步骤——确定阅读框架
按照不重叠的三联体密码子翻译产生对应的AA并形成肽键
终止密码子,合成结束,肽链释放(终止密码连续出现2~3个)
资料仅供参考,不当之处,请联系改正。
2020/4/2
1
蛋白质的生物合成:
资料仅供参考,不当之处,请联系改正。
以mRNA为模板合成蛋白质的过程
将mRNA中核苷酸顺序转变为蛋白质分子中氨基酸顺序的过 程,即将mRNБайду номын сангаас中4种核苷酸的语言解读为蛋白质中20种氨 基酸的语言——翻译(Translation)
UAA、UGA、
AUG 5’
UAG
3’
5’端非编码区
编码区
3’端非编码区
2020/4/2
3
资料仅供参考,不当之处,请联系改正。
mRNA:蛋白质合成的 模板
mRNA分子中每三个相邻碱基组成一个密码子
真核生物mRNA的成熟需要经过剪切修饰,只
编码一条肽链,转录和翻译发生在不同的空间和
时间
原核生物mRNA转录和翻译几乎同时进行,可
1、氨基酰-tRNA合成酶:使AA结合到特定的 tRNA上
AA活化(能量) tRNA携带AA到mRNA指定部位(专一 性)
2020/4/2
18
资料仅供参考,不当之处,请联系改正。
2、每个氨酰-tRNA合成酶可识别一个特定的AA和 与此AA对应的多个tRNA的特定部位
氨酰-tRNA合成酶具有校对功能,如果产物不对应, 则启动校对活性,水解非正确组合的氨基酸和 tRNA之间形成的共价联系。
核糖体:无界膜,颗粒状, 大、小亚基组成
亚基:含不同的Pr、rRNA, 原核和真核生物不同
2020/4/2
8
多聚核糖体(polgsome) 资料仅供参考,不当之处,请联系改正。
mRNA和多个核蛋白体的聚合物,一般间隔40个核苷酸结合 一个核糖体。
(一个mRNA分子同时有多个核蛋白体在进行蛋白质的合成)
原核生物 真核生物
小 rRNA 16S-rRNA 18S-rRNA

基 蛋白质
21种
33种
rRNA 5S-rRNA 5S-rRNA

23S-rRNA 28S-rRNA

5.8S-rRNA
基 蛋白质
34种
49种
2020/4/2
11
资料仅供参考,不当之处,请联系改正。
• 原核生物5S rRNA可与tRNA互补,与23S rRNA 互补
2020/4/2
19
(二)起始阶段
资料仅供参考,不当之处,请联系改正。
1、所有蛋白质翻译起始为甲硫氨酸 一个特殊的tRNA启动了蛋白质的合成
原核生物能将tRNAiMet的氨基酸甲酰化
2020/4/2
20
1)转运Met的tRNA:2 资料仅供参考,不当之处,请联系改正。 种
(1)tRNAiMet(原核: tRNAifMet): 被起始因子识别,与起始密码AUG配对,在肽链N端
2020/4/2
9
资料仅供参考,不当之处,请联系改正。
多聚核糖体的电镜照片
2020/4/2
原核生物的 转录翻译同 步进行
10
rRNA与蛋白质构成核糖 资料仅供参考,不当之处,请联系改正。 体
细菌核糖体:3种rRNA、57个Pr,Mw 270万
真核生物核糖体:4种rRNA、约82个Pr,Mw
420万
一种tRNA只与一种AA结 合 一种AA可与几种tRNA结 合 2t02R0/N4/2A约50余种
tRNA的关键部位: 氨基酸臂:AA结合部位 反密码环:mRNA结合部位
6
资料仅供参考,不当之处,请联系改正。
2020/4/2
7
(三) 核糖体是蛋白质合成的工厂 资料仅供参考,不当之处,请联系改正。 1.核糖体的组成
2020/4/2
13
3、核糖体存在场所
资料仅供参考,不当之处,请联系改正。
粗面内质网(主要) 细胞质 线粒体、叶绿体
细菌细胞:约20,000个核糖体
真核细胞:106个
未成熟蟾蜍卵细胞:1012个
2020/4/2
14
密码子的特点
资料仅供参考,不当之处,请联系改正。
4种碱基,编码20个氨基酸
• 16S rRNA的3’端ACCUCCUUA与mRNA的SD 序列互补,翻译起始定位;与23S rRNA互补,大 小亚基结合
• 23S rRNA与起始tRNA互补
2020/4/2
12
2、核糖体的结构与功能 资料仅供参考,不当之处,请联系改正。 1、P位点(肽酰基位点) 结合肽基-tRNA的位点 2、A位点(氨酰基位点) 结合氨基酰-tRNA的位点 3、转肽酶活性 催化肽键的形成 4、识别mRNA的位点 小亚基上,可容纳2个密码
相关文档
最新文档