计算智能学习心得体会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算智能学习心得体会
本学期我们水利水电专业开了“计算智能概论”这门课,有我们学院的金菊良教授给我们授课,据说这门课相当难理解,我们课下做了充分的准备,借了计算智能和人工智能相关方面的书籍,并提前了解了一点相关知识,我感觉看着有点先进,给我们以往学的课程有很大区别,是一种全新的概念和理论,里面的遗传算法、模糊集理论、神经网络更是闻所未闻,由于课前读了一些书籍,我以为课堂上应该能容易理解一点,想不到课堂上听着还是相当玄奥,遗传算法还好一点,因为高中学过生物遗传,遗传算法还能理解一点。像模糊集理论神经网络便不知所云了。虽然金老师讲课生动形象,幽默风趣,而且举了好多实际的例子,但有一些理论有点偏难。
计算智能(Computational Interlligence,简称CI)并不是一个新的术语,早在1988年加拿大的一种刊物便以CI为名。1992年,美国学者JamesC.Bezdek在论文《计算智能》中讨论了神经网络、模式识别与智能之间的关系,并将留能分为生物智能、人工智能和计算智能三个层次。1993年,Bob Marks写了一篇关于计算留能和人工留能区别的文章,并在文中给出了对CI的理解。1994年的国际计算智能会议(WCCL)的命名就部分地源于Bob的文章,这次IEEE会议特国际神经网络学会(NNC)发起的神经网络(ICNN)、模糊系统(FuZZ)和进化计算(ICEc)三个年度性会议合为一体,并出版了名为《计算智能》的论文集。此后,CI这个术语就开始被频繁地使用,同时也出现了许
多关于CI的解释。
1992年,James C .Bezdek提出,CI是依靠生产者提供的数字、数据材料进行加工处理,而不是依赖于知识;而AIglJ必须用知识进行处理.1994年,James在F1orida,Orlando,IEEE WCCI会议上再次阐述他的观点,即智能有三个层次:(1)生物智能(Biological Intelligence,简称BI),是由人脑的物理化学过程反映出来的,人脑是有机物,它是智能的基础。(2)人工智能(Artificial Intelligence,简称AI),是非生物的,人造的,常用符号来表示,AI的来源是人类知识的精华。(3)计算智能(Computer Intellienceence,简称CI),是由数学方法和计算机实现的,CI的来源是数值计算的传感器。
虽然有好多计算智能理论还不太清楚,但是我对新知识还是相当渴望的,因为我本身比较爱学习,且喜欢读书。我感觉学到了许多知识:计算智能是一门经验科学,它研究自然的或人工的智能行为形成之原理以“推理即计算”为基本假设,开发某种理论、说明某项智能可以算法化,从而可以用机器模拟和实现;寻求和接受自然智能之启迪,但不企图完全仿制人类智能,其中心工程目标是研究设计和建立智能计算系统的方法。
由于我们只有16课时,所以我们学的面并不广,金老师主要教了一些计算智能方面的经典理论,我们所学的计算智能所涉及的领域主要包括以下三方面:遗传算法、人工神经网络方法和模糊集理论。
遗传算法最早由美国Michigan大学John H. Holland教授提出,
按照生物进化过程中的自然选择(selection)、父代杂交(crossover)和子代变异(mutation)的自然进化(natural evolution)方式,编制的计算机程序,能够解决许多复杂的优化问题,这类新的优化方法称之为遗传算法(genetic algorithm,GA)[7]。GA模拟生物进化过程中的主要特征有:(1)生物个体的染色体(chromosomes)的结构特征,即基因码序列(series of genetic code)决定了该个体对其生存环境的适应能力。(2)自然选择在生物群体(population)进化过程中起着主导作用,它决定了群体中那些适应能力(adaptability)强的个体能够生存下来并传宗接代,体现了“优胜劣汰”的进化规律。(3)个体繁殖(杂交)是通过父代个体间交换基因材料来实现的,生成的子代个体的染色体特征可能与父代的相似,也可能与父代的有显著差异,从而有可能改变个体适应环境的能力。(4)变异使子代个体的染色体有别于其父代个体的染色体,从而也改变了子代个体对其环境的适应能力。(5)生物的进化过程,从微观上看是生物个体的染色体特征不断改善的过程,从宏观上看则是生物个体的适应能力不断提高的过程。
作为利用自然选择和群体遗传机制进行高维非线性空间寻优的一类通用方法,遗传算法(GA)不一定能寻得最优(optimal)点,但是它可以找到更优(superior)点,这种思路与人类行为中成功的标志是相似的。例如不必要求某个围棋高手是最优的,要战胜对手只需他(她)比其对手更强即可。因此,GA可能会暂时停留在某些非最优点上,直到变异发生使它迁移到另一更优点上。遗传算法随编码
方式、遗传操作算子的不同而表现为不同形式,因此难以象传统的共轭梯度法那样从形式上给以明确定义,它的识别标志在于它是否具有模拟生物的自然选择和群体遗传机理这一内在特征。目前国内外普遍应用的实施方案是标准遗传算法(Simple Genetic Algorithm,SGA)。BP神经网络
BP神经网络是用反向传播学习算法(back-propagation algorithm,BP算法)训练的一种多层前馈型非线性映射网络,网络中各神经元接受前一级的输入,并输出到下一级,网络中没有反馈联接。BP神经网络通常可以分为不同的层(级),第j层的输入仅与第j–1层的输出联接。由于输入层节点和输出层节点可与外界相连,直接接受环境的影响,所以称为可见层,而其它中间层则称为隐层(hidden layer)。决定一个BP神经网络性质的要素有三个:网络结构、神经元作用函数和学习算法,对这三个要素的研究构成了丰富多彩的内容,尤其是后者被研究得最多。BP算法是目前应用最为广泛且较成功的一种算法,它解决了多层前馈网络的学习问题,从而使该网络在各方面获得了广泛应用。它利用梯度搜索技术(gradient search technique)使代价函数(cost function)最小化。
BP算法把一组样本的输入输出问题归纳为一非线性优化问题,它使用了最优化方法中最常用的负梯度下降算法。用迭代运算求解网络权重和阈值对应于网络的学习记忆过程,加入隐层节点使得优化问题的可调参数增加,从而可得到更精确的解。
模糊集理论