电机变频调速转速计算
电机转速计算公式
![电机转速计算公式](https://img.taocdn.com/s3/m/ec573d55a66e58fafab069dc5022aaea998f41ab.png)
电机转速计算公式•提到转速,大家应该都不陌生,有朋友问知道电机转速怎么算机器转速,还有人问电机扭矩计算公式T=9550*P/n,这到底是咋回事?其实直流电机的转速怎么控制呢,下面是小编推荐给大家的电机转速计算公式,今天就一起来看一看吧。
电机转速计算公式电机转速与频率的公式n=60f/p上式中n——电机的转速(转/分);60——每分钟(秒);f——电源频率(赫芝);p——电机旋转磁场的极对数。
我国规定标准电源频率为f=50周/秒,所以旋转磁场的转速的大小只与磁极对数有关。
磁极对数多,旋转磁场的转速成就低。
极对数P=1时,旋转磁场的转速n=3000;极对数P=2时,旋转磁场的转速n=1500;极对数P=3时,旋转磁场的转速n=1000;极对数P=4时,旋转磁场的转速n=750;极对数P=5时,旋转磁场的转速n=600(实际上,由于转差率的存在,电机.实际转速略低于旋转磁场的转速)在变频调速系统中,根据公式n=60f/p可知:改变频率f就可改变转速降低频率↓f,转速就变小:即60 f↓ / p = n↓增加频率↑f,转速就加大:即60 f↑ / p = n↑电机转速公式:n=60f/p,公式中字符代表如下:n——电机的转速(转/分);60——每分钟(秒);f——电源频率(赫芝);p——电机旋转磁场的极对数。
我国规定标准电源频率为f=50周/秒,所以旋转磁场的转速的大小只与磁极对数有关。
磁极对数多,旋转磁场的转速成就低。
极对数P=1时,旋转磁场的转速n=3000;极对数P=2时,旋转磁场的转速n=1500;极对数P=3时。
旋转磁场的转速n=1000。
实际上,由于转差率的存在,电机实际转速略低于旋转磁场的转速,在变频调速系统中,根据公式n=60f/p可知:改变频率f就可改变转速降低频率↓f,转速就变小:即60 f↓ / p = n↓增加频率↑f,转速就加大:即60 f↑ / p = n↑。
电机保护常识电机比过去更容易烧毁:由于绝缘技术的不断发展,在电机的设计上既要求增加出力,又要求减小体积,使新型电机的热容量越来越小,过负荷能力越来越弱。
变频器节能效率计算完整版
![变频器节能效率计算完整版](https://img.taocdn.com/s3/m/4b1f1f412f60ddccda38a0b4.png)
变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]概述在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。
与实际的工况存在较大的可调整空间。
在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。
同时分析变频器在选型、应用中的注意事项。
1变频调速原理三相异步电动机转速公式为:60fn=式中:n-电动机转速,r/min;f-电源频率,Hz;p-电动机对数s-转差率,从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。
变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。
变频工作原理异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。
电机定子绕组内部感应电动势为U 1≈U 1=4.44U 1UU 11式中U 1-定子绕组感应电动势,V ;1-气隙磁通,Wb ; U -定子每相绕组匝数;U 1-基波绕组系数。
在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。
由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。
若在降低频率的同时降低电压使U 1U 1⁄保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。
这种方式称为恒磁通控制方式。
此时电动机转矩为T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2式中T -电动机转矩,;U 1—电源极对数;U—磁极对数;U—转差率;U2—转子电阻;U2—转子电抗;由于转差率U较小,(U2U⁄)2U22则有T≈U1UU12πU2U(U11)2=UU1U其中U=U1U2πU2(U1 U1)2由此可知:若频率U1保持不变则T∝s;若转矩T不变则s∝1U1⁄;常数由此可知:保持U1U1=⁄常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。
2-交流电机变频调速详解
![2-交流电机变频调速详解](https://img.taocdn.com/s3/m/8bd7df36bd64783e09122b90.png)
以下情况要选用交流输出电抗器
变频器到电机线路超过100米(一般原则)
以下情况一般要选用制动单元和制动电阻 提升负载 频繁快速加减速 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的设备)
变频器选型—选型原则
使用通用变频器的行业和设备 使用矢量变频器的行业和设备
纺织绝大多数设备
冶金辅助风机水泵、辊道、高炉卷扬 石化用风机、泵、空压机 电梯门机、起重行走 供水 油田用风机、水泵、抽油机、空压机
多
0.4-315KW
EV1000 EV2000
TD3000 2.2-75KW TD3100 高 TD3300
高动态性能 动态性能好 总线设计 精确控制 网络化应用 行业专用
0.4-5.5KW
功 能
TD900
调速、通讯 操作简便
功能丰富 适用面广
高稳态性能
成 本
完整的功率段 行业专用
少
宽电压范围
元件化设计
R S T P1 (+) PB (-) U V
MOTOR
W
PE
POWER SUPPLY
制动电阻
工频电网输入 380V 3PH/220V 3PH
直流电抗器
三相交流电机
220V 1PH
变频器的构成—控制回路接口
接口类型 主要特点 主要功能
开关量输入
开关量输出 模拟量输入
无源输入,一般由变频 启/停变频器,接收编码器信号、多 器内部24V供电, 段速、外部故障等信号或指令
2.3 交流电机变频调速
•概 述
异步电机的变压变频调速系统一 般简称为变频调速系统。由于在调速 时转差功率不随转速而变化,调速范 围宽,无论是高速还是低速时效率都 较高,在采取一定的技术措施后能实 现高动态性能,可与直流调速系统媲 美。因此现在应用面很广,是本篇的 重点。
简述关于变频电机的频率和电流的关系
![简述关于变频电机的频率和电流的关系](https://img.taocdn.com/s3/m/f930cf4b650e52ea551898c3.png)
简述关于变频电机的频率与电流的关系霍工:针对您的问题有关系公式可参照分析:关系公式与分析电机功率:P=1、732×U×I×cosφ(0、86)×η(91%);电机电流:I=P/1、73×U×cosφ(功率因素)×η(效率);I: 电流;P: 功率W; U: 电压电机转矩:T=9549×P/n ; T:转矩;P:功率KW;n:转速电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2;当频率达50Hz时,电机达到额定功率,再增加频率,其功率就是不会再增的,会保持额定功率。
电机转矩在50Hz以下时,就是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就就是那么大了,您还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。
转速的情况与频率就是一样的,因为电源电压不变,其频率的变化直接反应的结果就就是转速的同比变化,频率增,转速也增,它减另一个也减。
变频电源的电流与频率的关系一、变频调速的基本控制方式与基准电压、基准频率的关系, 电机用变频器调速时有两种情况--基频(基准频率)以下调速与基频以上调速。
必须考虑的重要因素就是:尽量保持电机主磁通为额定值不变。
如果磁通过弱(电压过低),电机铁心不能得到充分利用,电磁转矩变小,负载能力下降。
如果磁通过强(电压过高),电机处于过励磁状态,电机因励磁电流过大而严重发热。
二、根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=4、44f1N1Φm 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以瞧出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
简述关于变频电机的频率和电流的关系
![简述关于变频电机的频率和电流的关系](https://img.taocdn.com/s3/m/eeb97573852458fb770b56ae.png)
简述关于变频电机的频率和电流的关系霍工:针对您的问题有关系公式可参照分析:关系公式与分析电机功率:P=1.732×U×I×cosφ(0.86)×η(91%);电机电流:I=P/1.73×U×cosφ(功率因素)×η(效率);I: 电流;P: 功率W; U: 电压电机转矩:T=9549×P/n ; T:转矩;P:功率KW;n:转速电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2;当频率达50Hz时,电机达到额定功率,再增加频率,其功率是不会再增的,会保持额定功率。
电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。
转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。
变频电源的电流和频率的关系一、变频调速的基本控制方式与基准电压、基准频率的关系,电机用变频器调速时有两种情况--基频(基准频率)以下调速和基频以上调速。
必须考虑的重要因素是:尽量保持电机主磁通为额定值不变。
如果磁通过弱(电压过低),电机铁心不能得到充分利用,电磁转矩变小,负载能力下降。
如果磁通过强(电压过高),电机处于过励磁状态,电机因励磁电流过大而严重发热。
二、根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
5.3 异步电动机的变压变频调速解析
![5.3 异步电动机的变压变频调速解析](https://img.taocdn.com/s3/m/a260e240312b3169a451a4d3.png)
5.3.2 变压变频调速时的机械特性 式(5-5)已给出异步电机在恒压恒频正弦 波供电时的机械特性方程式 Te= f (s)。 当采 用恒压频比控制时,可以改写成如下形式:
Us s1 Rr' Te 3np ( sR R ' ) 2 s 2 2 ( L L' ) 2 (5-28) s r 1 ls lr 1
对于直流电机,励磁系统是独立的,只要 对电枢反应有恰当的补偿, m 保持不变 是很容易做到的。 在交流异步电机中,磁通 m 由定子和转 子磁势合成产生,要保持磁通恒定就需要 费一些周折了。
• 定子每相电动势
Eg 4.44 f1Ns kNS Φm
(5-11)
式中:Eg —气隙磁通在定子每相中感应电动势的有 效值,单位为V; f1 —定子频率,单位为Hz;
2
• 特性分析 当s很小时,可忽略上式分母中含s各项,则
U s s1 Te 3np R' s r 1
2
(5-29)
s1
Rr'Te Us 3n p 1
2
10 R T 60 n sn1 s1 2 n p n
阻抗压降所占的份量就比较显著,不再能
忽略。这时,需要人为地把电压 Us 抬高一
些,以便近似地补偿定子压降。
带定子压降补偿的恒压频比控制特性示
于下图中的 b 线,无补偿的控制特性则为a 线。
• 带压降补偿的恒压频比控制特性
Us
UsN
b —带定子压降补偿
a —无补偿
O
f 1N
图5-9 恒压频比控制特性
2
Eg R s1 Rr' 3np R '2 s 2 2 L'2 s 1 lr 1 r
变频电机的转速
![变频电机的转速](https://img.taocdn.com/s3/m/79dd275133687e21af45a9ac.png)
变频电机的转速
变频电机铭牌,恒转矩调速5到50HZ,恒功率调速50到100HZ
公式转子转速n=60f1(1-s)/p它反映的是电机的自然特性。
每个电机,当制造好以后,都会对应一个n=60f1(1-s)/p。
Y-100L-4的变频电机
小型四极电机将其转速提高一倍也可以正常工作,问题是转速提高了是否造成电机过负载,还有就是频率高了铁损也有所增加。
总之,电机提高转速运行过程中,电机的温度不出现异常升高的话是安全的。
7.5KW4极变频电机,转速可以转到5000,但这样会损害电机吗
在三相异步电机国家试验标准中,超速试验规定频率不要超过额定的1.2倍,5000转电机肯定受不了,机械强度不行,很容易发生事故。
电机会散架。
变频电机一般要求不超过额定转速的20%,长时间的超速运行会降低电机的机械强度,噪音提高,振动加剧,轴承也会降低使用寿命,铁芯和线圈也会剧烈发热;从而造成电机使用寿命降低甚至损坏。
变频器调速的基本工作原理
![变频器调速的基本工作原理](https://img.taocdn.com/s3/m/c0402626bd64783e09122bf4.png)
变频器调速的基本工作原理根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。
变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
是由由主电路和控制带电路组成的。
主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。
它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。
控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。
现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。
以图1为例简单说明一下变频器的工作原理。
三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。
经过RL电流趋于稳定,晶闸管触点会导通。
之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用是让直流电波形变得更加平滑。
之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。
均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。
而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。
风机变频流量计算
![风机变频流量计算](https://img.taocdn.com/s3/m/e7fd50f304a1b0717fd5dd1b.png)
这有一台变频风机,想知道其在不同频率下的风量,理论值即可不知这样计算可否,因变频电机转速时n=60*频率/电极对数,通过公式可知不同频率下的转速;再因风机流量与转速成正比关系即流量Q1/Q2=n1/n2,Q为流量n为转速。
这样就可求得不同频率下风机的风量。
1、电机转速730r/min,属于6极。
频率在28Hz时转速为n1=60×28÷6=280r/minQ1/Q2=n1/n2Q1=n1/n2*Q2=280÷730×120000=46027m3/h.变频器的变频调速是通过调节频率实现的,工频情况下的频率是50Hz,如果使用的频率是40Hz,也就是频率下降至0.8,则电机转速下降至原额定转速的0.8,下降的幅度与频率下降的幅度成一次方程式关系,也就是所谓的线性关系,而且风机的风量下降也为额定风量的0.8。
但风机的风压下降比例则变化大了,成二次方比例下降,即风压下降为0.8x0.8=0.64,风压会变为额定风压的0.64,下降了0.36。
至于输出功率,则成三次方比例关系,即0.8x0.8x0.8=0.512,下降了0.488.。
2、电机转速730r/min,属于6极。
频率在28Hz时转速为n1=28÷50×730=409r/minQ1/Q2=n1/n2Q1=n1/n2*Q2=409÷730×124820=69933m3/h2、电机转速730r/min,属于6极。
频率在49Hz时转速为n1=49÷50×730=715r/minQ1/Q2=n1/n2Q1=n1/n2*Q2=715÷730×124820=122255m3/h。
变频调速原理
![变频调速原理](https://img.taocdn.com/s3/m/71456a3c0912a21614792926.png)
异步电动机是电力、化工等生产企业最主要的动力设备。
作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。
近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。
1 变频调速原理n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
2 谐波抑制变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。
虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。
变频器的输出电压中含有除基波以外的其他谐波。
较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。
为了消除谐波,主要采用以下对策:a.增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。
变频调速的工作原理
![变频调速的工作原理](https://img.taocdn.com/s3/m/7dbebae355270722182ef7b5.png)
变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为O-4OOH0的三相交流电。
由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f 为电流的频率p 为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。
又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。
变频器就是通过改变f (电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。
如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R S T,应该有大约几十欧的阻值,且基本平衡。
相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。
将红表棒接到N 端,重复以上步骤,都应得到相同结果。
如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。
B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。
2、测试逆变电路将红表棒接到P端,黑表棒分别接U V W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。
将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。
在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动, 连接异常有时可能导致变频器出现故障, 严重时会出现炸机等情况。
3、上电后检测故障显示内容, 并初步断定故障及原因。
变频器应用现场计算公式
![变频器应用现场计算公式](https://img.taocdn.com/s3/m/01ae0faaf524ccbff12184c7.png)
变频器应用现场计算公式1、电机转速计算公式一般异步电机转速n与同步转速n1存在一个滑差关系n1—同步转速(r/min) ; f1—定子供电电源频率(Hz) ; P—磁极对数; n—异步电机转速(r/min) ; S—异步电机转差率(10%以下,一般取3%)。
2、转矩计算公式TT MM=9550P反之PP=TT MM∗n9550T是转矩,单位N·m ;P是输出功率,单位KW ;n是电机转速,单位r/min 3、制动电阻计算公式能耗制动电阻的阻值可由下式计算:RR BB=U D20.1047(T B−0.2T M)n1U取值700V;T B是制动力矩,单位是N•m(牛米);n1是减速开始时的速度;R B D是制动电阻阻值;P 是电机的额定(输出)功率单位是千瓦(KW);n 是额定转速,单位是转每分(r/min);T M是电机的额定转矩,单位是N•m能耗制动电阻的功率,按长期工作制考虑时计算如下:P LO≈U D2/R B根据实际工况,可以适当减小制动电阻R B的功率,一般按上式计算功率的约1/3进行选择。
若想增加制动力矩,可以适当减小制动电阻阻值,同时应放大其功率。
制动电阻快速取值法:【R min=U D/I MN】≤R B≤【R max=2U D/I MN】150%的制动力矩 80%的制动力矩R B――制动电阻阻值U D――直流电压(通常按680V计算)R Min――制动电阻最小取值I MN――电动机额定电流(实际取变频器的额定电流) R Max――制动电阻最大取值节能计算公式水泵:一、挡板调节电机的功率:电机的输入功率P为:P=1.732×U×I×co s∮电机的输出功率Pn(轴功率)=额定功率电机的效率n1=电机的输出功率/电机的输入功率=P1/P=η流体力学三定律可知:Q1/Q2=n1/n2; H1/H2=(n1/n2)2; P1/P2=(n1/n2)3; P=H×Q式中:Q1、H1、P1—水泵在n1转速时的水量、水压、功率;Q2、H2、P2—水泵在n2转速时相似工况条件下的水量、水压、功率。
关于变频电机的频率和电流的关系
![关于变频电机的频率和电流的关系](https://img.taocdn.com/s3/m/a27ee32217fc700abb68a98271fe910ef12dae34.png)
简述关于变频电机的频率和电流的关系关系公式与分析电机功率:P=×U×I×cosφ×η(91%);电机电流:I=P/×U×cosφ(功率因素)×η(效率);I: 电流;P: 功率W; U: 电压电机转矩:T=9549×P/n;T:转矩;P:功率KW;n:转速电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2;当频率达50Hz时,电机达到额定功率,再增加频率,其功率是不会再增的,会保持额定功率。
电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。
转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。
变频电源的电流和频率的关系一、变频调速的基本控制方式与基准电压、基准频率的关系,电机用变频器调速时有两种情况--基频(基准频率)以下调速和基频以上调速。
必须考虑的重要因素是:尽量保持电机主磁通为额定值不变。
如果磁通过弱(电压过低),电机铁心不能得到充分利用,电磁转矩变小,负载能力下降。
如果磁通过强(电压过高),电机处于过励磁状态,电机因励磁电流过大而严重发热。
二、根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=Φm 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证Φm不变,只要U1/f1始终为一定值即可。
变频电机功率计算公式
![变频电机功率计算公式](https://img.taocdn.com/s3/m/4c08917242323968011ca300a6c30c225801f010.png)
变频电机功率计算公式
变频电机功率计算公式是用于计算变频电机的功率需求的公式。
变频电机是一种能够调整运行速度的电机,通过改变电源电压的频率来实现调速。
在计算变频电机的功率需求时,需要考虑运行负载以及变频电机的效率。
变频电机功率计算公式如下:
功率(W)= 运行负载(kg) ×运行速度(m/s) ×运行功率系数
运行负载表示物体在变频电机驱动下的重量或阻力,可以是物体的质量或者受到的力的大小。
运行速度表示变频电机运行的速度,单位通常为米/秒。
运行功率系数是一个与变频电机效率、传动效率等因素相关的常数,它反映了电机的效率。
在使用变频电机功率计算公式时,需要确保所使用的单位是一致的,比如运行负载和运行速度都应采用相同的单位。
另外,变频电机功率计算公式还可以根据实际情况进行调整,例如考虑到动态负载变化时的功率波动等因素。
总之,变频电机功率计算公式是用于计算变频电机功率需求的公式,通过考虑运行负载、运行速度和运行功率系数等因素,可以得出所需的功率值。
电机转速公式与调速方法
![电机转速公式与调速方法](https://img.taocdn.com/s3/m/8ef3040576a20029bc642d4c.png)
三相异步电动机转速公式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、转波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。
改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
实验五 三相异步电机变频调速系统实验
![实验五 三相异步电机变频调速系统实验](https://img.taocdn.com/s3/m/f43b6ba3852458fb760b56d8.png)
实验五 三相异步电机变频调速系统实验一、实验目的(1)掌握SPWM 的调速基本原理和实现方法。
(2)掌握马鞍波变频的调速基本原理和实现方法。
(3)掌握SVPWM 的调速基本原理和实现方法。
二、实验原理异步电机转速基本公式为:60(1)f n s p =- 其中n 为电机转速,f 为电源频率,p 为电机极对数,s 为电机的转差率。
当转差率固定在最佳值时,改变f 即可改变转速n 。
为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。
这就是所谓的VVVF (变压变频)控制。
工频50Hz 的交流电源经整流后可以得到一个直流电压源。
对直流电压进行PWM 逆变控制,使变频器输出PWM 波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。
因此,这个PWM 的调制方法是其中的关键技术。
目前常用的变频器调制方法有SPWM ,马鞍波PWM ,和空间电压矢量PWM 等方式。
(1)SPWM 变频调速方式:正弦波脉宽调制法(SPWM )是最常用的一种调制方法,SPWM 信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。
当改变正弦参考信号的频率时,输出电压的频率即随之改变。
在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF (变压变频)控制。
SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。
在实际运用中对于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。
如图4-1所示。
图5-1 正弦波脉宽调制法(2)马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。
简述关于变频电机的频率和电流的关系
![简述关于变频电机的频率和电流的关系](https://img.taocdn.com/s3/m/c2fc8ddb83d049649a66584e.png)
简述关于变频电机的频率和电流的关系Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT简述关于变频电机的频率和电流的关系霍工:针对您的问题有关系公式可参照分析:关系公式与分析电机功率:P=×U×I×cosφ×η(91%);电机电流:I=P/×U×cosφ(功率因素)×η(效率);I: 电流;P: 功率W; U: 电压电机转矩:T=9549×P/n;T:转矩;P:功率KW;n:转速电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2;当频率达50Hz时,电机达到额定功率,再增加频率,其功率是不会再增的,会保持额定功率。
电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。
转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。
变频电源的电流和频率的关系一、变频调速的基本控制方式与基准电压、基准频率的关系,电机用变频器调速时有两种情况--基频(基准频率)以下调速和基频以上调速。
必须考虑的重要因素是:尽量保持电机主磁通为额定值不变。
如果磁通过弱(电压过低),电机铁心不能得到充分利用,电磁转矩变小,负载能力下降。
如果磁通过强(电压过高),电机处于过励磁状态,电机因励磁电流过大而严重发热。
二、根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=Φm 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器对三相电机调速,5-50HZ是为恒转矩,50-100HZ为恒功率。三相异步电机就可以实现变频调速,要注意扭矩。
两者之间不可完全替换,在某些情况下,两者会一起使用。
使用变频器大幅度降低其转速,电动机自身的风扇的转速也会降低,电动机散热会出现问题。
4、就是说转子转速的精确计算没有公式,也是不可能的事!!!
n=60f / p是计算同步速度,实际上没这么复杂,你就按电机铭牌上的速度为基准,该速度是在50Hz时的速度,如电机铭牌速度是1450RPM,当频率为25Hz时的速度就是725RPM,当频率为5Hz时的速度为145RPM。
同样一个电机能够传递的最大扭矩有限,及时速度降下来,但是扭矩达不到要求,所以才必须用到减速器的。
关系式 n=f(1-s)60/p
1、异步电机,定子旋转磁场的转速n1=60f / P是确定的;
2、转子转速与同步转速异步,有滑差,转差因负载大小而变化,没有精确的计算公式;
3、只能计算出额定转差,根据额定转差和同步转差参考负载大小估算转子转速!!!
首先:减速比,电机变频也就是从50变到10左右,了不得了,减速比多少,自己算!减速机的减速比从2到几千都有!
第二:你在频率变低的情况下,功率会下降,为了满足在低平率下工作,选择大功率的电机是必不可少的!
第三:采用变频电机,价格会贵很多!
第四:当然在一些减速比不定的情况下必须选择变频电机!
第五:在尺寸允许,减速比不变的情况下尽可能选择减速机!