不锈钢腐蚀的机理
不锈钢腐蚀机理发生原因和维护处理方法
不锈钢腐蚀机理发生原因和维护处理方法不锈钢是一种抗腐蚀性能极好的金属材料,但在特定条件下仍然可能发生腐蚀。
不锈钢腐蚀的机理主要有三种:点蚀腐蚀、晶间腐蚀和应力腐蚀。
以下将分别介绍每种腐蚀机理的发生原因和相应的维护处理方法。
1.点蚀腐蚀:点蚀腐蚀是不锈钢上出现的小孔洞或凹陷的形式,通常是由于材料表面的保护层被部分破坏或被去除所导致的。
(1)发生原因:点蚀腐蚀的发生原因主要有:a.氧化铁皮:不锈钢焊接时,焊缝周围容易形成氧化铁皮,这些铁皮上的离子会对不锈钢产生腐蚀。
b.离子污染:不锈钢表面被有机物、污垢或液滴等污染,这些污染物中的离子会引发腐蚀。
c.金属离子:铁、铜、镍等金属元素的离子会导致点蚀腐蚀。
(2)维护处理方法:a.避免过度热处理:过度热处理会破坏不锈钢的表面保护层,因此应避免过度热处理。
b.清洁不锈钢表面:定期清洗不锈钢表面的有机物、污垢和液滴等污染物,尽量保持表面清洁。
c.选用合适的不锈钢材料:根据具体环境条件选择合适的不锈钢材料,能够更好地抵抗点蚀腐蚀。
2.晶间腐蚀:晶间腐蚀是在不锈钢材料的晶界处发生的腐蚀,会导致不锈钢的结构性能下降。
(1)发生原因:晶间腐蚀的发生原因主要有:a.焊接热影响区域:焊接过程中,不锈钢的热影响区域容易出现晶间腐蚀。
b.高温环境:在高温环境中,不锈钢的晶界会因为积累了一定的铬碳化物而变得不稳定,容易发生晶间腐蚀。
(2)维护处理方法:a.控制焊接参数:合理控制焊接参数,避免焊接热影响区域出现晶间腐蚀。
b.降低温度:在高温环境下,尽量降低不锈钢的工作温度,以减少晶间腐蚀的可能性。
c.选择合适的不锈钢材料:对于在高温环境下工作的设备,应选择具有良好抗晶间腐蚀性的不锈钢材料。
3.应力腐蚀:应力腐蚀是由于不锈钢在受到应力力学作用时在特定环境中发生的腐蚀,会导致不锈钢的断裂。
(1)发生原因:应力腐蚀的发生原因主要有:a.应力作用:不锈钢在受到应力作用下会发生应力腐蚀。
b.腐蚀介质:特定的腐蚀介质会加剧不锈钢的应力腐蚀。
不锈钢的耐腐蚀机理
不锈钢的耐腐蚀机理不锈钢是一种十分耐腐蚀的金属材料,能够抵抗多种不同环境中的腐蚀侵蚀。
这种材料在众多领域中都有广泛的应用,如航空航天、造船、建筑、化学工程等等。
其耐腐蚀机制非常值得探讨,本文将从微观角度出发,结合实验数据进行解析。
不锈钢的成分中,铬是最主要的元素。
铬是一种极具活性的元素,能够在表面形成一层致密的氧化铬膜( Cr2O3),这尤其是极坏/酸性环境中,具有非常好的保护作用,能够很好的防止基材进一步被腐蚀。
氧化铬膜通过向表面注入一定量的氧化铬,使得原本毛孔较大的表面金属变得更加致密,也增强了金属内部的抗氧化能力,使得金属的整体性能变得更加优越。
除了铬之外,锆、锡等也是一些常用于不锈钢中的重要元素。
锆能够提供更强的抗腐蚀性能,常常被用于涉及强腐蚀介质的生产场地,其添加量通常在0.07%~0.12%之间。
锡能够增强不锈钢的耐热性、耐蚀性以及切削加工性能,被广泛地应用于制造不锈钢食品桶、饮料桶、酒桶等食品容器的制造中。
不锈钢能够在不同环境中保持较为稳定的耐腐蚀性能,这是因为其表面氧化层的保护作用。
不同环境下,不同成分的不锈钢的腐蚀试验结果可能会有很大差异。
在常温条件下,针对一类常用不锈钢(如304不锈钢)的腐蚀试验结果,常常使用常见的一些试剂,评估其耐蚀性能。
其中,以5%的NaCl溶液环境中进行的腐蚀试验是最为常见的一种。
试验结果显示,经过12个小时的试验,不锈钢表面可能会出现锈斑或黑褐色斑点。
不过这些斑点不会继续扩散,这说明不锈钢的表面已经形成了足够稳定的氧化层,保护作用十分显著。
同样,在环境中加入氯离子等高浓度的腐蚀介质也能够被不锈钢所耐受。
然而,即便不锈钢表面的氧化层非常致密,其耐蚀性也并非百分之百可靠。
在某些特殊的工况下,如酸性介质中,氧化铬膜的性能就会显得十分脆弱。
同时,在高温(大约是600℃以上)和高压条件下,不锈钢的耐腐蚀性也会受到不同程度的影响。
总之,不锈钢的耐腐蚀机理非常复杂,其性能受多种因素影响。
氯离子腐蚀不锈钢的原理
氯离子腐蚀不锈钢的原理氯离子腐蚀不锈钢的原理是指在含氯环境中,氯离子与不锈钢表面发生作用,导致不锈钢产生腐蚀现象。
不锈钢在大气环境中具有较好的耐腐蚀性能,主要是因为不锈钢表面形成了一层致密的氧化铬膜,称为钝化膜。
然而,在氯离子的存在下,钝化膜容易被破坏,导致不锈钢发生腐蚀。
1.氯离子的吸附和浸润:氯离子具有较强的亲水性,容易吸附在不锈钢表面并浸润到钝化膜下。
氯离子吸附在表面会导致表面电位升高,从而破坏了钝化膜的稳定性。
2.氯离子的电化学反应:在氯离子存在的条件下,钝化膜中的铬离子会与氯离子发生反应,生成可溶性的铬氯络合物,从而破坏了钝化膜的连续性。
这个过程被称为局部腐蚀,即氯离子会形成一个微小的腐蚀细胞,在细胞中,不锈钢表面处于阳极,而钝化膜破坏的部分则处于阴极,形成阳极和阴极之间的电流。
3.氯离子的传输:氯离子可以通过水分子或气态状态传输到不锈钢表面,特别是在高温高湿的环境中,氯离子的迁移速度会增加,导致氯离子浓度在钝化膜下积累,进一步加剧了腐蚀。
除了以上几个方面,氯离子腐蚀不锈钢还受到以下因素的影响:1.氯离子浓度:氯离子浓度越高,腐蚀速度越快。
当氯离子浓度低于一定的临界值时,腐蚀基本不发生。
但一旦超过临界值,腐蚀速率会显著增加。
2.温度和湿度:高温高湿的环境会加速氯离子的传输和吸附,进而加速不锈钢的腐蚀。
3.氧气含量:氧气对于钝化膜的稳定性至关重要,充足的氧气可以帮助钝化膜修复和再生。
因此,氯离子腐蚀不锈钢更为显著的情况通常发生在氧气缺乏的环境中,如密封系统。
总的来说,氯离子通过吸附、浸润、电化学反应等行为,破坏不锈钢表面的钝化膜,进而导致不锈钢发生腐蚀。
要防止氯离子腐蚀不锈钢,可以通过以下途径进行控制:1.减少氯离子的接触:避免在含氯环境中使用不锈钢材料,或者使用防腐涂料、防护层等措施将不锈钢与氯离子隔离。
2.增加氧气供应:通过增加通气量、增加氧气浓度等方式,提高不锈钢表面氧气的含量,增强钝化膜的稳定性。
不锈钢均匀腐蚀的原因
不锈钢均匀腐蚀的原因
不锈钢均匀腐蚀的原因主要有以下几个:
1. 腐蚀介质:不锈钢在某些强氧化性介质(如盐水、酸溶液、碱溶液等)的作用下,会发生腐蚀反应。
这些介质中的氧气或氯离子会与不锈钢表面的铬元素发生反应,导致铬的离子化和析出,进而破坏不锈钢的腐蚀抵抗能力。
2. 不锈钢表面缺陷:不锈钢表面的缺陷(如划痕、凹陷、氧化层不连续等)会导致介质在这些缺陷处聚集,并进一步加速腐蚀的发生。
缺陷处的局部电位较低,容易被剧烈腐蚀。
3. 温度和湿度:高温和高湿度环境下,不锈钢容易发生均匀腐蚀。
高温会加快腐蚀反应的速率,而高湿度的环境则提供了足够的水分供腐蚀介质的反应。
4. 不锈钢材质:不同材质的不锈钢在腐蚀性介质中的腐蚀抵抗能力是不同的。
不同牌号的不锈钢中添加的合金元素和比例不同,因此其腐蚀抵抗性也不同。
一些低合金不锈钢在特定条件下容易发生均匀腐蚀。
综上所述,不锈钢均匀腐蚀的原因是多方面的,涉及到腐蚀介质、表面缺陷、温度湿度和不锈钢材质等因素的综合作用。
正确选择合适的不锈钢材质和采取必要的防护措施,可以减少不锈钢的均匀腐蚀。
不锈钢耐腐蚀的原理
不锈钢耐腐蚀的原理不锈钢是一种具有优异性能的金属材料,其被广泛地应用于制造航空、航天、电子、化工、医药等领域的产品。
与普通钢材相比,不锈钢具有耐腐蚀性强、强度高、耐高温、耐磨损、易加工等优点,因此其应用范围较为广泛。
那么,不锈钢耐腐蚀的原理是什么呢?1.钝化膜的形成钝化膜是不锈钢的一种重要特性,它是一种具有致密结构的氧化物层或硫化物层。
这种氧化物或硫化物能够保护不锈钢表面不受到化学腐蚀的破坏。
钝化膜的形成是不锈钢耐腐蚀的关键。
不同类型的不锈钢钝化膜不同,但它们都可以通过中和酸性物质、形成基氧化物层、或通过电化学方式来形成。
2.合适的合金配方不锈钢材料由铁和其他合金元素组成,这些元素可以调整不锈钢的机械性能、高温强度、耐蚀性和其他特性。
比如,镍是一种让不锈钢具有耐腐蚀性的关键元素。
在钢中加入越多的镍,就越容易形成均匀和稳定的钝化膜。
而钼对不锈钢的耐腐蚀性和耐高温性能也有重要的影响。
3.表面处理在生产不锈钢的时候,需要进行表面处理来减少与环境中物质的接触,以延长不锈钢的使用寿命。
表面处理方法不仅可以对不锈钢材料进行粗糙化处理,如抛光、轧光和喷砂等,还可以对其进行镀膜、包覆和喷涂等处理。
4.环境条件尽管不锈钢具有强的耐腐蚀性能,但其性能也会受到环境条件的影响。
比如,在强酸、强碱、高温或强氧化环境下,不锈钢的耐腐蚀性能会出现下降。
此外,不锈钢表面存在较强的化学反应性,不宜与氯化物、碘化物和溴化物等强氧化性化学物质接触,否则会导致不锈钢的腐蚀。
总之,不锈钢耐腐蚀的原理是通过形成稳定且致密的氧化物层或硫化物层,来保护钢铁表面不受到化学腐蚀的破坏。
钢材的合金配方、表面处理及环境条件对钢材具有重要的影响。
说明1cr18ni9ti不锈钢的耐腐蚀机理
说明1cr18ni9ti不锈钢的耐腐蚀机理
1Cr18Ni9Ti不锈钢是一种奥氏体不锈钢,由于含有钛元素,
因此具有良好的耐腐蚀性能。
其耐腐蚀机理主要包括以下几个方面:
1. 表面氧化层:不锈钢表面会形成一层致密的氧化层,这一层氧化层可以防止进一步的氧化反应和腐蚀。
2. 钝化作用:钛元素在不锈钢中的存在能够增强钢材的钝化性能,使其能够在酸性和碱性环境中形成一层致密的氧化钝化膜,阻止酸性介质和水分进一步侵蚀。
3. 电位差阻滞作用:在不锈钢表面形成的氧化层具有一定的导电性能,能够产生与金属本体相对电位差,从而减小电池电流,降低了腐蚀速率。
4. 非晶态钢材保护层:在一些酸性环境中,不锈钢中的钛和铁元素会产生非晶态化合物,形成一层致密保护层,防止酸性介质进一步侵蚀。
综上所述,1Cr18Ni9Ti不锈钢的耐腐蚀机理主要包括表面氧
化层、钝化作用、电位差阻滞作用和非晶态钢材保护层等多种因素的相互作用。
这些机理使得1Cr18Ni9Ti不锈钢在正常使
用条件下具有较好的耐腐蚀性能。
不锈钢的腐蚀和耐腐蚀原理
不锈钢的腐蚀和耐腐蚀原理不锈钢是一种合金材料,主要由铁、铬、镍以及其他少量的合金元素组成。
它的腐蚀和耐腐蚀原理是由于其特殊的化学成分和结构。
不锈钢的主要耐腐蚀性来自于其中的铬元素。
铬能与氧气反应生成一层致密的氧化铬膜,覆盖在钢的表面上,使金属与外界空气隔离,不易被进一步氧化和腐蚀。
这种氧化铬膜能够自愈合,即使表面受到划伤或损伤,也能够重新生成。
这就是不锈钢耐腐蚀能力强的原因之一除了铬元素之外,不锈钢中还含有一定比例的镍、钼等合金元素。
镍除了提高不锈钢的耐腐蚀性外,还能够提高钢的塑性和韧性,使其更容易加工。
而钼则可以提高不锈钢的耐腐蚀性能,特别是在酸性和高温环境下。
此外,不锈钢中还含有一些其他元素,如锰、硅、钒等。
这些元素主要起到合金强化和调节组织的作用,能够提高不锈钢的机械性能和耐腐蚀能力。
不锈钢的腐蚀形式主要可以分为点蚀、晶间腐蚀和应力腐蚀等。
点蚀是指在具有一定电位差的情况下,局部区域的金属表面发生腐蚀现象。
晶间腐蚀是指在高温或受到一定环境因素影响时,不锈钢中的晶粒边界发生腐蚀。
应力腐蚀则是由于不锈钢受到外界应力作用,使得其在具有一定环境条件下发生腐蚀。
为了提高不锈钢的耐腐蚀性能,可以采取以下措施:1.增加钢中的合金元素含量,特别是铬、镍和钼等。
这样可以增加不锈钢的抗氧化和抗腐蚀能力。
2.采用特殊的热处理工艺,如固溶处理和淬火处理等。
这样可以改变不锈钢中的晶格结构,提高其耐腐蚀性能。
3.在不锈钢表面形成氧化膜。
可以采用化学处理、电解处理以及物理气相沉积等方法,在不锈钢表面形成一层致密的氧化膜,增加其防腐能力。
4.合理设计和使用不锈钢材料。
在实际应用中,需要根据不同环境和介质的要求,选择合适的不锈钢材料,以确保其耐腐蚀性能。
总之,不锈钢的耐腐蚀性来自于其中的合金元素,特别是铬元素,以及氧化铬膜的存在。
通过调节不锈钢的化学成分和热处理工艺,可以进一步提高其耐腐蚀能力。
合理使用和保养不锈钢材料,也能够延长其使用寿命。
中国不锈钢腐蚀手册
中国不锈钢腐蚀手册中国不锈钢腐蚀手册第一章:引言不锈钢是一种重要的金属材料,广泛应用于各个领域。
它具有耐腐蚀、耐高温、抗氧化等优良性能,因此在化工、石油、能源、建筑等行业中得到了广泛应用。
然而,不锈钢在特定条件下也会发生腐蚀,因此对不锈钢的腐蚀进行研究和控制具有重要意义。
第二章:不锈钢的腐蚀机理不锈钢的腐蚀主要是由于外界环境中存在的氧、水和其他化学物质对其表面的侵蚀作用。
当不锈钢表面的保护层被破坏或者不完整时,这些侵蚀物质会与金属表面发生反应,导致不锈钢发生腐蚀。
不锈钢的腐蚀主要有普通腐蚀、点蚀、应力腐蚀等形式。
第三章:不锈钢的分类和性能根据不锈钢中含有的合金元素和组织结构的不同,可以将其分为多种类型,如奥氏体不锈钢、铁素体不锈钢、双相不锈钢等。
每种类型的不锈钢具有不同的耐腐蚀性能和适用范围。
在选择不锈钢材料时,需要根据具体的使用环境和要求来确定。
第四章:不锈钢的防腐措施为了延长不锈钢的使用寿命和减少腐蚀的发生,需要采取一系列的防腐措施。
首先,要保证不锈钢表面的清洁和光洁度,避免表面附着物和污染物对其产生影响。
其次,可以通过电化学方法对不锈钢进行保护,如阳极保护、阴极保护等。
此外,还可以采用涂层、包覆等方式来增加不锈钢的耐腐蚀性能。
第五章:常见问题与解决方法在使用过程中,可能会遇到一些常见的问题,如不锈钢表面出现斑点、起皮、变色等现象。
这些问题可能是由于不锈钢材料本身存在缺陷或者使用条件不当所导致的。
对于这些问题,可以通过调整使用条件、更换材料或者采取其他措施来解决。
第六章:案例分析本章将通过一些实际案例来分析不锈钢腐蚀问题的原因和解决方法。
通过对这些案例的分析,可以更好地理解不锈钢腐蚀的机理和防护措施。
第七章:结论通过对中国不锈钢腐蚀手册的编写,我们对不锈钢的腐蚀机理和防护措施有了更深入的了解。
希望这本手册能够为广大工程技术人员提供参考,帮助他们更好地应对不锈钢腐蚀问题,提高工作效率和产品质量。
不锈钢的腐蚀和耐腐蚀原理
不锈钢的腐蚀和耐腐蚀原理不锈钢是一种常见的金属材料,它具有良好的腐蚀和耐腐蚀性能,被广泛应用于制造各种不锈钢制品。
不锈钢的腐蚀和耐腐蚀原理主要涉及以下几个方面。
首先,不锈钢的腐蚀性是基于其成分的特性。
不锈钢的主要成分是铁、铬和镍等金属元素。
其中,铬是不锈钢的主要合金元素之一,其含量越高,不锈钢的耐腐蚀性就越好。
当不锈钢表面形成一层薄而致密的氧化铬层时,可以有效地防止金属离子的扩散和电子的传导,从而保护了不锈钢的表面免受腐蚀的侵害。
其次,不锈钢的腐蚀和耐腐蚀性还与环境因素有关。
一般情况下,如果不锈钢表面的氧化铬层没有被破坏或污染,那么它可以在大气中、淡水中和低浓度的酸性和碱性溶液中具有较好的耐腐蚀性。
然而,如果不锈钢表面的氧化铬层被破坏或污染,例如由于化学腐蚀剂、盐腐蚀等原因,它的耐腐蚀性将受到影响,容易发生腐蚀。
而且,不锈钢的腐蚀和耐腐蚀性还与金属材料的晶体结构和组织特性有关。
不锈钢可以通过热处理和冷加工等工艺加工,使得其晶体结构更加致密和稳定。
例如,不锈钢经过固溶处理和冷加工后,可以提高其抗氯化物应力腐蚀开裂的性能。
此外,不锈钢中的一些合金元素,如铜、钼等,还可以通过固溶强化、析出强化等方式增加不锈钢的强度和耐腐蚀性能。
最后,不锈钢的腐蚀和耐腐蚀性还与不锈钢表面的处理和保护有关。
不锈钢表面可以通过化学处理、机械抛光、电镀、喷涂等方式进行处理,以提高其耐腐蚀性。
例如,不锈钢可以通过酸洗、喷砂、喷丸等方式除去表面的氧化皮和污染物,进一步加强其表面的保护层。
综上所述,不锈钢的腐蚀和耐腐蚀原理主要涉及成分特性、环境因素、晶体结构和组织特性以及表面处理和保护等方面。
这些因素共同作用,使得不锈钢具有良好的腐蚀和耐腐蚀性能,能够在各种恶劣环境中保持其外观和功能的长期稳定性。
不锈钢的点腐蚀机理
不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。
金属腐蚀按机理分为化学腐蚀和电化学腐蚀。
点腐蚀属于电化学腐蚀中的局部腐蚀。
一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。
另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
4.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。
当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。
不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K (25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。
由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。
另外一个重要影响因素是金属表面覆盖着的薄膜。
除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。
金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
4.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。
合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。
如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。
马氏体不锈钢的抗腐蚀机理
马氏体不锈钢的抗腐蚀机理
马氏体不锈钢是一种具有较高强度和耐腐蚀性的不锈钢,其抗腐蚀机理主要与其组成结构和处理方式有关。
以下是具体的抗腐蚀机理:1.铬元素形成的致密氧化层:马氏体不锈钢中的铬元素是其耐腐蚀
性的关键。
铬能与氧形成一层致密的氧化层,这层氧化层在金属表面形成一层保护膜,防止了金属与环境中的氧化剂、水分等发生化学反应,如氧化。
当这层氧化层受到损伤时,铬会迅速与氧反应形成新的氧化层,从而持续保护钢材免受腐蚀。
2.合金元素的自主修复机理:马氏体不锈钢中添加的一些合金元素,
如镍、钼等,会与钢中的铬、氧、硅等元素相互作用,形成一层自主修复的保护膜。
这层保护膜可以在钢材表面出现微小损伤时,通过合金元素的反应来修复损伤,从而提高钢材的抗腐蚀能力。
3.析出物微区阻挡机理:在马氏体不锈钢的加工和使用过程中,一
些金属元素和杂质会在微观结构中析出,形成一些软态贝氏体和铁素体。
这些微观结构形成的软态贝氏体和铁素体会形成一些微观屏障,阻挡外界腐蚀因素对材料的侵蚀。
4.表面钝化处理:马氏体不锈钢还可以通过表面钝化处理来提高其
耐腐蚀性能。
这种处理可以使钢材表面形成一层钝化膜,这层膜能够阻挡腐蚀介质与钢材的接触,从而提高其耐腐蚀性。
不锈钢腐蚀机理
1 不锈钢的点腐蚀机理在金属表面局部地方出现向深处发展的腐蚀小孔,其余表面不腐蚀或腐蚀很轻微,这种形态成为小孔腐蚀,简称点蚀。
金属腐蚀按机理分为化学腐蚀和电化学腐蚀。
点腐蚀属于电化学腐蚀中的局部腐蚀。
一种点蚀是由局部充气电池产生,类似于金属的缝隙腐蚀。
另一种更常见的点蚀发生在有钝化表现或被高耐蚀性氧化物覆盖的金属上。
1.1 电化学腐蚀的基本原理通过原电池原理可以更好地说明电化学腐蚀机理。
当2种活泼性不同的金属(如铜和锌)浸入电解质溶液,2种金属间将产生电位差,用导线连接将会有电流通过,在此过程中活泼金属(锌)将被消耗掉,也就是被电化学腐蚀。
不同于化学腐蚀(如金属在空气中的氧化,锌在酸溶液中的析氢),电化学腐蚀一定有电流产生,并且电流量的大小直接与腐蚀物的生成量相关,即电流密度越大腐蚀速度越快。
各种金属在电解质溶液中的活泼程度可用其标准电极电位表示,即金属与含有单位活度(活度与浓度正相关,在浓度小于10-3mol/L时认为两者值相同)的金属离子,在温度298K(25℃),气体分压1.01MPa下的平衡电极电位。
标准电极电位越低,金属或合金越活泼,在与高电位金属组成电偶对时更易被腐蚀。
由此可见,决定金属标准电极电位的因素除了金属的本质外还有:溶液金属离子活度(浓度)、温度、气体分压。
另外一个重要影响因素是金属表面覆盖着的薄膜。
除了金、铂等极少数贵金属外,绝大多数金属在空气中或水中可以形成具有一定保护作用的氧化膜,否则大部分金属在自然界就无法存在。
金属表面膜的性质对其腐蚀发生及腐蚀速度都有着重要影响。
1.2 不锈钢的耐腐蚀原理不锈钢的重要因素在于其保护性氧化膜是自愈性的(例如它不象选择性氧化而形成的那些保护性薄膜),致使这些材料能够进行加工而不失去抗氧化性。
合金必须含有足够量的铬以形成基本上由Cr2O3组成的表皮,以便当薄膜弄破时有足够数目的铬(Cr3+)阳离子重新形成薄膜。
如果铬的比例低于完全保护所需要的比例,铬就溶解在铁表面形成的氧化物中而无法形成有效保护膜。
不锈钢生锈腐蚀断裂的原因
不锈钢生锈腐蚀断裂的原因
不锈钢生锈、腐蚀和断裂的原因可能有以下几个方面:
1. 化学腐蚀:不锈钢主要是由铁、铬、镍等合金元素组成,其中铬的含量较高。
铬会与氧气结合形成一层致密的氧化铬膜,起到防止钢材进一步腐蚀的作用。
然而,当遭受一些强酸、强碱等化学物质的侵蚀时,氧化铬膜可能会被破坏,导致不锈钢发生腐蚀。
2. 空气中存在的污染物:不锈钢在潮湿的环境中,易受到空气中的氧气、水分和含有硫、氯等污染物的侵蚀。
尤其是在工业污染较为严重的地区,不锈钢的腐蚀速度可能更快。
3. 电化学腐蚀:如果不锈钢表面存在微小的缺陷,例如划痕、裂纹等,这些缺陷可能导致不锈钢在电化学条件下发生腐蚀。
例如,在存在电解质溶液中,不锈钢可能会发生电化学腐蚀。
4. 力学因素:不锈钢的断裂可能与力学因素有关,如应力过大、外力冲击等。
当不锈钢受到超过其承载能力的应力时,可能会发生断裂。
为了避免不锈钢的生锈、腐蚀和断裂问题,我们可以采取以下措施:
1. 注意环境:尽量避免将不锈钢暴露在潮湿、有酸碱性或含有污染物的环境中。
2. 定期清洁:定期清洁不锈钢表面,确保其表面干净,并使用适当的清洁剂。
3. 防护涂层:在一些特殊环境下,可以考虑给不锈钢表面添加一层防护涂层,增加其抗腐蚀性能。
4. 注意使用条件:在使用不锈钢制品时,要注意避免过大的应力和外力冲击,以防止不锈钢发生断裂。
总之,不锈钢的生锈、腐蚀和断裂问题是一个综合因素的结果,需要注意环境因素、化学因素、力学因素等,以保证不锈钢的使用寿命和安全性。
不锈钢的耐腐蚀原理
不锈钢的耐腐蚀原理
不锈钢的耐腐蚀原理主要归结为以下几点:
1. 超薄氧化膜层:不锈钢表面会形成一层非常薄的氧化膜层,该氧化膜层能有效阻隔外界物质对金属的侵蚀和腐蚀。
这是由于不锈钢中的铬元素与空气中的氧反应生成的致密氧化铬膜具有良好的抗腐蚀性能。
2. 良好的合金化作用:不锈钢中添加了一定比例的合金元素,如铬、镍、钼等。
这些合金元素能够与钢中的铁元素形成相同结晶格排列,并在晶界处形成一层稳定的金属化合物。
这种合金化作用可以增强不锈钢的耐腐蚀性能。
3. 自修复性:不锈钢表面的氧化铬膜层具有自修复功能。
一旦被划伤或受到轻微腐蚀,铁、铬离子等会迅速移动到膜层缺陷处,形成新的氧化铬膜,并阻止腐蚀继续发展。
4. 稀土元素的作用:稀土元素(如钕、铈等)在不锈钢中起到优良的抗腐蚀作用。
稀土元素能够改善晶界的稳定性,抑制晶界腐蚀和应力腐蚀开裂。
总的来说,不锈钢的耐腐蚀原理是由于表面形成的氧化膜层,合金化作用,自修复性以及稀土元素的协同作用。
这些因素共同作用,使得不锈钢具有出色的耐腐蚀性能。
不锈钢腐蚀机理发生原因和维护处理方法
不锈钢腐蚀机理发生原因和维护处理方法不锈钢是一种具有优良耐腐蚀性能的金属材料,但在一些特定环境下,仍然会发生腐蚀现象。
下面将分别介绍不锈钢腐蚀的机理、发生原因以及维护处理方法。
一、不锈钢腐蚀机理不锈钢的耐腐蚀性能主要是由其表面形成的一层致密、均匀的氧化膜起到保护作用的。
这一氧化膜主要由Cr2O3组成,其在氧气存在的情况下具有良好的稳定性,并能修复自身。
当不锈钢表面发生划伤、磨损或被腐蚀介质中的一些化学物质侵蚀时,会导致氧化膜受损,无法充分发挥保护作用,从而引发不锈钢腐蚀。
二、不锈钢腐蚀发生原因1.化学腐蚀:不锈钢在强酸、强碱等强氧化性介质中容易发生腐蚀。
酸性介质中的氢离子能够破坏不锈钢表面的氧化膜;碱性介质中的羟离子与不锈钢中的铁发生络合反应,破坏氧化膜。
2.电化学腐蚀:当不锈钢处于具有电解性质的介质中时,可能发生电化学腐蚀。
例如,金属结构中的阳极和阴极发生氧化还原反应,形成腐蚀电池,导致不锈钢腐蚀破坏。
3.晶间腐蚀:不锈钢在高温条件下,在含有一定含氧量的环境中,容易发生晶间腐蚀。
这是因为高温下不锈钢的晶界区域受热影响,晶界区域的Cr含量降低,使其形成致密氧化膜的能力下降。
4.应力腐蚀:当不锈钢在受到应力的同时,接触到特殊环境中的一些介质,如氯离子、硫化物等,容易发生应力腐蚀。
应力作用下,不锈钢表面的氧化膜破坏,进而导致腐蚀。
1.注意环境选择:尽量避免不锈钢长时间暴露在酸性、碱性和含氯环境中。
2.防止划伤和磨损:避免不锈钢表面被尖锐物体划伤,以免造成氧化膜破损,可以选择表面硬度较高的不锈钢材料。
3.定期清洁:定期清洗不锈钢材料表面的杂质和污垢,采用温和的清洁剂清洗,避免使用含酸或含氯的清洁剂。
4.合理使用和维护:在不锈钢材料的使用过程中,要注意控制电位和温度等条件,以减少腐蚀的发生。
定期对不锈钢材料进行检查和保养,发现问题及时维修。
总结起来,不锈钢腐蚀主要是由于不锈钢表面氧化膜被损坏而引起的。
发生腐蚀的原因主要有化学腐蚀、电化学腐蚀、晶间腐蚀和应力腐蚀等。
不锈钢304耐腐蚀机理
不锈钢304耐腐蚀机理
不锈钢304是一种常见的耐腐蚀钢材,具有良好的耐蚀性能。
其耐腐蚀机理主要包括以下几个方面:
1. 良好的耐氧化性:不锈钢304含有18%的铬元素,形成了致密的铬氧化物膜(氧化铬),可以阻挡空气、水和许多弱腐蚀介质的侵蚀,起到耐氧化的作用。
2. 铬的自愈性:当不锈钢304受到划伤或损伤时,铬可以与氧气结合生成氧化铬,进一步修复和增强钢材的耐蚀性能。
3. 钢中的钼元素:不锈钢304中含有少量的钼元素,钼能够增强钢材对一些特殊环境(如酸性环境和氯离子环境)的耐腐蚀性能。
4. 钢材的晶界腐蚀抑制作用:不锈钢304具有较低的碳含量,可以减少钢材的晶界处的偏析,减少晶界腐蚀的可能性。
总体来说,不锈钢304具有铬氧化物膜的形成、自愈性、钼元素和碳含量的调节等多种机制,使其具有良好的耐腐蚀性能,适用于多种腐蚀环境中的使用。
不锈钢腐蚀机理
不锈钢腐蚀机理
不锈钢的腐蚀机理,从宏观上来说是电化学腐蚀,从微观上来说是组织结构的变化,包括晶间腐蚀、点腐蚀、应力腐蚀和氢致开裂等。
不锈钢中的主要杂质成分是硅和锰,它们与氧反应后,使不锈钢的点蚀发生倾向增大,使晶间腐蚀加剧。
奥氏体不锈钢在高温下容易生成马氏体组织,也易产生晶间腐蚀。
(不锈钢)奥氏体不锈钢的晶间腐蚀、应力腐蚀和氢致开裂等都与奥氏体不锈钢的组织结构和组成有密切关系。
奥氏体不锈钢的晶间腐蚀主要发生在马氏体或铁素体基体上,奥氏体基体是由铁、铬和镍组成的。
铁铬合金中含有微量镍后,对高温下发生的晶间腐蚀起了抑制作用。
而含钼后,则会抑制奥氏体不锈钢的晶间腐蚀。
晶间腐蚀的影响因素很多,但主要与材料、温度、应力和组织等有关。
奥氏体不锈钢中的应力腐蚀一般是在应力较大和较高的温度下发生的,且主要发生在奥氏体和铁素体基体上。
由于奥氏体不锈钢中含有铬、镍等合金元素,这些元素在高温下会与氧形成钝化膜,起到抗晶间腐蚀的作用。
—— 1 —1 —。
不锈钢点腐蚀机理
不锈钢点腐蚀机理不锈钢是一种具有抗腐蚀性能的金属材料,它在环境中的抗腐蚀性能主要来自于其表面形成的一层钝化膜。
然而,不锈钢在特定的环境条件下仍然会发生腐蚀现象,其腐蚀机理主要有以下几种。
首先,不锈钢的点腐蚀机理是一种局部腐蚀现象。
在特定的环境中,不锈钢表面的钝化膜被破坏或者没有形成,使得不锈钢表面处于活动状态,容易被腐蚀介质侵蚀。
这种局部腐蚀现象主要发生在不锈钢表面的缺陷、疏松区和钝化膜的破坏处。
例如,不锈钢表面的划痕、磨损、焊接缺陷等都是点腐蚀的敏感部位。
其次,点腐蚀的发生与环境条件有密切关系。
不锈钢的点腐蚀主要发生在腐蚀介质中存在一定的氯离子或氧化性物质,例如氯离子、过氧化物、酸性物质等。
这些物质可以在不锈钢表面形成腐蚀电池,引发点腐蚀。
此外,温度、湿度、气氛等因素也会对点腐蚀的发生起到一定的影响。
再次,点腐蚀发生的机理主要是电化学反应。
点腐蚀是一种局部的电化学反应过程,与阳极和阴极区域之间形成的微电池有关。
在局部缺陷区域,表面钝化膜被破坏,形成阳极区域;而在无缺陷的区域,形成阴极区域。
在腐蚀介质的作用下,阳极产生金属离子,而阴极处的氧气或水还原成氢离子,产生强烈的电化学反应,造成局部的腐蚀现象。
最后,点腐蚀的发展是一个渐进的过程。
一开始,点腐蚀可能只是表面的微小起伏或者颜色的改变,随着时间的推移,腐蚀现象会不断加剧,形成更深的坑状腐蚀。
点腐蚀会给不锈钢的使用带来一定的危害,不仅会减少材料的强度和耐久性,还可能引发材料的断裂和失效。
综上所述,不锈钢的点腐蚀是一种局部腐蚀现象,主要发生在不锈钢表面的缺陷和疏松区。
其发生与环境条件、电化学反应等多种因素有关。
了解不锈钢点腐蚀的机理,对于预防和控制不锈钢点腐蚀具有重要的意义。
不锈钢应力腐蚀的相关机理
不锈钢应力腐蚀的相关机理
不锈钢是一种广泛应用于工业和民用领域的材料,它具有抗腐蚀、耐高温、强度高等优点。
然而,不锈钢在特定环境下也会发生应力腐蚀现象,这给其应用带来了一定的挑战。
了解不锈钢应力腐蚀的相关机理对于预防和解决这一问题至关重要。
不锈钢应力腐蚀是指在受到应力的情况下,在特定腐蚀介质中发生的腐蚀现象。
其机理主要包括以下几个方面:
1. 应力作用,应力是引起不锈钢应力腐蚀的主要原因之一。
当不锈钢受到外部载荷作用时,会产生应力集中,导致局部金属表面的 passivation 膜破裂,从而暴露出金属表面,使其更容易受到腐蚀介质的侵蚀。
2. 腐蚀介质,不锈钢应力腐蚀的发生与腐蚀介质的性质密切相关。
一些特定的腐蚀介质,如氯化物、硫化物等,在一定条件下会加速不锈钢的腐蚀速度,尤其是在应力存在的情况下,更容易引发应力腐蚀。
3. 金属组织和化学成分,不同的不锈钢材料由于其金属组织和
化学成分的不同,对应力腐蚀的抵抗能力也有所差异。
例如,铬元素的含量越高,不锈钢的抗腐蚀性能越好。
为了预防不锈钢应力腐蚀,可以采取以下措施:
1. 选择合适的不锈钢材料,根据具体使用环境的腐蚀介质和应力情况,选择具有良好抗腐蚀性能的不锈钢材料。
2. 降低应力水平,可以通过合理设计结构、改善制造工艺等方式减少应力集中,从而降低应力腐蚀的发生概率。
3. 控制腐蚀介质,采取合适的防护措施,避免不锈钢材料受到有害腐蚀介质的侵蚀。
总之,了解不锈钢应力腐蚀的相关机理对于预防和解决这一问题具有重要意义,只有深入了解其机理,才能有效地采取相应的措施,提高不锈钢材料的抗腐蚀性能,延长其使用寿命。
不锈钢的腐蚀与耐腐蚀的基本原理
不锈钢的腐蚀与耐腐蚀的基本原理不锈钢是一种具有良好耐腐蚀性能且外观美观的合金材料,它通过添加耐蚀元素来提高钢材的抗腐蚀能力。
下面将详细介绍不锈钢的腐蚀特性以及其耐腐蚀的基本原理。
1.不锈钢的腐蚀特性不锈钢可以避免由于氧化而引起的生锈现象,这主要是因为其中含有不易被氧化的铬元素,通过与氧气形成的铬氧化物膜来保护钢材。
这种膜可以防止进一步的氧化反应,从而起到抗腐蚀的作用。
此外,不锈钢还具有一定的耐化学腐蚀性能,可以在酸、碱、盐环境中保持较好的稳定性。
2.不锈钢的耐腐蚀机理2.1.铬氧化物膜不锈钢中含有至少10.5%的铬元素,当与氧气接触时,钢表面的铬会与氧气反应生成一层致密的、不透水的铬氧化物膜。
这种氧化膜具有良好的附着性和致密性,能够阻止氧、水和其他腐蚀介质的渗透,有效保护钢材不被腐蚀。
2.2.自修复能力不锈钢材料在受到轻微划伤或局部氧化的情况下,铬元素会与氧气反应生成氧化铬,这种氧化铬可以自愈合刮伤表面的膜,形成新的保护层,从而有效抵御腐蚀性介质的进一步侵蚀。
2.3.钝化作用不锈钢在一定条件下可以形成一层均匀、孔隙度较低的钝化膜,这种膜可以降低钢材的电化学反应速率,从而有效抵御酸、碱等腐蚀性物质的侵蚀。
3.不锈钢的抗腐蚀影响因素3.1.合金成分不锈钢的抗腐蚀性能与其合金成分有密切关系,其中含有较高比例的铬元素和一定含量的镍、钼等元素可以明显提高不锈钢的抗腐蚀能力。
3.2.环境因素不锈钢的耐腐蚀性能会受到环境因素的影响,例如温度、氧气浓度、湿度等。
一般来说,低温和低氧环境有利于不锈钢的耐腐蚀性能,而高温、高氧环境会减弱不锈钢的抗腐蚀能力。
3.3.表面处理不锈钢的表面处理可以进一步提高其耐腐蚀性能。
常见的表面处理包括机械抛光、电化学抛光、电镀、喷涂等,这些方法可以去除不锈钢表面的杂质,增加表面光洁度,减少局部腐蚀的可能性。
综上所述,不锈钢的腐蚀与耐腐蚀的基本原理是通过合金中的铬元素与氧气形成的氧化铬膜来保护钢材不受腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.不锈钢腐蚀的机理不锈钢腐蚀的机理1 氯离子对是导致压力容器产生各种在压力容器使用过程中普遍发生,在化工生产中,腐蚀则具有优良的机械性,不锈钢缺陷的主要因素之一。
普通钢材的耐腐蚀性能较差性能最主要的合金元素。
获得耐腐蚀Ni 是不锈钢能和良好的耐腐蚀性能。
Cr 和,不锈钢钝化在氧化性介质中生成一层十分致密的氧化膜,使Cr 和Ni 使不锈钢的耐腐蚀性能提高[1 ] 。
不锈钢降低了在氧化性介质中的腐蚀速度,使不锈钢虽然至今氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。
但大致可分为人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,故它最容易,由于氯离子半径小,穿透能力强2 ,种观点。
成相膜理论的观点认为并与金属相互作用形成了可溶性化合穿透氧化膜内极小的孔隙,到达金属表面,氯离子破坏氧金属产生腐蚀。
而吸附理论则认为,物,使氧化膜的结构发生变化,它们优先被金属吸,化膜的根本原因是由于氯离子有很强的可被金属吸附的能力氯离子和氧争夺金属,并从金属表面把氧排掉。
因为氧决定着金属的钝化状态附,氯化物与与金属形成氯化物,,表面上的吸附点,甚至可以取代吸附中的钝化离子电化学方这样导致了腐蚀的加速。
金属表面的吸附并不稳定,形成了可溶性物质,氯离子对金属表面的活化作用只出现在一定不锈钢法研究钝化状态的结果表明,这个电位便开始活化。
在此电位下,,不锈钢存在着1 个特定的电位值,的范围内是膜的击穿电位,击穿电位越大,金属的钝态越稳定。
因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。
2 应力腐蚀失效及防护措施2. 1 应力腐蚀失效机理[2 ]在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。
因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。
所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。
应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。
②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。
③一般在合金、碳钢中易发生应力腐蚀。
研究表明,应.力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。
压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。
②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。
在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。
铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。
由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。
因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。
在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。
这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。
2. 2 应力腐蚀失效的防护措施控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。
实际情况千变万化,可按实际情况具体使用。
2. 2. 1 选用耐应力腐蚀材料近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。
其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。
2. 2. 2 控制应力在压力容器装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。
2. 2. 3 严格遵守操作规程工艺操作、工艺条件对压力容器的腐蚀有巨大的影响。
因此,必须严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。
在工艺条件允许的范围内添加缓蚀剂。
铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6以下。
实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。
2. 2. 4 维修与管理为保证压力容器长期安全运行,应严格执行有关压力容..器方面的条例、法规,对在用压力容器中允许存在的缺陷必须进行复查,及时掌握其在运行中缺陷的发展情况,采取适当的措施,减少设备的腐蚀。
3 孔蚀失效及预防措施3. 1 孔蚀失效机理在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀) 。
点蚀一般在静止的介质中容易发生。
具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。
在含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm~30μm 小蚀坑,这些小蚀坑便是孔蚀核。
在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。
在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。
氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。
蚀孔内的金属表面处于活化状态,电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。
孔内主要发生阳极溶解:Fe →Fe2 + + 2e ,Cr →Cr3 + + 3e ,Ni →Ni2 + + 2e 。
介质呈中性或弱碱性时,孔外的主要反应为:12O2 + H2O + 2e →2OH- 。
由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。
孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩散,溶解..氧也不易扩散进来。
由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶液,这种浓溶液可使孔内金属表面继续维持活化状态。
又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀物,结果锈层、垢层一起在孔口沉积形成一个闭塞电池。
闭塞电池形成后,孔内、外物质交换更加困难,使孔内金属氯化物更加浓缩,氯化物水解使介质酸度进一步增加,酸度的增加将使阳极溶解速度进一步加快,蚀孔的高速度深化,可把金属断面蚀穿。
这种由闭塞电路引起的孔内酸化从而加速腐蚀的作用称为自催化酸化作用。
影响孔蚀的因素很多,金属或合金的性质、表面状态,介质的性质、pH值、温度等都是影响孔蚀的主要因素。
大多数的孔蚀都是在含有氯离子或氯化物的介质中发生的。
具有自钝化特性的金属,孔蚀的敏感性较高,钝化能力越强,则敏感性越高。
实验表明,在阳极极化条件下,介质中主要含有氯离子便可以使金属发生孔蚀,而且随着氯离子浓度的增加,孔蚀电位下降,使孔蚀容易发生,尔后又使孔蚀加速。
处于静止状态的介质比处于流动状态的介质能使孔蚀加快。
介质的流速对孔蚀的减缓起双重作用,加大流速(仍处于层流状态) ,一方面有利于溶解氧向金属表面输送,使氧化膜容易形成;而另一方面又减少沉淀物在金属表面沉积的机会,从而减少产生孔蚀的机会。
3. 2 防止孔蚀的措施3. 2. 1 在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。
耐孔蚀不锈钢基本上可分为3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。
设计时应优先选用耐孔蚀材料。
3. 2. 2 降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。
3. 2. 3 在工艺条件许可的情况下,可加入缓蚀剂。
对缓蚀剂的要求是,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。
例如,在10 %的FeCl3 溶液中加入3 %的NaNO2 ,可长期防止1Cr18Ni9Ti 钢的孔蚀。
3. 2. 4 采用外加阴极电流保护,抑制孔蚀。
氯离子对不锈钢制压力容器的腐蚀,对压力容器的安全性有很大的影响。
即使是合理的设计、精确的制造避免或减少了容器本身的缺陷,但是,在长期使用中,由于各种错综复杂因素的联合作用,..容器也会受到一定的腐蚀。
虽然目前对防止氯离子对不锈钢腐蚀的方法还不十分完善,但掌握一些最基本的防护措施,对保证生产的正常进行,还是十分必要的。
除此之外,还应严格按照操作规程操作,加强设备管理,做好容器的定期检验,以保证容器在合理的寿命期限内安全运行。
不锈钢表面有一层纯化膜,一旦这层膜遭到破坏,破坏处即成为阳极,铁离子便在水滴中析出开始出现点腐蚀。
氯气很容易溶解在水滴中,其浓度逐渐增加,直至不锈钢纯化膜遭到严重破坏。
由于点腐蚀生成的铁鳞为多孔物质,氯气更容易浸入并逐渐增大浓度,点蚀速度加快。
在对自来水管腐蚀状况进行的调查中发现,自来水管的腐蚀与管子对地电位有关:在电位高的环境,尤其在十的埋设条件下,85%一90%的接头发生腐蚀;在电位低的环境,尤其在一400毫伏以下电位的埋设条件,只有15%的接头发生腐蚀。
对于土壤与腐蚀的关系,调查发现,腐蚀发生率高的地区与腐蚀发生率低的地区,土壤中含水量、氯离子浓度、钙及氮含量有差异。
经X射线测量分析,发现腐蚀生成物中有过量的氯存在,而在完好金属中没有氯,由此断定,氯离子是主要的影响因素。
在水工业中,除了点蚀十分普遍外,常见的腐蚀种类还有缝隙腐蚀和微生物腐蚀。
生活用水的贮存容器和输送水管道基本上是采用不锈钢焊接而成,在焊缝本身及其周围的回火氧化区、在管道的连接处都不可避免地存在缝隙,在此由于水(湿气)的存在,及自来水中氯离子在缝隙处的浓缩,常常使有缝隙的部位产生缝隙腐蚀。
自来水容器及管道自然要与水、潮湿空气或土壤接触,在这些设施的缺氧环境下,厌氧细菌极易繁殖,从而改变金属周围环境的氧、盐浓度及pH值,从而导致金属的腐蚀,这种腐蚀属微生物腐蚀.。