射频电路结构和工作原理

合集下载

rf射频电源工作原理

rf射频电源工作原理

rf射频电源工作原理一、引言射频电源是一种广泛应用于无线通信、医疗设备、工业制造等领域的电源设备,其作用是将交流电源转换成高频交流电能,并通过匹配网络输出到负载中。

射频电源的核心部件是射频功率放大器,其工作原理是将低功率的高频信号放大到足以驱动负载的高功率水平。

本文将详细介绍射频电源的工作原理,包括射频功率放大器的基本结构和工作原理、匹配网络的设计原则和实现方法、以及常见的故障排查方法等内容。

二、射频功率放大器基本结构和工作原理1. 射频功率放大器结构射频功率放大器通常由输入匹配网络、输出匹配网络和功率管三个部分组成。

其中输入匹配网络用于将信号从发生器传输到功率管,输出匹配网络则用于将功率管输出的信号与负载相匹配,以获得最大效率。

在实际应用中,还需要加入温度传感器、过流保护等辅助功能。

2. 射频功率放大器工作原理射频功率放大器的工作原理可以概括为两个过程:信号放大和功率放大。

信号放大是指将低功率的高频信号通过输入匹配网络传输到功率管中,并在其中得到一定程度的放大;功率放大则是指将功率管输出的信号通过输出匹配网络匹配到负载中,以获得最大效率。

具体来说,当输入信号通过输入匹配网络进入功率管时,会产生电流和电压波动。

这些波动将在功率管内部被放大,并产生对应的输出信号。

这个过程中需要注意保证输入输出端口的阻抗匹配,以避免反射和损耗。

三、匹配网络设计原则和实现方法1. 匹配网络设计原则匹配网络的设计目标是使射频电源能够向负载输出最大功率,并保证输入输出端口之间的阻抗匹配。

具体来说,需要满足以下几个原则:(1)输入端口与发生器之间阻抗匹配:保证从发生器传输过来的信号能够完全进入射频电源系统。

(2)输出端口与负载之间阻抗匹配:保证射频电源能够向负载输出最大功率,并避免反射损耗。

(3)输入输出端口之间的阻抗匹配:保证信号能够顺利地从输入端口传输到输出端口,同时避免反射和损耗。

2. 匹配网络实现方法匹配网络的实现方法有多种,包括传统的LC型匹配网络、变压器型匹配网络、微带线型匹配网络等。

射频电路工作原理

射频电路工作原理

射频电路工作原理射频电路是指工作频率高于数十千赫兹的电路,广泛应用于通信、雷达、无线电等领域。

其工作原理主要包括射频信号的产生、放大、调制和传输等过程。

一、射频信号的产生射频信号的产生通常使用射频振荡器来实现。

射频振荡器是一种能够稳定产生特定频率的电路。

常见的射频振荡器有晶体振荡器、压控振荡器等。

晶体振荡器利用晶体的谐振特性来产生稳定的射频信号,而压控振荡器则通过改变电压来调节输出频率。

二、射频信号的放大射频信号通常需要经过放大器进行增强,以便能够传输到远距离。

射频放大器一般采用晶体管、场效应管等器件构成。

当射频信号经过放大器时,放大器会根据输入信号的强弱来调节输出信号的幅度。

三、射频信号的调制射频信号的调制是为了在信号传输过程中携带信息。

常见的调制方式有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。

幅度调制是根据调制信号的幅度改变射频信号的幅度,频率调制是根据调制信号的频率改变射频信号的频率,相位调制则是根据调制信号的相位改变射频信号的相位。

四、射频信号的传输射频信号的传输通常使用天线来实现。

天线是将电信号转换为电磁波并进行辐射的设备。

射频信号经过天线辐射后,可以在空间中传播,被接收器接收到并解调还原为原始信号。

射频电路的工作原理可以简单地概括为信号的产生、放大、调制和传输过程。

在实际应用中,射频电路还可能包含滤波器、混频器、功率放大器、解调器等组件,以满足不同的要求。

例如,滤波器可以用来去除信号中的杂散频率成分,混频器可以将不同频率的信号进行转换,功率放大器可以增强信号的输出功率,解调器可以将调制过的信号还原为原始信号。

射频电路的工作原理是通过射频信号的产生、放大、调制和传输过程来实现信号的传输和处理。

在不同的应用领域中,射频电路扮演着重要的角色,为无线通信、雷达探测等提供了可靠的技术支持。

通过不断的研究和创新,射频电路的性能和可靠性将得到进一步提升,为人们的生活和工作带来更多便利和效益。

RF射频电路分析

RF射频电路分析

射频电路的应用领域
01
02
03
无线通信
手机、无线局域网、蓝牙等。
雷达
目标检测、测距、速度测量等 。
卫星通信
卫星信号接收与发送等。
04
电子战
信号侦察与干扰等。
射频电路的基本组成
信号源
功率放大器
滤波器
天线
产生射频信号的电路或 设备。
放大射频信号的器件。
对信号进行选频,抑制 不需要的频率成分。
将射频信号转换为电磁 波并辐射到空间中。
元件匹配
元件的匹配是射频电路设计的重要环节,通过匹配可以减小信号反射和能量损失 ,提高信号传输效率。
射频电路的性能优化
信号质量优化
通过优化元件和布线的参数,减小信号失真和噪声, 提高信号质量。
效率优化
优化电路的结构和参数,提高射频电路的效率,减小 能量损失。
稳定性优化
通过合理设计电路结构和参数,提高射频电路的稳定 性,减小外界因素对电路性能的影响。
04
射频电路的设计与优化
射频电路的布局与布线
布局
在射频电路的布局中,应考虑信号的传输路径、元件的排列和相互关系,以减 小信号损失和干扰。
布线
布线是射频电路设计的关键环节,应选择合适的线宽、线间距和布线方向,以 降低信号的传输损耗和电磁干扰。
射频电路的元件选择与匹配
元件选择
在选择射频电路的元件时,需要考虑元件的频率特性、功率容量、噪声系数等参 数,以确保电路性能的稳定性和可靠性。
03
射频电路的分析方法
频域分析
频域分析是一种常用的射频电路分析方法,通过将时域信号转换为频域信号,可以 更好地理解信号的频率特性以及电路在不同频率下的响应。

手机射频电路原理

手机射频电路原理

手机射频电路原理手机射频电路是手机中非常重要的一部分,负责处理手机信号的传输和接收。

手机射频电路原理包括射频信号的发射、接收、放大和滤波等过程。

首先,手机射频电路主要包括射频发射电路和射频接收电路两部分。

射频发射电路负责将数字信号转换为射频信号并发送出去,而射频接收电路则负责接收并解码收到的射频信号。

这两个电路之间通过天线进行无线传输。

其中,射频电路中的核心元器件是射频集成电路(RFIC),它承担了信号的处理和调制任务。

在手机射频发射电路中,数字信号首先通过数字模拟转换器(DAC)转换为模拟信号。

然后,经过滤波器和放大器等电路进行处理,将信号转换为射频信号。

射频信号经过射频功率放大器(PA)进行功率放大,然后通过天线辐射出去。

在这个过程中,还需要进行频率合成和混频等操作,以生成所需要的信号频率。

手机射频接收电路则负责接收外界的射频信号,并将其转换为数字信号。

天线将接收到的信号传输到射频前端模块(RF Front-end Module),该模块包括低噪声放大器(LNA)、滤波器和混频器等部件。

低噪声放大器会将射频信号进行放大并降低噪声,滤波器则用于滤掉无用的频谱成分。

混频器将射频信号与本地振荡器(LO)的信号混频,得到中频信号。

中频信号再经过中频放大器(IF Filter & Amplifier)进行进一步的滤波和放大,最后通过模拟数字转换器(ADC)转换为数字信号。

除了发射和接收信号的过程,手机射频电路还需要进行射频无线电信号的滤波处理。

由于存在其他设备和信号的干扰,手机需要对接收到的信号进行滤波以去除干扰。

射频滤波器在射频电路的前端起到了重要作用,它通过滤波器将所需的信号频段保留,而将其他频段的信号滤掉。

常见的滤波器有低通滤波器、带通滤波器和带阻滤波器等。

此外,手机射频电路还需要考虑功耗和信号质量等方面的问题。

为了提高功耗效率,手机射频电路需要设计高效的功率放大器,并尽量减小信号在电路中的损耗。

浅谈射频芯片内部结构以及工作原理

浅谈射频芯片内部结构以及工作原理

浅谈射频芯片内部结构以及工作原理射频简称RF,射频就是射频电流,它是一种高频交流变化电磁波的简称。

每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。

下面就随着低功耗蓝牙模块厂商云里物里科技一起来看下射频电路的内部构成。

射频电路射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。

此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,射频电路最主要的应用领域就是无线通信,下图为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。

这是一个无线通信收发机的系统模型,这个系统的典型应用为移动电话和无线局域网,它包含了共用一个天线进行通讯的发射电路和接收电路。

在这个系统中,输入信号(声音或者计算机产生的数字信号)首先进行数字处理,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;如在移动电话的运用中,那么信号首先被转换为数字信号,然后进行压缩以减少传输时间,最后采用适当的编码以减少噪声和传输误码。

完成了输入信号的数字处理后,再通过数-模转换电路恢复为模拟形式。

模拟信号电路分为两部分:发射部分和接收部分。

射频芯片的发射部分射频芯片发射部分的主要作用是:数-模转换输出的低频模拟信号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,信号通过功率放大器(PA)放大,经过射频开关控制,再经过匹配电路和滤波电路处理到达天线,然后经过天线辐射到空间中去。

射频芯片的接收部分射频芯片接收部分的主要作用是:空间辐射信号经过天线耦合到接收电路中去,接收到的微弱信号经过匹配和滤波电路处理,再经过射频开关控制以后到达低噪声放大器(LNA),经过放大后与本地振荡信号经过混频器下变频为包含中频信号分量的信号。

天线的任务就是将经过编码处理的信息以电磁波的形式发射到自由空间中,或者接收来自空间中的信号。

射频电路结构和工作原理

射频电路结构和工作原理

射频电路结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。

其主要负责接收信号解调;发射信息调制。

早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。

更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。

RXI-PRXQ-PRXQ-N(射频电路方框图)1、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。

1、该电路掌握重点:(1)、接收电路结构。

(2)、各元件的功能与作用。

(3)、接收信号流程。

电路分析:(1)、电路结构。

接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。

早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。

(接收电路方框图)(2)、各元件的功能与作用。

1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。

塑料封套螺线管(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。

b)、发射时把功放放大后的交流电流转化为电磁波信号。

2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。

900M收收GSM900M收控收控900M发控GSM900M发入GSM(图一)(图二)作用:其主要作用有两个:a)、完成接收和发射切换;b)、完成900M/1800M信号接收切换。

逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN ;DCS- RX-EN ;GSM-TX-EN ;DCS- TX-EN ),令各自通路导通,使接收和发射信号各走其道,互不干扰。

射频电路原理

射频电路原理

射频电路原理1. 引言射频(Radio Frequency,简称RF)电路是指工作频率在无线电波段(一般为3kHz 到300GHz)的电子电路。

射频电路在现代通信系统、雷达、无线电和卫星通信等领域起着至关重要的作用。

本文将详细解释与射频电路原理相关的基本原理。

2. 射频电路基础知识2.1 常见射频波段射频波段按照工作频率可以分为若干个子波段,常见的射频波段包括: - 低频:3kHz - 300kHz - 中频:300kHz - 30MHz - 高频:30MHz - 300MHz - 超高频:300MHz - 3GHz - 极高频:3GHz - 30GHz - 毫米波:30GHz - 300GHz2.2 射频信号特点与低频信号相比,射频信号具有以下特点: - 高工作频率:由于工作在无线电波段,所以具有较高的工作频率。

- 多径传播:射频信号在传播过程中会经历多次反射、散射和绕射,导致多径传播效应。

- 多普勒效应:射频信号在移动通信等场景下,会由于发射源或接收器的运动而产生多普勒频移。

- 传输损耗:射频信号在空间传输过程中会受到路径损耗和自由空间衰减的影响,导致信号强度衰减。

2.3 射频电路元件常见的射频电路元件包括: - 电感器:用于实现阻抗匹配、滤波、谐振等功能。

- 电容器:用于实现阻抗匹配、耦合、滤波等功能。

- 变压器:用于实现阻抗变换、耦合等功能。

- 晶体管:常用的放大元件,可以实现放大和开关功能。

- 集成电路(IC):集成了多个功能模块的射频电路芯片。

3. 射频信号特性3.1 幅度特性射频信号的幅度可以表示为功率或电压。

在射频系统中,常用dBm(分贝毫瓦)来表示功率级别,dBV(分贝伏特)来表示电压级别。

由于射频信号幅度较小,通常使用对数单位来表示。

3.2 相位特性射频信号的相位表示了信号在时间和空间上的变化情况。

相位可以用角度(度或弧度)表示,也可以用时间延迟来表示。

在射频电路中,相位差常用来描述信号之间的相对关系。

射频前端基本架构及工作原理解析

射频前端基本架构及工作原理解析
声学滤波器分类(按工艺材料)
声学滤波器
SAW滤波器
BAW滤波器
普通SAW
声表面滤波器—— 技术成熟且仍在发 展,低成本,应用 广泛
TC-SAW
温度补偿滤波器—— 弥补普通SAW温度 变化大的缺陷,制造 复杂度和成本更高
I.H.P-SAW
高频SAW滤波器— —高Q值、低TCF、 高散热性,可满足滤 波器小型化的需求
双工器的内部结构
双工器的外部引线
7
1.3、功率放大器PA: 放大射频信号进行发射
功率放大器(PA,Power Amplifier)是射频前端的核心部件,利用三极管的电流控制作用或场效应管 的电压控制作用将电源的功率转换为按照输入信号变化的电流。 PA主要用于发射链路,通过把发射通道的微弱射频信号放大,使信号成功获得足够高的功率,从而实 现更高通信质量、更强电池续航能力、更远通信距离。PA的性能可以直接决定通信信号的稳定性和强 弱。
晶圆(4寸晶圆为主)采用光刻、镀膜等工艺进行图形化处理, 实现压电薄膜的制作是关键的工艺环节,材料主要为氯化
芯片表面结构和制作工艺较简单
铝(AIN)和氧化锌(ZnO)
成本 优势
较低 (≈0.1-0.5美金)
体积小于传统的陶瓷滤波器, 设计灵活性大、技术成熟、可靠性高
高(>1美金)
适用于高频、温度变化不敏感、声波垂直传播方式易于小 型化,尺寸随频率升高而缩小
功率放大器以三极管/场效应管为核心,通过匹配网络 放大成为功率信号
8
1.3、功率放大器PA: 放大射频信号进行发射
随着半导体材料的不断发展,功率放大器也经历了CMOS、GaAs、GaN三大技术路线。第一代半导体材 料是CMOS,技术成熟且产能稳定。第二代半导体材料主要使用GaAs或SiGe,有较高的击穿电压,可 用于高功率、高频器件应用。第三代半导体材料GaN在性能上显著强亍GaAs,但成本较高。 目前移动端民用市场主要采用GaAs 作为功放,而GaN在部分基站端应用率先实现替代。未来GaN将成 为高射频、大功耗应用的主要方案。

射频电路的原理及应用

射频电路的原理及应用

射频电路的原理及应用一、射频电路的定义射频电路是指在射频信号频率范围内工作的电路。

射频信号是指频率超过几十千赫兹(kHz)的电信号。

射频电路在通信、雷达、卫星和无线电频率应用中起着重要的作用。

二、射频电路的原理射频电路的原理涉及信号的传输、调制和解调。

以下是一些常见的射频电路原理:1. 信号的传输在射频电路中,信号传输过程涉及到信号的放大、滤波和混频等操作。

以下是一些常见的射频电路传输原理: - 射频放大器:用于放大射频信号的电路。

- 射频滤波器:用于滤除非期望频率的信号。

- 射频混频器:用于将不同频率的信号进行混频操作。

2. 调制和解调调制是将调制信号嵌入到载波频率上,以便在信道中传输。

解调则是将调制信号从载波中提取出来。

以下是一些常见的射频电路调制和解调原理: - 调制器:用于将一个低频调制信号转换成一个高频调制信号。

- 解调器:用于从射频信号中提取出原始调制信号。

三、射频电路的应用射频电路在各个领域都有着重要的应用。

以下是一些常见的射频电路应用:1. 通信领域射频电路在通信领域中起着至关重要的作用。

以下是一些常见的射频电路在通信领域的应用: - 无线电通信:射频电路在无线电通信中用于信号的传输和调制。

- 手机通信:射频电路在手机通信中用于信号的放大和解调。

- 卫星通信:射频电路在卫星通信中用于信号的放大和传输。

2. 雷达雷达是利用射频信号进行目标探测和测量的一种技术。

射频电路在雷达系统中起着重要的作用,以下是一些射频电路在雷达中的应用: - 发射机:射频发射机产生高功率射频信号并将其送入天线系统。

- 接收机:射频接收机接收从目标返回的信号并对其进行放大和解调。

- 混频器:射频混频器用于将回波信号与本地振荡器产生的信号进行混频。

3. 无线电频率应用射频电路在无线电频率应用中也有着重要的应用,以下是一些常见的射频电路应用: - 无线电发射机:射频电路在无线电发射机中用于信号的放大和传输。

无线射频电路原理

无线射频电路原理

无线射频电路原理
无线射频电路原理是指用于无线通信中的射频电路的工作原理。

无线射频电路通常包括射频信号源、射频放大器、射频混频器、射频滤波器、射频调制解调器等组成。

射频信号源产生射频信号,通常使用射频振荡器作为信号源。

射频放大器用于放大射频信号的功率,以便发送信号。

射频混频器用于混频处理,将不同频率的信号合并或分离。

射频滤波器用于滤除杂散信号和不希望的频率分量。

射频调制解调器用于对射频信号进行调制和解调,使其能够传输和接收信号。

无线射频电路的工作原理基于射频信号的传输和接收。

在传输端,射频信号源产生射频信号,经过放大器放大后,经过混频、滤波、调制等处理后发送出去。

在接收端,接收到的射频信号经过调制解调、滤波等处理后,传递给信号处理模块进行进一步处理或解码。

无线射频电路原理还涉及射频功率、频率、带宽等参数的设计和控制。

射频功率决定了信号的传输距离和覆盖范围;射频频率决定了信号的通信频段;射频带宽决定了信号的传输速率和信息容量。

总体来说,无线射频电路的原理是通过产生、传输和接收射频信号来实现无线通信,其中涉及到射频信号的源、放大、混频、滤波、调制解调等步骤。

射频电路的设计原理和优化

射频电路的设计原理和优化

射频电路的设计原理和优化射频电路是现代通信系统中不可或缺的部分,其作用是在传输信号之前将信号放大、滤波、调制等,以保证信号质量和传输距离。

因此,对于射频电路的设计和优化十分重要。

一、射频电路的设计原理1、射频电路常见组件射频电路由多个组件组成,其中常见的组件包括:(1)二极管:在不同的交、直流工作模式下,二极管均可用于射频电路。

(2)电容器:作为一种具有低通/高通滤波器效果的器件,电容器可以用于频率选择电路和耦合电路。

(3)电感器:作为一种具有高通/低通滤波器效果的器件,电感器主要用于射频放大器中。

(4)变压器:主要用于匹配不同电阻值和阻抗值的电源和负载,并用于驱动天线。

(5)晶体管:在现代射频电路中广泛使用的放大器器件,它可以实现高速开关,并将低功率信号转换为高功率信号。

2、射频电路的基础参数(1)指标:阻抗(Z)、频率(f)、频带宽度(BW)、输入输出功率P。

(2)特性:增益(G)、稳定性、谐振频率、相关系数和线性度。

二、射频电路的优化方法1、降低噪声水平在射频电路中,噪声是由电气信号和热无关噪声共同产生的。

射频电路的设计师需要采用多种技术,以降低噪声水平。

这些技术包括减小电路本身的噪声、采用防射频干扰和阻尼噪声的方法。

2、提高灵敏度和选择性射频电路的设计师需要预先确定电路所需的灵敏度和选择性指标,并对其进行验证和调整。

射频电路的选择性指标是其频带宽度(BW)。

通过调整电路本身的各项参数,设计师可以调整选择性指标以满足不同的需求。

3、提高线性度和输出功率在射频电路中,线性度和输出功率似乎是相互矛盾的要求。

然而,通过熟练的设计技巧和优化方法,设计师可以提高射频电路的线性度和输出功率。

4、实现所需的阻抗匹配在射频电路中,阻抗匹配是一个必不可少的过程。

用于输入和输出电缆进行阻抗匹配,并采用匹配网络等工具,以最大程度地减小电路阻抗不匹配的影响。

5、减小电路本身的损耗射频电路的损耗包括传输线、电感、电容、二极管、晶体管等各种组件产生的电耗和电流损失。

射频电路原理

射频电路原理

射频电路原理
射频电路是指在射频(Radio Frequency, RF)频段工作的电路,通常在无线通信系统、雷达系统、卫星通信系统等中使用。

射频电路的原理主要包括:
1. 射频信号的传输:射频信号是指频率范围在300 kHz到300 GHz之间的信号,射频电路的主要任务是对射频信号进行放大、调制、解调和滤波等,以实现信号的传输和处理。

2. 射频电路的频率响应:射频电路的频率响应是指射频电路对不同频率信号的响应特性。

一般来说,射频电路需要有宽带性能,即能够传输多个频率范围内的信号。

3. 射频电路的阻抗匹配:由于射频信号在传输中会遇到阻抗不匹配的问题,因此射频电路需要进行阻抗匹配。

阻抗匹配可以提高信号传输效率,减少信号反射和损耗。

4. 射频电路的放大:射频信号通常比较微弱,需要经过放大才能提供足够的信号功率。

射频放大器在射频电路中起到放大信号的作用,常用的放大器有共源极放大器、共漏极放大器等。

5. 射频电路的混频和解调:射频电路中的混频器和解调器用于将射频信号转换成基带信号,实现信号的调制和解调。

混频器将射频信号和本地振荡器的信号进行混合,生成中频信号。

总的来说,射频电路的原理是通过对射频信号进行传输、放大、调制和解调等处理,实现无线通信和其他射频应用的需求。

无线射频的电路原理及应用

无线射频的电路原理及应用

无线射频的电路原理及应用1. 引言射频(Radio Frequency,简称RF)是指用于无线通信的电磁波频率范围,通常指从3kHz到300GHz的频率范围。

无线射频技术的应用广泛,涵盖了移动通信、无线传感器网络、卫星通信、无线电视、雷达等领域。

在无线射频技术中,电路原理起着至关重要的作用,对信号的产生、调制、放大、接收和解调等过程起到关键的作用。

本文将介绍无线射频电路的原理及其在各个领域的应用。

2. 无线射频电路的基础原理2.1 电磁波的基本特性•电磁波是通过电场和磁场的相互作用传播的,具有波动性和粒子性。

•电磁波有不同的频率和波长,频率越高,波长越短,能量越大。

•电磁波可以被天线接收和发送,实现无线通信。

2.2 无线射频电路的要素无线射频电路主要由以下几个部分构成:•天线:将电磁波转化为电信号或将电信号转化为电磁波。

•射频前端模块:包括信号产生、调制、放大等功能。

•射频接收机:将接收到的电磁波转化为数字信号。

•射频发送机:将数字信号转化为电磁波发送出去。

3. 无线射频电路的应用3.1 移动通信•手机:无线射频电路在手机中起到关键作用,将电磁波转化为电信号发射出去,并将接受到的电信号转化为数字信号。

•基站:无线射频电路在基站中起到关键作用,将数字信号转化为电磁波发射出去,并将接收到的电磁波转化为数字信号。

•数据通信:无线射频电路在数据通信中起到关键作用,实现手机间的通信和数据传输。

3.2 无线传感器网络无线传感器网络是由大量分布在一定区域内的无线传感器节点组成的网络。

无线射频电路在无线传感器网络中起到关键作用,实现传感器节点之间的通信和数据传输。

3.3 卫星通信卫星通信是通过人造卫星实现的无线通信方式。

无线射频电路在卫星通信中起到关键作用,将地面发射的信号转化为电磁波发送到卫星,并将卫星接收到的电磁波转化为数字信号发送到地面。

3.4 无线电视无线电视是通过无线传输的方式实现的电视信号的接收和传输。

射频电源工作原理

射频电源工作原理

射频电源工作原理
射频电源是一种通过变换电压和电流频率来实现能量传输的装置。

其工作原理基于共振现象和电磁能量传播。

以下是射频电源的工作原理的详细解释。

1. 高频振荡电路:射频电源中的核心部分是高频振荡电路,通常由电感和电容构成。

在电磁场的作用下,电容和电感之间会产生振荡,使电流和电压周期性地变化。

通过调整电容和电感的数值,可以使振荡频率达到所需的射频范围。

2. 能量传输:射频电源通过振荡电路产生的电磁场来传输能量。

电磁场由电容和电感之间的振荡电压和电流产生,其能量可以在空间中传播。

当射频电源与其他设备或装置连接时,电磁场的能量可以通过电磁感应或电磁耦合来传输到目标设备中。

3. 调节功率:射频电源可以通过调整供电电压或电流的幅值来调节输出功率。

通过改变振荡电路中的电容和电感数值,可以改变振荡频率,从而影响能量传输和输出功率。

4. 匹配网络:为了最大程度地将能量传输到目标设备中,射频电源通常配备了匹配网络。

匹配网络可以调整电源的阻抗与目标设备的阻抗之间的匹配程度,以确保最大功率传输。

5. 控制电路:射频电源通常还包括一个控制电路,用于控制振荡频率、电压和电流的稳定性。

控制电路可以根据需要对高频振荡电路进行调节,以保持其工作在所需的参数范围内。

综上所述,射频电源的工作原理是利用高频振荡电路产生电磁场来传输能量,通过调节振荡频率和输出功率,配合匹配网络和控制电路,实现对目标设备的供电和控制。

手机射频电路原理2

手机射频电路原理2
机电路,其他频段旳信号将会得到克制。
表2:引脚排列及名称
图4:内部构造
声表面滤波器
频率传播特征
声表面滤波器
射频收发信机(U101)
❖ 射频收发信机是射频电路旳关键部件,主要完毕射频信号 旳调整与解调。内部构造主要涉及5个方面:
❖ 1)、接受机(Receiver):提供射频信号旳下行链路,将 射频信号经过放大、解调转变成IQ信号供基带芯片进行处 理。
射频收发信机(U602)
当混频器旳输出信号为信号频率与本振信号之差,且 比信号频率高时,所用旳变频器被称为下边带上变频。
❖ 在接受机电路中旳混频器是下变频器,即混频器输出 旳信号频率比输入信号频率低;在发射机电路中旳混 频器一般用于发射上变频,它将发射中频信号与 UHFVCO(或RXVCO)信号进行混频,得到最终发射信 号。
7.
GOTO Check H/W Revision2 智能选择是否B’D测试
8.
Power Off_Batt
电源表关闭
9.
VerifySupply_Batt
电源表重新设置
10.
Write RTC
写入 RTC 时间
11.
Factory Reset
手机 Reset,自动关机再开机
12.
TestModeOn_Batt
手机通用旳接受与发射流程
❖ 2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交错——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。
射频收发信机(U101)

《手机射频电路原理》课件

《手机射频电路原理》课件

2 音频滤波器
3 射频滤波器
对于音频信号,可以 采用数电转换器将其 转化为数字信号,应 用滤波算法和DSP实现 数字滤波。
在手机中,射频滤波 器主要用于选择所需 频段来避免频谱污染。
混频器
基础知识
混频器是用来实现频段变 换的器件,其基本原理是 将两路不同频率的信号输 入,输出两路频率和之差。
特点和应用
单端口混频器适用于带有 负载的端口,双端口混频 器和三端口混频器适用于 未带负载的端口。
参数和性能评估
参数包括转换增益、输入 与输出匹配、隔离度和热 噪声系数等。
振荡电路
基础知识
分类和特点
振荡电路的本质是谐振电路, 其振荡的条件是电路出现反 馈。
按波形分为正弦波振荡器和 方波振荡器两种,按应用领 域分为电信、雷达、测量等 振荡器。
射频电路包括滤波器、功放器、混频器、振荡器等几大模块,其特点是频率高、信号幅度低。
信号传输基础
信号的基本概念
信号是一种随着时间变化, 耗费或传输多种信息内容的 物理量。
信号的特性和分类
信号可分为模拟信号和数字 信号,数字信号常采用频移 键控来调制。
传输线基本原理
传输线在高频率下表现出传 输线上电磁波的性质,分为 同轴电缆、平行线和微带传 输线等。
结论
重要性
射频电路是手机通讯的核心技术,对于提升通讯质量、减小电路尺寸和提高功率效率具有重 要意义。
发展趋势
射频技术的发展趋势是向集成化、模块化、高效率化、多频段、多业务、多制式技术的方向 发展。
应用展望
未来射频技术将应用于智能家居、物联网等领域,推动物联网向全面无线化发展。
射频放大器
1
原理
射频放大器可将高频小信号放大为较大信号输出,其核心部件是晶体三极管。

射频电路的原理和应用

射频电路的原理和应用

射频电路的原理和应用1. 射频电路的概述射频(Radio Frequency,RF)电路是一种用于处理射频信号的电路,射频信号是指频率在无线电频段的电信号。

射频电路在通信、雷达、无线电等领域中都有广泛的应用。

射频电路的设计和应用需要掌握一定的电路理论和相关的技术知识。

2. 射频电路的基本原理射频电路的基本原理主要包括:•射频信号的传输特性:射频信号的传输特性由电磁波的传播方式决定,涉及到频率、功率、阻抗匹配等参数。

•射频信号的调制和解调:射频信号的调制和解调是指将信息信号转换成射频信号和将射频信号转换成信息信号的过程,常见的调制方式有调幅(AM)、调频(FM)和调相(PM)。

•射频信号的放大和滤波:射频信号在传输过程中需要经过放大和滤波处理,以提高信号的质量和可靠性。

•射频信号的混频和解混频:射频信号的混频是指将射频信号与其他信号进行合成,解混频则是将射频信号从合成的信号中分离出来。

3. 射频电路的应用领域射频电路在多个领域中都有广泛的应用,下面列举了一些常见的应用领域:•通信系统:射频电路在通信系统中起到连接和传输信号的作用,常见的应用有手机通信、卫星通信和无线局域网等。

•雷达系统:射频电路在雷达系统中用于接收和发送雷达信号,常见的应用有航空雷达、气象雷达和地面监测雷达等。

•无线电系统:射频电路在无线电系统中用于接收和发送无线电信号,常见的应用有广播电台、电视台和无线电遥控等。

•医疗设备:射频电路在医疗设备中用于医学影像和无线监测等方面的应用,如核磁共振成像(MRI)和心电图监测等。

•工业自动化:射频电路在工业自动化中用于无线传感和控制系统,常见的应用有无线传感器网络和远程监控等。

•军事装备:射频电路在军事装备中用于通信、雷达和导航等方面的应用,如军用通信设备和导弹定位系统等。

4. 射频电路设计的要点设计射频电路时需要注意以下几个要点:4.1 频率选择选择合适的工作频率是设计射频电路的关键,需要考虑实际应用需要和系统的可靠性要求。

简述射频识别系统的结构及工作原理

简述射频识别系统的结构及工作原理

简述射频识别系统的结构及工作原理射频识别系统的结构及工作原理射频识别(Radio Frequency Identification,简称RFID)系统是一种利用无线电波进行数据传输和识别的技术。

它由射频标签、读写器和中间平台组成。

下面将从结构和工作原理两个方面对射频识别系统进行简述。

1. 结构射频识别系统的结构主要包括以下几个组成部分:•射频标签:射频标签是射频识别系统中最基本的组件。

它由芯片和封装材料组成,内部存储有一定量的数据。

射频标签一般分为主动标签和被动标签两种。

主动标签内置电池,具备主动发送信号的能力;被动标签没有电池,其工作完全依靠读写器的能量供应。

•读写器:读写器是射频识别系统的核心设备之一,用于与射频标签进行通信。

读写器通过射频天线发射一定频率的电磁波信号,当射频标签进入读写器的通信范围内时,射频标签接收到读写器发射的信号并利用其中的能量激活,然后将标签信息通过射频信号传送回读写器。

•中间平台:中间平台是射频识别系统中的关键组成部分,用于接收读写器传回的射频标签信息,并对这些信息进行处理和管理。

中间平台一般由计算机系统和数据库组成,可以实现对射频标签进行数据管理、查询、分析等功能。

2. 工作原理射频识别系统的工作原理如下:1.读写器发射信号:读写器通过射频天线发射一定频率的电磁波信号,信号一般以脉冲的形式传输。

2.射频标签接收信号:当射频标签进入读写器的通信范围内,射频标签的天线接收到读写器发射的信号,并将其转化为电能。

3.射频标签信息传送:射频标签利用被激活的电能,将其内部存储的标签信息通过射频信号的形式传送回读写器。

4.读写器接收信息:读写器的天线接收到射频标签传回的信号,并将其转化为数字信号。

5.中间平台处理信息:读写器将读取到的射频标签信息传送给中间平台进行处理和管理。

中间平台通过解析射频标签的信号,获取其中的标签信息,并将其存储到数据库中。

6.数据分析与应用:中间平台可以根据需求对射频标签的数据进行分析和处理,实现对物流追踪、库存管理、资产管理等应用场景的支持。

射频电路基本原理与设计技巧

射频电路基本原理与设计技巧

射频电路基本原理与设计技巧射频(Radio Frequency,简称RF)电路在现代通信系统中起着至关重要的作用。

它涵盖了从天线到射频前端的信号处理、放大、调制和解调等一系列技术,直接影响到通信质量和性能。

本文将介绍射频电路的基本原理和设计技巧,以帮助读者理解和应用于实际工程中。

一、射频电路的基本原理1. 频率和波长射频电路的特点之一是工作频率较高,通常在几十千赫兹到几百吉赫兹之间。

在理解射频电路的基本原理时,我们首先需理解频率和波长的关系。

频率和波长互为倒数,即频率越高,波长越短。

在射频电路设计中,理解和掌握频率和波长之间的转换关系是十分重要的。

2. 传输线理论传输线是射频电路中常用的元件之一,它用于在不同器件和部件之间传输射频信号。

传输线理论是研究射频信号在传输线中的传输和反射特性等的理论基础。

对于不同类型的传输线,如同轴线、微带线等,都有相应的理论模型和设计指导规则,需要根据具体的应用场景选择合适的传输线类型。

3. 射频放大器设计射频放大器用于增强射频信号的幅度,提高信号的传输距离和质量。

在射频放大器设计中,常用的设计技巧包括选择合适的放大器类型(如共射放大器、共基放大器等)、优化放大器的工作点、控制反馈和稳定等。

同时,射频放大器的稳定性和线性度等也是设计中需要特别注意的问题。

4. 混频器和调制解调器设计混频器用于将不同频率的射频信号进行变频处理,常见的有单、双、多、平衡等类型。

调制解调器则用于对射频信号进行调制和解调,实现信号的调制、解调和解码等功能。

在设计混频器和调制解调器时,需要考虑到信号的频率对齐、幅度平衡以及相位一致等问题。

5. 滤波器设计滤波器用于对射频信号进行频率选择性处理,滤除不需要的频段,保留感兴趣的频段。

常见的滤波器类型包括带通滤波器、带阻滤波器和全局反馈滤波器等。

在滤波器设计中,需要根据实际需求选择合适的滤波器类型,通过优化滤波器参数来达到所期望的滤波特性。

二、射频电路的设计技巧1. 良好的功率分配与返回路径布局射频电路设计中,良好的功率分配与返回路径布局是至关重要的。

射频电路原理

射频电路原理

射频电路原理射频电路是指工作频率在无线电频率范围内的电路,主要用于无线通信、雷达、卫星通信等领域。

射频电路的设计和应用已经成为现代通信系统中不可或缺的一部分。

本文将从射频电路的基本原理、设计要点和应用领域等方面进行介绍。

首先,射频电路的基本原理是基于交流电路理论,但由于工作频率较高,因此在设计和应用时需要考虑许多特殊因素。

射频电路的特点之一是传输线上的电磁波效应,因此在设计射频电路时需要考虑传输线的特性阻抗匹配、衰减和反射等问题。

另外,射频电路中还会涉及到高频器件的选取和匹配,如高频放大器、滤波器、混频器等。

这些器件的特性对射频电路的性能有着重要的影响。

其次,射频电路的设计要点包括频率选择、阻抗匹配、功率传输和抗干扰能力等方面。

在频率选择上,需要根据具体的应用需求选择合适的工作频段,同时考虑到频率的稳定性和带宽的要求。

阻抗匹配是射频电路设计中的重要环节,它直接影响到信号的传输效率和功率传输。

此外,射频电路在实际应用中通常会受到各种干扰,因此抗干扰能力也是设计中需要重点考虑的问题。

最后,射频电路在通信、雷达、卫星通信等领域有着广泛的应用。

在通信系统中,射频电路用于无线信号的发射和接收,包括调制解调、功率放大、滤波和射频前端等功能。

在雷达系统中,射频电路用于发射和接收雷达信号,并实现信号的处理和解调。

在卫星通信系统中,射频电路则扮演着信号的发射、接收和频率转换等关键角色。

综上所述,射频电路作为现代通信系统中的重要组成部分,其设计和应用都具有一定的复杂性和专业性。

只有深入理解射频电路的基本原理,灵活运用设计要点,并结合实际应用需求,才能设计出稳定、高效的射频电路系统,满足现代通信系统对于高速、高频、高效的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频电路结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。

其主要负责接收信号解调;发射信息调制。

早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。

更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。

RXI-P RXI-N 900M RXQ-P RXQ-N1800MVCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号TXI-P TXI-N 射频电压TXQ-PTXQ-N等级(射频电路方框图) 1、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。

1、 该电路掌握重点: (1)、接收电路结构。

(2)、各元件的功能与作用。

(3)、接收信号流程。

电路分析:天 线 开 关接收解调频 率 合 成R X VCO鉴相调制功 率 放大器 TX VCO功控分频发射互感器(1)、电路结构。

接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。

早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。

900M1800MSYN-VCC频率取样 13M SYN-CLK SYN- DAT SYN- RST(接收电路方框图) (2)、各元件的功能与作用。

1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。

塑料封套 螺线管 天线座微带电感(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。

b)、发射时把功放放大后的交流电流转化为电磁波信号。

2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。

900M 收1800M 收GSM 收 PCS 收天 线 开 关接收解调频 率合成R X VCO OCPU (音频)分频数字处理 音频放大900M 收控 1800M 收控900M 发控 1800M 发控 GSM 发控 PCS 发控900M 发入 1800M 发入 GSM 发入 PCS 发入(图一)(图二)作用:其主要作用有两个:a )、 完成接收和发射切换;b )、 完成900M/1800M 信号接收切换。

逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN ;DCS- RX-EN ;GSM-TX-EN ;DCS- TX-EN ),令各自通路导通,使接收和发射信号各走其道,互不干扰。

由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。

因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。

3)、滤波器:结构:手机中有高频滤波器、中频滤波器。

作用:其主要作用:滤除其他无用信号,得到纯正接收信号。

后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。

4)、高放管(高频放大管、低噪声放大器):结构:手机中高放管有两个:900M 高放管、1800M 高放管。

都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

B2900MC4中频1800M(高频放大管供电图)作用:a )、 对天线感应到微弱电流进行放大,满足后级电路对信号幅度的需求。

b )、完成900M/1800M 接收信号切换。

原理:a )、供电:900M/1800M 两个高放管的基极偏压共用一路,由中频同时路提供;而两管的集电极的偏压由中频CPU 根据手机的接收状态命令中频分两路送出;其目的完成900M/1800M 接收信号切换。

b )、原理:经过滤波器滤除其他杂波得到纯正935M-960M 的接收信号由电容器耦合后送入相应的高放管放大后经电容器耦合送入中频进行后一级处理。

5)、中频(射频接囗、射频信号处理器): 结构:由接收解调器、发射调制器、发射鉴相器等电路组成;新型手机还把高放管、频率合成、26M 振荡及分频电路也集成在内部(如下图)。

900M接收入 接收基带 1800M 接收入 压控26M 晶体 频合时钟 频合数据 13M 输出 频合复位 发射中频 发射基带作用: a )、内部高放管把天线感应到微弱电流进行放大。

解调 分频调制 鉴相 频合 分频振荡 分频放大b )、接收时把935M-960M (GSM )的接收载频信号(带对方信息)与本振信号(不带信息)进行解调,得到67.707KHZ 的接收基带信息。

c )、发射时把逻辑电路处理过的发射信息与本振信号调制成发射中频(后述)。

d )、结合13M/26M 晶体产生13M 时钟(参考时钟电路)。

e )、根据CPU 送来参考信号,产生符合手机工作信道的本振信号(后述)。

(2)、接收信号流程。

(参照零中频手机)手机接收时,天线把基站发送来电磁波转为微弱交流电流信号,经过天线开关接收通路,送高频滤波器滤除其它无用杂波,得到纯正935M-960M (GSM )的接收信号,由电容器耦合送入中频内部相应的高放管放大后,送入解调器与本振信号(不带信息)进行解调,得到67.707KHZ 的接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。

2、 发射电路的结构和工作原理:发射时,把逻辑电路处理过的发射基带信息调制成的发射中频,用TX-VCO 把发射中频信号频率上变为890M-915M (GSM )的频率信号。

经功放放大后由天线转为电磁波辐射出去。

该电路掌握重点: (1)、电路结构。

(2)、各元件的功能与作用。

(3)、发射信号流程。

电路分析: (1)、电路结构。

发射电路由中频内部的发射调制器、发射鉴相器;发射压控振荡器(TX-VCO )、功率放大器(功放)、功率控制器(功控)、发射互感器等电路组成。

(如下图)VCC 频率取样13M CLK 功 DAT频 率 合 成R X VCO分频发射互感器 天线开关率 RST 样 取 发射频率取样 信 号TXI-P TXI-N 射频电压TXQ-PTXQ-N等级(发射电路方框图) (2)、各元件的功能与作用。

1)、发射调制器: 结构:发射调制器在中频内部,相当于宽带网络中的MOD 。

作用:发射时把逻辑电路处理过的发射基带信息(TXI-P ;TXI-N ;TXQ-P ;TXQ-N )与本振信号调制成发射中频。

2)、发射压控振荡器(TX-VCO ): 结构:发射压控振荡器是由电压控制输出频率的电容三点式振荡电路;在生产制造时集成为一小电路板上,引出五个脚:供电脚、接地脚、输出脚、控制脚、900M/1800M 频段切换脚。

当有合适工作电压后便振荡产生相应频率信号。

作用:把中频内调制器调制成的发射中频信号转为基站能接收的890M-915M (GSM )的频率信号。

原理:众所周知,基站只能接收890M-915M (GSM )的频率信号,而中频调制器调制的中频信号(如三星发射中频信号135M )基站不能接收的,因此,要用TX-VCO 把发射中频信号频率上变为890M-915M (GSM )的频率信号。

当发射时,电源部分送出3VTX 电压使TX-VCO 工作,产生890M-915M (GSM )的频率信号分两路走: a )、取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频鉴相调制功 率 放大器 TX VCO功控进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生1-4V跳变电压(带有交流发射信息的直流电压)去控制TX-VCO内部变容二极管的电容量,达到调整频率准确性目的。

b)、送入功放经放大后由天线转为电磁波辐射出去。

从上看出:由TX-VCO产生频率到取样送回中频内部,再产生电压去控制TX-VCO工作;刚好形成一个闭合环路,且是控制频率相位的,因此该电路也称发射锁相环电路。

、3)、功率放大器(功放):结构:目前手机的功放为双频功放(900M功放和1800M功放集成一体),分黑胶功放和铁壳功放两种;不同型号功放不能互换。

作用:把TX-VCO振荡出频率信号放大,获得足够功率电流,经天线转化为电磁波辐射出去。

值得注意:功放放大的是发射频率信号的幅值,不能放大他的频率。

功率放大器的工作条件:a)、工作电压(VCC):手机功放供电由电池直接提供(3.6V)。

b)、接地端(GND):使电流形成回路。

c)、双频功换信号(BANDSEL):控制功放工作于900M或工作于1800M。

d)、功率控制信号(PAC):控制功放的放大量(工作电流)。

e)、输入信号(IN);输出信号(OUT)。

4)、发射互感器:结构:两个线径和匝数相等的线圈相互靠近,利用互感原理组成。

作用:把功放发射功率电流取样送入功控。

原理:当发射时功放发射功率电流经过发射互感器时,在其次级感生与功率电流同样大小的电流,经检波(高频整流)后并送入功控。

5)、功率等级信号:所谓功率等级就是工程师们在手机编程时把接收信号分为八个等级,每个接收等级对应一级发射功率(如下表),手机在工作时,CPU根据接的信号强度来判断手机与基站距离远近,送出适当的发射等级信号,从而来决定功放的放大量(即接收强时,发射就弱)。

附功率等级表:接收等级0 1 2 3 4 5 6 7发射等级(mw)603 603 603 250 100 40 16 6.86)、功率控制器(功控):结构:为一个运算比较放大器。

作用:把发射功率电流取样信号和功率等级信号进行比较,得到一个合适电压信号去控制功放的放大量。

原理:当发射时功率电流经过发射互感器时,在其次级感生的电流,经检波(高频整流)后并送入功控;同时编程时预设功率等级信号也送入功控;两个信号在内部比较后产生一个电压信号去控制功放的放大量,使功放工作电流适中,既省电又能长功放使用寿命(功控电压高,功放功率就大)。

(3)、发射信号流程。

当发射时,逻辑电路处理过的发射基带信息(TXI-P;TXI-N;TXQ-P;TXQ-N),送入中频内部的发射调制器,与本振信号调制成发射中频。

而中频信号基站不能接收的,要用TX-VCO把发射中频信号频率上升为890M-915M(GSM)的频率信号基站才能接收。

当TX-VCO工作后,产生890M-915M(GSM)的频率信号分两路走:a)、一路取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生一个1-4V跳变电压去控制TX-VCO内部变容二极管的电容量,达到调整频率目的。

相关文档
最新文档