二年级奥数之数字拆分

合集下载

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。

整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。

在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。

例1.电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。

我们知道,1+2+3+4+5+6+7=28。

如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。

由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。

例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。

所以最多可以播7天。

例2:有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。

问:有多少种不同支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。

因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。

当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。

当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。

总共有5种不同的支付方法。

例3:把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23=2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。

二年级奥数.数字分组和拆分

二年级奥数.数字分组和拆分

把一个自然数(0除外)拆成几个自然数相加的形式,叫自然数的拆分.在这节课中,我们就将来研究关于自然数的拆分问题.希望通过学习,使学生从中学到一些有序和全面思考问题的方法.知识点:掌握自然数拆分的一般方法——枚举.①小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?”小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿(e)得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”②小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.”熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”③小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.”小朋友.熊猫老师怎么知道小白兔说的是谎话?【教学思路】小松鼠把9个松果分成不一样多的三份,6=1+2+3,所以可以分成.小白兔说它把9个蘑菇分成个数不同的4份.这是不对的.因为1+2+3+4=10.9个蘑菇是分不出个数不同的4份的.把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【教学思路】要求强强和明明各打中的环数,即是把12,8按环数进行拆分的问题.也就是要把12和8拆分成两个数相加.因为靶子中的环数只有2、4、6、8、10环.所以这两个数只能从这些数中选择.因为12=8+4=10+2,8=6+2.根据“没有哪两发子弹打在同一环中’’的条件,可以知道甲打中的是8环和4环,乙打中的是6环和2环.把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【教学思路】要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚举法.例如先拆成两部分,再拆成三部分、四部分,最后拆成五部分.拆分过程是:5=1+4=2+35=1+1+3=1+2+25=1+1+1+25=1+1+1+1+1答:共有6种不同的拆分方法.按下面的要求,把自然数6进行拆分.(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【教学思路】(1)6=1+5=2+4=3+3 ;6=1+1+4=1+2+3=2+2+2 ;6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ;6=1+1+1+1+1+1 共10种方法.(2)从(1)中,把完全相同的3种方法剔除6=3+3=2+2+2=1+1+1+1+1+1,则还剩7种.(3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同.那么就只有6=1+5=2+4=1+2+3 ,3种拆分方法.猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【教学思路】要求有几种不同的分配方法,就是求把10拆成3个不完全相同的自然数,因为每个小猪至少要摘2个,所以0,1除外,共有多少种拆分方法呢.拆分过程是:lO=2+2+610=2+3+510=2+4+410=3+3+4答:共有4种不同的分组方法.巩固拓展体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?【教学思路】10个小朋友分成三组做游戏,那么每组最少要有1个人,这道题和上一题比不同就是,就是多了拆成1的部分.具体拆分过程如下:10=1+1+8=1+2+7=1+3+6=1+4+510=2+2+6=2+3+5=2+4+410=3+3+4答:一共有8种不同的分组方法.兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【教学思路】这道题也就是要我们把12拆分成3个不同的自然数,可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9.下面进行变化,如从9中取1加到2上,又得:12=1+3+8.继续按类似方法变化,可得下列各式:12=1+4+7=2+3+7,12=1+5+6=2+4+6,12=3+4+5.共有7种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了12本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.想一想,他们手中各有几本书?【教学思路】把12拆分成4个不同的自然数只有唯一一种方法:12=5+4+2+1,所以这几个小朋友手中的书分别是5本、4本、2本、1本。

二年级下 数学思维训练 奥数 第1讲 数字的拆分

二年级下 数学思维训练 奥数 第1讲  数字的拆分
二年级下 数学思维训练 奥数
第1讲 数字的拆分
2018
数字的分解
5 14
6 15
5 23
6 24
5 32
5 41
6
6
3 34 2
数字的拆分
自然数的拆分:把一个自然数(0除外)拆分成几 个自然数相加的形式
方法:枚举法: ① 从大到小 (有序) ②从小到大
注意:一般情况下选用“从小到大”比较好,告 诉最大数的情况下选用“从大到小”比较好
所以分糖方案是:5个人分别分到88块、 88块、8块、8块、8块。
拓展练习
1、把7拆成几个不完全相同的自然数相加 的形式,共有多少种拆分方法
拓展练习
2、兔妈妈拔了12个萝卜,它要把这些萝 卜分给3个兔宝宝吃,每个兔宝宝至少要 有1个,并且它们分到的萝卜数量都不同, 可以怎样分呢?
拓展练习
3、4个小朋友去学校图书馆一共借了12本 书,图书室规定,每个人最多只能借5本 书,现在这4个小朋友手里的书数量都不 相同,他们手中各有几本书?
再见
THANK YOU
例5 有七个盘子,每个盘子中分别装有1个、2 个、3个、5个、6个、7个和9个梨,要从 这些盘子中取出15个梨,但要求每个盘子 中的梨要么都拿,要么都不拿,共有多少 种不同而取 法相对容易些
15=9+6=9+5+1=9+3+2+1=7+6+2 =7+5+3=7+5+2+1=6+5+3+1
答:共有7种不同的取法
例6 有人认为8是个吉利数字,他们得到的东 西数量都用“8”表示,有200块糖要分给5 个人,设计一个吉利的分糖方案。

高斯小学奥数二年级(上)第11讲整数分拆初步

高斯小学奥数二年级(上)第11讲整数分拆初步
第十一讲 整数分拆初步
前续知识点:二年级第一讲; XX 模块第 X 讲 后续知识点: X 年级第 X 讲; XX 模块第 X 讲
砍树工
砍树工
小淘
小虎 小熊
小熊
小熊
棵棵 !
小虎
小熊
把里面的人物换成相应红字标明的人物.
整数分拆问题是一个古老而又十分有趣的问题. 所谓整数的分拆, 就是把一个自然数表示
成为若干个自然数的和的形式,每一种表示方法,便是这个自然数的一个分拆.
【提示】 本题有个限制条件,每人至少三块,那么在分拆的时候,分拆的数不能小于
3.
小高共有 10 块香草蛋糕,每天至少吃 2 块,3 天吃完,可能的吃法一共有多少种? 练习 4
例题 5
把 8 个桃子全部分给丁丁、阿呆和阿瓜,要求每个人都 有桃子,而且丁丁分得的桃子数比阿呆少,可能的分法 一共有多少种?
一年级我们已经学过了将一个整数拆分成两个数的和的问题.试着做一做例题
1,回顾一
下以前学过的知识.
例题 1
萱萱买了一些篮球和足球,一共 10 个,且两种球的个数 不一样多.请问:两种球的个数可能有多少种不同的情 况?
【提示】 审题,找到关键条件,在分拆时一定要时刻关注关键条件.一定要有序去思考,这样 才能不重不漏.
7 2 1 4, 7 2 2 3 , 7 2 3 2 , 7 2 4 1,
7 3 1 3 , 7 3 2 2 , 7 3 3 1,
7 4 1 2, 7 4 2 1,
7 5 1 1. 共有 5 4 3 2 1 15 (种).
10. 练习 4 答案: 15 简答:三步曲:第一步:拆 10;第二步:分 3 天吃完,就意味着将 10 拆成 3 份;第三步:限制条 件是每天至少吃 2 块,就说明从 2 开始分拆,让第一天每次都固定.当这种情况全部拆分完后, 让第一天的逐渐增加. 即 10 2 2 6, 10 2 3 5 , 10 2 4 4 , 10 2 5 3 , 10 2 6 2 ,

二年级数字拆分

二年级数字拆分

解题过程
一般情况 顺序:“从小到大”
两个:6=1+5 6=2+4 6=3+3
三个:6=1+1+4 6=1+2+3 6=2+2+2 四个:6=1+1+1+3 6=1+1+2+2
五个:6=1+1+1+1+2 六个:6=1+1+1+1+1+1 共10种方法
解题过程
两个:6=1+5 6=2+4 6=3+3 三个:6=1+1+4 6=1+2+3 6=2+2+2 四个:6=1+1+1+3 6=1+1+2+2 五个:6=1+1+1+1+2 六个:6=1+1+1+1+1+1 不完全相同:把完全相同的去掉就可以
思 解路 题分过析程
1两.拆个:谁5=1+4=2+3 顺序 2三.拆个:成5几=1个+1数+3=1+2+2 3四.拆个:成5怎=1样+1的+1数+2
五个:5=1+1+1+1+1 共有6种不同的拆分方法
【点睛】
1.拆谁 2.拆成几个数
解题过程
思解路 题分过析程
1安.拆迪两谁发:子6弹、打5 中6环,要求每次打 2中.拆的环成数几不个同数6=:1+两5=个2+4 3乐中.拆乐的两 环成发 数怎子 不样弹 同的打5=数中1+:54环=不2,+同要3 求每次打

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆

小学奥数知识点趣味学习——整数的分拆整数分拆内容概述:1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大。

也就是把整数分拆成两个相等或者相差1的两个整数。

2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np+r,则分成r个(p+1),(n-r)个P。

3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大。

4.把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数。

如果仅大于1,则除去2,再把最大的那个数加1。

5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。

即当有m个奇约数表示的乘积,则有奇约数个奇约数。

6.共轭分拆.我们通过下面一个例子来说明共轭分拆:如:10=4+2+2+1+1,我们画出示意图,我们将其翻转(将图左上到右下的对角线翻转即得到):,可以对应的写成5+3+l+1,也是等于10,即是10的另一种分拆方式。

我们把这两种有关联的分拆方式称为互为共轭分拆。

典型例题:1.写出13=1+3+4+5的共轭分拆。

【分析与解】画出示意图,翻转得到,对应写为4+3+3+2+1=13,即为13=1+3+4+5的共轭分拆。

2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等。

则该电视连续剧最多可以播出几天?【分析与解】由于希望播出的天数尽可能地多,若要满足每天播出的集数互不相等的条件下,每天播出的集数应尽可能地少。

选择从1开始若干连续整数的和与30最接近(小于30)的情况为1+2+3+4+5+6+7=28,现在就可以播出7天,还剩下2集,由于已经有2集这种情况,就是把2集分配到7天当中又没有引起与其他的几天里播出的集数相同.于是只能选择从后加.即把30表示成:30=1+2+3+4+5+6+9或30=1+2+3+4+5+7+8即最多可以播出7天。

(完整版)小学奥数09数拆分

(完整版)小学奥数09数拆分

1.7 数的拆分1.7.1 整数的拆分整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。

整数的分拆是古老而又风趣的问题,此中最有名的是哥德巴赫猜想。

在国内外数学比赛中,整数分拆的问题经常以各样形式出现,如,存在性问题、计数问题、最优化问题等。

例 1 电视台要播放一部 30 集电视连续剧,若要求每日安排播出的集数互不相等,则该电视连续剧最多能够播几日?剖析与解:因为希望播出的天数尽可能地多,所以,在每日播出的集数互不相等的条件下,每日播放的集数应尽可能地少。

我们知道, 1+2+3+4+5+6+7=28 。

假如各天播出的集数分别为1,2,3,4,5,6,7 时,那么七天共可播出28 集,还剩 2 集未播出。

因为已有过一天播出 2 集的情况,所以,这余下的 2 集不可以再独自于一天播出,而只能把它们分到从前的日子,经过变动某一天或某二天播出的集数,来解决这个问题。

比如,各天播出的集数安排为1, 2,3, 4,5, 7, 8 或 1,2, 3, 4, 5, 6, 9 都能够。

所以最多能够播7 天。

例 2 有面值为 1 分、 2 分、 5 分的硬币各 4 枚,用它们去支付 2 角 3 分。

问:有多少种不一样支付方法?剖析与解:要付 2 角 3 分钱,最多只能使用 4 枚 5 分币。

因为所有 1 分和 2 分币都用上时,共值12 分,所以最少要用 3 枚 5 分币。

当使用 3 枚 5 分币时, 5× 3=15,23-15=8 ,所以使用 2 分币最多 4 枚,最少 2 枚,可有23=15+( 2+2+2+2 ),23=15+( 2+2+2+1+1 ),23=15+( 2+2+1+1+1+1 ),共 3 种支付方法。

当使用 4 枚 5 分币时, 5× 4=20,23-20=3 ,所以最多使用 1 枚 2 分币,或不使用,进而可有23=20+( 2+1 ),23=20+( 1+1+1 ),共 2 种支付方法。

二年级数学奥数讲义-数字拆分(讲师版)

二年级数学奥数讲义-数字拆分(讲师版)

1+1+2+2
总数
2+2+2+1=7 种
5个 1+1+1+1+2
6个 1+1+1+1+1+1
5个
6个
1+1+1+1+2
(3)
2个
3个
4个
5个
6个
1+5
拆分 6
2+4
1+2+3
总数
2+1=3 种
【知识点】数字拆分 【适用场合】当堂例题 【难度系数】1
【试题来源】 【题目】按下面的要求,把 15 进行拆分。 ⑴将 15 分拆成不大于 9 的三个不同的自然数(0 除外)之和有多少种不同分拆方式,请一一列
出。 ⑵将 15 分拆成三个不同的自然数(0 除外)相加之和,共有多少种不同的分拆方式,请一一列
出。
【答案】(1)8 种 (2)12 种
【解析】数字拆分的基本步骤:拆分的数字——15,拆分成多少个数字——3 个,拆分成什
么样的数字
(1)
三个数
9+5+1
9+4+2
拆分 15
8+6+1
8+5+2
8+4+3
学生姓名 教师姓名
数字拆分
授课日期 授课时长
知识定位
本讲主要介绍什么是数字拆分的概念、方法和步骤。 重点难点 数字拆分的基本步骤:拆分谁?拆分成什么数?拆分成什么数? 数字拆分注意的要点:枚举法的使用(分类),表格的使用
知识梳理
1.什么是数字拆分:将自然数分拆成几个自然数相加,叫做数字的拆分 2.怎么样数字拆分:确定拆分的数字——拆分成多少个数字——拆分成什么样的 数字

【小学二年级奥数讲义】 拆数游戏

【小学二年级奥数讲义】 拆数游戏

【小学二年级奥数讲义】拆数游戏【专题简析】按要求把一些数分解成几个数相加的形式,这不仅可以提高运算能力,更能促进你积极地去思考问题,分析问题,使你的头脑更聪明。

怎样才能找到全部答案,不出现差错呢?分析数的时候,一定要弄懂题中要求,使分析的过程按一定的顺序进行,如果要拆成规定的个数,可以按从大到小的顺序拆;如果没有规定个数,可以按从少到多的顺序拆。

只有这样,才能的找到符合题意的所有分拆方式。

【例题1】像15+51=66这样十位数字和个位数字顺序颠倒的一对两位数相加,而和是66的两位数一共有多少对?思路导航:个位与十位两个数相加是6,即()+()=6,不难得出这样的情况:1+5=6,2+4=6,如果是3+3=6,则个位数与十位数相同,不合要求。

解:这样的两位数有两对:15+51=66,24+42=66。

练习11.十位数字与个位数字顺序颠倒的一对两位数相加,各是55,问这样的两位数有多少对?2.十位数字与个位数字顺序颠倒的一对两位数叫做倒序数,像这样的和是88的倒序数共有多少对?3.有这样一道算式,16+61=77,把16和61这样的两个数叫做倒序数,像这样的和在100以内的倒序数有多少对?【例题2】五个连续自然数的和是40,这五个数按从小到大排列的顺序是怎样的?思路导航:五个连续自然数的和是40,应该先找到五个数中间的一个数,用40÷5=8,8是中间数,比8小的两个数是6、7,比8大的两个数是9、10。

解:这五个连续自然数按从小到大的顺序排列是:6,7,8,9,10。

练习21.四个连续自然数的和是18,这四个数按从小到大排列的顺序是怎样的?2.小明用5天时间做了25道数学题,他每天都比前一天多做一道,这五天里,小明每天各做几道题?3.15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球?【例题3】把10分拆成三个不同的数相加的形式(0除外),共有多少种不同的分拆方法?思路导航:分拆时,可以按从大到小顺序排列,由题意可知,所拆的三个数必须不同,因此最大数为7,最小数为1。

二年级奥数数字分组和拆分

二年级奥数数字分组和拆分

把一个自然数(0除外)拆成几个自然数相加的形式,叫自然数的拆分.在这节课中,我们就将来研究关于自然数的拆分问题.希望通过学习,使学生从中学到一些有序和全面思考问题的方法.知识点:掌握自然数拆分的一般方法——枚举.【教学思路】小松鼠把9个松果分成不一样多的三份,6=1+2+3,所以可以分成.小白兔说它把9个蘑菇分成个数不同的4份.这是不对的.因为1+2+3+4=10.9个蘑菇是分不出个数不同的4份的.① 小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?” 小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿(e)得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”② 小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.” 熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”③ 小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.” 小朋友.熊猫老师怎么知道小白兔说的是谎话?把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【教学思路】要求强强和明明各打中的环数,即是把12,8按环数进行拆分的问题.也就是要把12和8拆分成两个数相加.因为靶子中的环数只有2、4、6、8、10环.所以这两个数只能从这些数中选择.因为12=8+4=10+2,8=6+2.根据“没有哪两发子弹打在同一环中’’的条件,可以知道甲打中的是8环和4环,乙打中的是6环和2环.把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【教学思路】要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚举法.例如先拆成两部分,再拆成三部分、四部分,最后拆成五部分.拆分过程是:5=1+4=2+35=1+1+3=1+2+25=1+1+1+25=1+1+1+1+1答:共有6种不同的拆分方法.按下面的要求,把自然数6进行拆分.【教学思路】(1)6=1+5=2+4=3+3 ;6=1+1+4=1+2+3=2+2+2 ;6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ;6=1+1+1+1+1+1 共10种方法.(2)从(1)中,把完全相同的3种方法剔除6=3+3=2+2+2=1+1+1+1+1+1,则还剩7种.(3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同.那么就只有6=1+5=2+4=1+2+3 ,3种拆分方法.猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【教学思路】要求有几种不同的分配方法,就是求把10拆成3个不完全相同的自然数,因为每个小猪至少要摘2个,所以0,1除外,共有多少种拆分方法呢.拆分过程是:lO=2+2+610=2+3+510=2+4+410=3+3+4答:共有4种不同的分组方法.巩固拓展体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【教学思路】10个小朋友分成三组做游戏,那么每组最少要有1个人,这道题和上一题比不同就是,就是多了拆成1的部分.具体拆分过程如下:10=1+1+8=1+2+7=1+3+6=1+4+510=2+2+6=2+3+5=2+4+410=3+3+4答:一共有8种不同的分组方法.兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【教学思路】这道题也就是要我们把12拆分成3个不同的自然数,可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9.下面进行变化,如从9中取1加到2上,又得:12=1+3+8.继续按类似方法变化,可得下列各式:12=1+4+7=2+3+7,12=1+5+6=2+4+6,12=3+4+5.共有7种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了12本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.想一想,他们手中各有几本书?【教学思路】把12拆分成4个不同的自然数只有唯一一种方法:12=5+4+2+1,所以这几个小朋友手中的书分别是5本、4本、2本、1本。

二年级下册数学试题-奥数习题讲练:第十讲 数字分组和拆分(解析版)全国通用

二年级下册数学试题-奥数习题讲练:第十讲 数字分组和拆分(解析版)全国通用

把一个自然数(0除外)拆成几个自然数相加的形式,叫自然数的拆分.在这节课中,我们就将来研究关于自然数的拆分问题.希望通过学习,使学生从中学到一些有序和全面思考问题的方法.知识点:掌握自然数拆分的一般方法——枚举.【教学思路】小松鼠把9个松果分成不一样多的三份,6=1+2+3,所以可以分成.小白兔说它把9个蘑菇分成个数不同的4份.这是不对的.因为1+2+3+4=10.9个蘑菇是分不出个数不同的4份的.① 小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?” 小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿(e)得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”② 小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.” 熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”③ 小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.” 小朋友.熊猫老师怎么知道小白兔说的是谎话?把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【教学思路】要求强强和明明各打中的环数,即是把12,8按环数进行拆分的问题.也就是要把12和8拆分成两个数相加.因为靶子中的环数只有2、4、6、8、10环.所以这两个数只能从这些数中选择.因为12=8+4=10+2,8=6+2.根据“没有哪两发子弹打在同一环中’’的条件,可以知道甲打中的是8环和4环,乙打中的是6环和2环.把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【教学思路】要做到拆分得不重、不漏,要注意有序思考,一般我们采用枚举法.例如先拆成两部分,再拆成三部分、四部分,最后拆成五部分.拆分过程是:5=1+4=2+35=1+1+3=1+2+25=1+1+1+25=1+1+1+1+1答:共有6种不同的拆分方法.按下面的要求,把自然数6进行拆分.(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【教学思路】(1)6=1+5=2+4=3+3 ;6=1+1+4=1+2+3=2+2+2 ;6=1+1+1+3=1+1+2+2 ;6=1+1+1+1+2 ;6=1+1+1+1+1+1 共10种方法.(2)从(1)中,把完全相同的3种方法剔除6=3+3=2+2+2=1+1+1+1+1+1,则还剩7种.(3)“几个完全不相同的自然数”也就是“不同的自然数”,即拆分的数不能相同.那么就只有6=1+5=2+4=1+2+3 ,3种拆分方法.猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【教学思路】要求有几种不同的分配方法,就是求把10拆成3个不完全相同的自然数,因为每个小猪至少要摘2个,所以0,1除外,共有多少种拆分方法呢.拆分过程是:lO=2+2+610=2+3+510=2+4+410=3+3+4答:共有4种不同的分组方法.巩固拓展体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?【教学思路】10个小朋友分成三组做游戏,那么每组最少要有1个人,这道题和上一题比不同就是,就是多了拆成1的部分.具体拆分过程如下:10=1+1+8=1+2+7=1+3+6=1+4+510=2+2+6=2+3+5=2+4+410=3+3+4答:一共有8种不同的分组方法.兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【教学思路】这道题也就是要我们把12拆分成3个不同的自然数,可以做如下考虑:若将12分拆成三个不同的自然数之和,三个数中最小的数应为1,其次是2,那么第三个数就应是9得:12=1+2+9.下面进行变化,如从9中取1加到2上,又得:12=1+3+8.继续按类似方法变化,可得下列各式:12=1+4+7=2+3+7,12=1+5+6=2+4+6,12=3+4+5.共有7种不同的分拆方式.巩固拓展4个小朋友去学校图书室一共借了12本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.想一想,他们手中各有几本书?【教学思路】把12拆分成4个不同的自然数只有唯一一种方法:12=5+4+2+1,所以这几个小朋友手中的书分别是5本、4本、2本、1本。

小学奥数整数拆分的要点及解题技巧

小学奥数整数拆分的要点及解题技巧

【导语】数学给予⼈们的不仅是知识,更重要的是能⼒,这种能⼒包括观察实验、收集信息、归纳类⽐、直觉判断、逻辑推理、建⽴模型和精确计算。

这些能⼒和培养,将使⼈终⾝受益。

以下是整理的相关资料,希望对您有所帮助。

【篇⼀】 ⼀、概念:把⼀个⾃然数(0除外)拆成⼏个⼤于0的⾃然数相加的形式。

⼆、类型----⽅法 1、基本型 2、造数型 3、求加数最多 ⽅法:1+2+3+……接近结果但是不超过已知数为⽌,再补差 4、两数型 (1)和不变:差⼩积⼤,差⼤积⼩ (2)积不变:差⼤和⼤,差⼩和⼩ 5、拆数型 积(1)允许相同:多3少2没有1 (2)不允许相同:从2连续拆分2+3+4+……刚好超过⽬标数为⽌ 1)超⼏就去⼏ 2)多1去2,差1补尾【篇⼆】 例题 例1、若⼲只同样的盒⼦排成⼀列,⼩明把42个同样的⼩球放在这些盒⼦⾥然后外出,⼩聪从每只盒⼦⾥取出⼀个⼩球,然后把这些⼩球放到⼩球最少的盒⼦⾥去,在把盒⼦从新排列了⼀下。

⼩明回来,仔细查看,没有发现友⼈动过⼩球和盒⼦。

问:⼀共有多少只盒⼦? 分析:设原来⼩球数最少的盒⼦⾥装有a只⼩球,现在增加到了b只,但⼩明发现没有⼈动过⼩球和盒⼦,这说明现在⼜有了⼀只装有a个球的盒⼦,这只盒⼦原来装有a+1个⼩球, 同理,现在另有⼀个盒⼦⾥装有a+1个⼩球,这只盒⼦⾥原来装有a+2个⼩球。

依此类推可知:原来还有⼀个盒⼦⾥装有a+3个⼩球,a+4个⼩球等等,故原来那些盒⼦⾥装有的⼩球数是⼀些连续⾃然数。

现在这个问题就变成了:将42分拆成若⼲个连续整数的和,⼀共有多少种分法,每⼀种分法有多少个加数? 因为42=6×7,故可将42看成7个6的和,⼜: (7+5)+(8+4)+(9+3) 是六个6,从⽽: 42=3+4+5+6+7+8+9 ⼀共有7个加数;⼜因为42=14×3,可将42写成13+14+15,⼀共有3个加数; ⼜因为42=21×2,故可将42写成9+10+11+12,⼀共有4个加数。

二年级-拆数字游戏

二年级-拆数字游戏

4、拆数字游戏
1) 知识锦囊
课程目标:通过系统学习,逐步让孩子养成举一反三的意识和能力。

分析数的时候,一定要弄懂题中要求,使分析的过程按一定的顺序进行,如果要拆成规定的个数,可以按从大到小的顺序拆;如果没有规定个数,可以按从少到多的顺序拆。

只有这样,才能的找到符合题意的所有分拆方式。

2) 小试牛刀
1、像 15+51=66 这样十位数字和个位数字顺序颠倒的一对两位数相加,而和是66 的两位数一共有多少对“数字顺序颠倒的两位数”?
2、十位数字与个位数字顺序颠倒的一对两位数叫做倒序数,像这样的和是 99的倒序数共有多少对?
3) 举一反三
3、五个连续自然数的和是 45,这五个数按从小到大排列的顺序是怎样的?
4、小明用 5 天时间做了35 道数学题,他每天都比前一天多做一道,这五天里, 小明每天各做几道题?
5、把 10 分拆成三个不同的数相加的形式(0 除外),共有多少种不同的分拆方法?
6、把24 分拆成三个不完全相同的数相乘的形式,问由这样的三个数组成的数组有多少种?。

小学奥数解题技巧:整数拆分

小学奥数解题技巧:整数拆分

小学奥数解题技巧:整数拆分
小学奥数解题技巧:整数拆分
导语:整数拆分是小学奥数数论模块的重要知识点,小学奥数题所谓整数拆分就是把把一个自然数(0除外)拆成几个大于0的自然数相加的`形式。

下面小编为您收集整理了关于整数拆分的奥数解题技巧,希望对您有帮助!
一、概念:
把一个自然数(0除外)拆成几个大于0的自然数相加的形式。

二、类型----方法
1、基本型
2、造数型
3、求加数最多
方法:1+2+3+……接近结果但是不超过已知数为止,再补差
4、两数型
(1)和不变:差小积大,差大积小
(2)积不变:差大和大,差小和小
5、拆数型
积最大(1)允许相同:多3少2没有1
(2)不允许相同:从2连续拆分2+3+4+……刚好超过目标数为止
1)超几就去几
2)多1去2,差1补尾
三年级小学奥数题及解析:裂项与拆分
有40枚棋子分别放入8个盒子里,要使每个盒子里都有棋子,那么其中的一个盒子里,最多能有多少棋子?
考点:整数的裂项与拆分.
分析:要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
解答:解:因为要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,而要使其中的一个盒子的球最多,则另外的7个盒子里
面的球分别为1,
即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
答:其中的一个盒子里,最多能有33枚棋子.
奥数题点评:关键是理解题意得出7个盒子里面的球分别为1,求出最多的盒子里面球的个数.。

奥数数的拆分

奥数数的拆分

简单数的拆分按要求把某个数拆分成几个数相加的形式,这不仅可以提高运算能力,更能促进小朋友积极地去思考问题、分析问题,使头脑更聪明。

拆分数的时候,要按一定的顺序进行,如果要拆成规定个数相加可以按从大到小的顺序拆;如果没有规定个数,可以按从少到多的顺序拆。

只有这样,才能不重复不遗漏地找到符合题意的拆分方式。

例1:五个连续自然数的和是35,这五个数按从小到大的顺序排列是怎样的?模仿练习动物园的5个铁丝笼子里一共养了20只猴子,但每个笼子里的猴子数不一样,你知道这5个笼子里分别养了多少只猴子吗?例2:把9拆分成三个不同的自然数相加的形式(0除外),共有多少种不同的拆分方法?请列举出来。

模仿练习1.把11拆分成三个不同的数相加的形式(0除外),共有多少种不同的拆分方法?请列举出来。

2.把19拆分成三个不大于9的不同的数相加的形式(0除外),共有多少种不同的拆分方法?请列举出来。

例3:把5拆分成几个数相加的形式(0不作为加数),有多少种不同的拆分方式?请分类列举出来。

模仿练习1.把4拆分成几个数相加的形式(0不作为加数),有多少种不同的拆分方式?请分类列举出来。

2.把6拆分成几个数相加的形式(0不作为加数),有多少种不同的拆分方式?请分类列举出来。

试试看1.小贝用7天时间做了28到数学题,他每一天都比前一天多做一道,小朋友,你知道这五天里小贝分别各做了多少道题吗?2.把12拆分成三个不同的数相加的形式(0除外),共有多少种不同的拆分方法?请列举出来。

3.把20拆分成三个不大于9的不同的数相加的形式(0除外),共有多少种不同的拆分方法?请列举出来。

4.将15个弹珠分成数量不同的4堆,数量最多的一堆里有多少个弹珠?5.把60个苹果分给8个小朋友,每人分得的个数都不一样,那么其中有一个小朋友最多能分得的个数是( )个。

6.电视台要播放一部30集的动画片,若要求每天安排播出的集数互不相等,则该动画片最多可以播几天?。

2019-2020年二年级数学 奥数讲座 整数的分拆

2019-2020年二年级数学 奥数讲座 整数的分拆

2019-2020年二年级数学奥数讲座整数的分拆例1 小兵和小军用玩具枪做打靶游戏,见下图所示。

他们每人打了两发子弹。

小兵共打中6环,小军共打中5环。

又知没有哪两发子弹打到同一环带内,并且弹无虚发。

你知道他俩打中的都是哪几环吗?解:已知小兵两发子弹打中6环,要求每次打中的环数,可将6分拆6=1+5=2+4;同理,要求小军每次打中的环数,可将5分拆5=1+4=2+3。

由题意:没有哪两发子弹打到同一环带内并且弹无虚发,只可能是:小兵打中的是1环和5环,小军打中的是2环和3环。

例2 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?解:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆。

7=1+2+49=1+810=2+813=1+4+814=2+4+815=1+2+4+8外星人可按以上方式付款。

例3 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好。

现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案。

解:可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8。

这样由8×5=40及200-40=160,可知再由两个8作十位数字可得80×2=160即可。

最后得到下式:88+88+8+8+8=200。

例4 试将100以内的完全平方数分拆成从1开始的一串奇数之和。

解:1=1×1=12=1(特例)4=2×2=22=1+39=3×3=32=1+3+516=4×4=42=1+3+5+725=5×5=52=1+3+5+7+936=6×6=62=1+3+5+7+9+1149=7×7=72=1+3+5+7+9+11+1364=8×8=82=1+3+5+7+9+11+13+1581=9×9=92=1+3+5+7+9+11+13+15+17100=10×10=102=1+3+5+7+9+11+13+15+17+19。

小学奥数09数的拆分(最新整理)

小学奥数09数的拆分(最新整理)

1.7数的拆分1.7.1整数的拆分 整数的拆分,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。

整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。

在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。

例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天? 分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。

我们知道,1+2+3+4+5+6+7=28。

如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。

由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。

例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。

所以最多可以播7天。

例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。

问:有多少种不同支付方法? 分析与解:要付2角3分钱,最多只能使用4枚5分币。

因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。

当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有 23=15+(2+2+2+2), 23=15+(2+2+2+1+1), 23=15+(2+2+1+1+1+1), 共3种支付方法。

当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有 23=20+(2+1), 23=20+(1+1+1), 共2种支付方法。

总共有5种不同的支付方法。

例3 把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23 =2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。

二年级奥数数字分组与拆分

二年级奥数数字分组与拆分

数字分组与拆分巧求周长知识框架把一个自然数(0除外)分拆成几个自然数相加的形式,这种方法叫做自然数的分拆.下面让我们一起来学习怎样分拆自然数,从中学到一些有序和全面思考问题的方法.例题精讲【例1】小兵和小军用玩具枪做打靶游戏,见下图所示.他们每人打了两发子弹,并且都打中靶子.小兵共打中6环,小军共打中5环.四发子弹没有打到同一环中的.你知道他俩打中的都是哪几环吗?【例2】强强和明明两人到游乐园玩射击游戏,如下图他们每人打了两发子弹,均击中了靶子(即无脱靶现象).强强两发共打了12环,明明两发共打了8环.又已知没有哪两发子弹打在同一环中,请你推算一下他俩打中的是哪几环?【例3】把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)【例4】按下面的要求,把自然数6进行拆分.(1)把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法?(2)把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?(3)把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同的拆分方法?【例5】猪妈妈让小猪三兄弟去摘野果,它要求三兄弟一共要摘10个,每只小猪至少摘2个,按照妈妈的要求,现在小猪们要分配任务了,它们有多少种不同的分配方法?【例6】体育课上,10个小朋友分成三组做游戏,一共有多少种不同的分组方法?【例7】兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少要有1个,并且它们分到的萝卜数量都不同.可以怎样分呢?【例8】某个外星人来到地球上,随身带有地球人使用的硬币1元、2元、4元、8元各一枚,如果他想买7元钱的一件商品,他应如何付款?如果买9元、10元、13元、14元和15元的商品呢?他又将如何付款?【例9】有六个盘子,每个盘子中分别装有1个、2个、3个、5个、7个和9个梨.要从这些盘子中取出15个梨,但要求每个盘子中的梨要么都拿,要么都不拿.共有多少种不同的拿法?课堂检测【随练1】小松鼠和小白兔上学迟到了.熊猫老师问:“你俩今天为什么迟到了?”小松鼠说:“我在上学的路上遇到三个小弟弟,他们饿得很,我就采了6个松果.分成数量不同的3份,送给他们每人一份.”小白兔说:“我在上学的路上遇到四个小妹妹.她们饿得很,我就采了9个蘑菇.分成数量不同的4份,送给她们每人一份.”熊猫老师说:“松鼠说的是实话.小白兔说的是谎话.”小白兔听后,惭愧地低下头,说:“老师,我错了,今后我一定做个诚实的孩子.”小朋友.熊猫老师怎么知道小白兔说的是谎话?【随练2】一天,金吒、木吒和哪吒三兄弟去馒头店买馒头吃.店主是一个老者,见三兄弟长的非常可爱,就想考一考他们.店主说:“三位小朋友,如果能答对一个问题,今天的馒头就请你们免费品尝.”三人一听非常高兴.只见老者拿出5个盒子,然后说:“请你们把18个馒头分装在这5个盒子里,要求每个盒子都不能空着,每个盒子中的馒头数都不相同.”只见金吒走上前摆弄了一下,18个馒头很快就装进了5个盒子里,老者连连称赞.接着木吒又走上前,很快又完成了任务.最后哪吒想了想说:“看我的!”一会儿工夫又把这18个馒头装进了这5个盒里.老者看了连连点头说:“好!好!.三兄弟三种方法,你们真是聪明的孩子.看来这免费的馒头你们是吃定了!”哪咤三兄弟笑呵呵的吃起了馒头.小朋友,你知道金吒、木吒和哪吒是怎样放的馒头吗?家庭作业【作业1】从l~9九个数中选取,将1l写成两个不同的自然数之和,有多少种不同的写法?【作业2】把7拆成几个不完全相同的自然数相加的形式,共有多少种不同拆分方法?(0除外)【作业3】有12个苹果分给3个小朋友,要求每人至少分到3个苹果,那么有几种分法?【作业4】将15分拆成不大于9的四个不同的自然数之和,有多少种不同的分拆方式,请一一列出.【作业5】把100个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有数字6,想想看,应该怎样分?【作业6】按下面的要求,把15进行拆分.(1)将15分拆成不大于9的三个不同的自然数之和有多少种不同分拆方式,请一一列出.(2)将15分拆成三个不同的自然数相加之和,共有多少种不同的分拆方式,请一一列出.【作业7】4个小朋友去学校图书室一共借了21本书.图书室规定,每个人最多只能借9本书,现在这四个小朋友手里的书数量都不一样多.请你算一算,一共有多少种不同的分配方法?【作业8】美国硬币有1分、5分、10分和25分四种.现有10枚硬币价值是1元钱,其中有3枚25分的硬币.问余下的硬币有哪几种,每种各有多少枚?(此题是美国小学数学奥林匹克试题).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例5】(★★★★) 有七个盘子,每个盘子中分别装有1个、2个、3个、5个、6个、7个和9个梨, 要从这些盘子中取出15个梨,但要求每个盘子中的梨要么都拿,要么都不 拿,共有多少种不同的取法?
【例4拓展】(★★★★) 艾迪、威尔、乐乐、露露4个小朋友去学校图书室一共借了12本书。图书 室规定,每个人最多只能借5本书,现在这四个小朋友手里的书数量都不 一样多。想一想,他们手中各有几本书?
【例5拓展】(★★★★) 把18个馒头分装在5个一样的盒子里,要求每个盒子都不空着,每个盒子中 的馒头数都不相同。应该怎样装?
2
【例6】(★★★★★) 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好。 现有200块糖要分发给5个人,请你帮助想一个吉利的数(0除外)拆分成几个自然数相加的形式
的拆分方法? ⑶把6拆成几个完全不相同的自然数相加的形式(0除外),共有多少种不同
的拆分方法?
【例3】(★★★) 猪妈妈让三只小猪去摘野果,它要求它们一共要摘10个野果,每只小猪至 少摘2个,按照妈妈的要求,它们会有多少种不同的摘法?
【例4】(★★★★) 兔妈妈拔了12个萝卜,它要把这些萝卜分给三个兔宝宝吃,每个小兔至少 要有1个,并且它们分到的萝卜数量都不同。可以怎样分呢?
二、核心思想 有序、全面
【例6拓展】(★★★★) 把102个馒头分装在七个盒里,要求每个盒里装的馒头的数目都带有数字6, 想想看,应该怎样分?
三、方法 1.从小到大 (注意“双胞胎”和“多胞胎”) 2.从大到小 (告知最大数)
3
数字拆分
【例1】(★★) 把5拆成几个自然数相加的形式,共有多少种不同的拆分方法?(0除外)
【例1拓展】(★★) 安迪和乐乐用玩具枪做打靶游戏,见下图所示。他们每人打了两发子弹, 并且都打中靶子。安迪共打中6环,乐乐共打中5环。四发子弹没有打到同 一环中的。你知道他俩打中的都是哪几环吗?
1
【例2】(★★★) 按下面的要求,把自然数6进行拆分。 ⑴把6拆成几个自然数相加的形式(0除外),共有多少种不同的拆分方法? ⑵把6拆成几个不完全相同的自然数相加的形式(0除外),共有多少种不同
相关文档
最新文档