Matlab在最优化问题中的应用举例

合集下载

ppt第十二章用MATLAB解最优控制问题及应用实例

ppt第十二章用MATLAB解最优控制问题及应用实例
Y (t ) C (t ) X (t )
Y (t ) U (t ) 为 m 维控制向量, X (t ) 为 n 维状态向量, 其中, l 为维输出向量。
l
寻找最优控制,使下面的性能指标最小
1 T 1 tf T J (u ) e (t f ) Pe (t f ) e (t )Q(t )e(t ) U T (t ) R(t )U (t ) dt 2 2 t0
的调用格式为: [Ac,Bc,Cc,Dc,Tc,Kc]=ctrbf(A,B,C) 在MATLAB的控制系统工具箱中提供了obsvf()函 数。该函数可以求出系统的可观测阶梯变换,该函 数的调用格式为: [Ao,Bo,Co,Do,To,Ko]=obsvf(A,B,C)
5, 系统的时域分析
对于系统的阶跃响应,控制系统工具箱中给出了
第十二章 用MATLAB解最 优控制问题及应用实例
第十二章 用MATLAB解最优 控制问题及应用实例
12.1 12.2 MATLAB工具简介 用MATLAB解线性二次型最优控制问题
12.3
12.4
用MATLAB解最优控制问题应用实例
小结
MATLAB是集数值运算、符号运算及图形处理 等强大功能于一体的科学计算语言。作为强大的 科学计算平台,它几乎能满足所有的计算需求。 MATLAB具有编程方便、操作简单、可视化界面、 优良的仿真图形环境、丰富的多学科工具箱等优 点,尤其是在自动控制领域中MATLAB显示出更为 强大的功能。
采用care函数的优点在于可以设置P的终值 条件,例如我们可以在下面的程序中设置P的终值 条件为[0.2;0.2]。 [P,E,K,RR]=care(A,B,Q,R,[0.2;0.2],eye(size(A))) 采用lqr()函数不能设置代数黎卡提方程的 边界条件。

matlab优化算法100例

matlab优化算法100例

matlab优化算法100例1. 线性规划问题的优化算法:线性规划问题是一类目标函数和约束条件都是线性的优化问题。

Matlab中有很多优化算法可以解决线性规划问题,如单纯形法、内点法等。

下面以单纯形法为例介绍线性规划问题的优化算法。

单纯形法是一种迭代算法,通过不断改变基础解来寻找问题的最优解。

它的基本思想是从一个可行解出发,通过改变基本变量和非基本变量的取值来逐步逼近最优解。

2. 非线性规划问题的优化算法:非线性规划问题是一类目标函数和约束条件至少有一个是非线性的优化问题。

Matlab中有很多优化算法可以解决非线性规划问题,如拟牛顿法、共轭梯度法等。

下面以拟牛顿法为例介绍非线性规划问题的优化算法。

拟牛顿法是一种逐步逼近最优解的算法,通过近似目标函数的二阶导数信息来构造一个二次模型,然后通过求解该二次模型的最优解来更新当前解。

3. 全局优化问题的优化算法:全局优化问题是一类目标函数存在多个局部最优解的优化问题。

Matlab中有很多优化算法可以解决全局优化问题,如遗传算法、模拟退火算法等。

下面以遗传算法为例介绍全局优化问题的优化算法。

遗传算法是一种模拟生物进化过程的优化算法,通过基因编码、选择、交叉和变异等操作来不断迭代演化一组个体,最终找到全局最优解。

4. 多目标优化问题的优化算法:多目标优化问题是一类存在多个目标函数并且目标函数之间存在冲突的优化问题。

Matlab中有很多优化算法可以解决多目标优化问题,如多目标粒子群优化算法、多目标遗传算法等。

下面以多目标粒子群优化算法为例介绍多目标优化问题的优化算法。

多目标粒子群优化算法是一种基于粒子群优化算法的多目标优化算法,通过在粒子的速度更新过程中考虑多个目标函数来实现多目标优化。

5. 其他优化算法:除了上述提到的优化算法,Matlab还提供了很多其他的优化算法,如模拟退火算法、蚁群算法等。

这些算法可以根据具体的问题选择合适的算法进行求解。

综上所述,Matlab提供了丰富的优化算法,可以解决不同类型的优化问题。

matlab在优化设计中的应用【范本模板】

matlab在优化设计中的应用【范本模板】

Matlab 在优化设计中的应用摘 要常见的优化问题包括线性规划、无约束优化、约束优化、最下二乘优化、多目标规划等。

本文研究了matlab 在这些常见优化问题中的应用及求解。

在进行研究本课题之前,我们先通过网络、电子书刊等各种有效渠道获取我们所需信息,在充分了解与熟练掌握了各种优化问题的具体特点及性质后,我们给出了关于如何用matlab 进行多类优化问题的求解基本方法,在此前提下,为了体现该软件在这些优化领域的实际应用效果,我们结合若干个优化问题的实例进行分析、建模、以及运用matlab 编程求解,在求解过程中,通过得到的精确数据和反应结果的图例,我们了解到matlab 工具箱的功能强大,是处理优化问题的非常方便的编程工具。

关键词:matlab 优化问题二、基本概念2.1.1 线性规划线性规划是优化的一个重要分支。

它在理论和算法上都比较成熟,在实际中有广泛的应用.例如数学表达形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=+++=+++=++++++n i x bx a x a x a b x a x a x a b x a x a x a t s x c x c x c i mn mn m m n n n n nn ,,2,1,0..min221122222121112121112211 在MTLAB 提供的优化工具箱中,解决规划的命令是linprog ,它的调用格式如下,),,(b A c linprog x =求解下列形式的线性规划:⎩⎨⎧≤bAx t s xc T ..min ),,,,(beq Aeq b A c linprog x =求解下面形式的线性规划:⎪⎩⎪⎨⎧⎩⎨⎧=•≤beqx Aeq b Ax t s xc T ..min若没有不等式约束b Ax ≤,则只需命令[][],==b A 。

),,,,,,(ub lb beq Aeq b A c linprog x =求解下面形式的线性规划:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≤≤=•≤ub x lb beq x Aeq bAx t s xc T ..min 若没有不等式约束b Ax ≤,则只需令[][],==b A ;若只有下界约束,则可以不用输入ub .2.1。

matlab最小值优化问题中fminunc、fmincon的应用

matlab最小值优化问题中fminunc、fmincon的应用

工程最优化即最大(小)值问题1、无约束(无条件)的最优化(1)使用fminunc函数(un-condition)(2)可用于任意函数求最小值(3)将最大、最小问题统一为求最小值问题(即只能求最小值)。

如求最大值,而变成求最小值问题,最后即为函数的最大值。

)(前后都是函数y两次取反,而自变量X不要取反)(4)使用格式x=fminunc(‘程序名’, x0)左边的结果还可以写成[x,fval] 或[x,fval,exitflag] 或必须预先把函数存入到一个程序中,(所编的程序一定是只有一个参数,则当为多元函数时,则x(1),x(2),x(3)…分别代表每个自变量)其中fval为函数的最小值,x0为自变量初始向量,一般不影响结果(如有n个变量(即n元函数),则x0中就有n个元素)exitflag为退出标志,当它大于0时表示函数收敛于x,当它等于0时表示迭代次数超过,当它小于0时表示函数不收敛(所以解完题后还必须判断exitflag的值是否>0,以决定结果的正误/有效性)函数存在最值的条件:在闭区间连续,存在导数等(说明有很多函数不存在最值:有大、有小、有大小、都无)最后一定要看看exitflag........的值(判断结果是否有效)---所以函数可以用内联函数inline(‘表达式’)(程序中的.* ./ .^可要可不要,一般还是不要吧)(5)y= x2+4x+5 的最小值(结果-2,1)其函数形式为:---可以@, 内联函数inline(‘x2+4x+5’),function f=a1(x)f=x^2+4*x+5;------最好不要.* .^ ./因为不是向量(一批数)的运算,初始x0就是变量的个数(调用该程序时,所提供的每个变量的初始值)函数名:’zhc1’或 @zhc1 或 inline(‘…’)>> [x,f,g]=fminunc(inline('x^2+4*x+5'),1)还有学生f=y=x^2+4*x+5;??????>> edit>> [x,fval,exitflag]=fminunc('max1',1)Warning: Gradient must be provided for trust-region method;using line-search method instead.> In fminunc at 241Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =-2.0000fval =1.0000exitflag =1>> [a,b,c]=fminunc('max1',1)Warning: Gradient must be provided for trust-region method;using line-search method instead.> In fminunc at 241Optimization terminated: relative infinity-norm of gradient less than options.TolFun.a = -2.0000b = 1.0000c = 1>> [x,fval,exitflag]=fminunc('max1',0)>> [x,fval,exitflag]=fminunc('max1',5)>> [x,fval,exitflag]=fminunc(@max1,5)>> [x,fval,exitflag]=fminunc(inline('x^2+4*x+5'),1)>> [x,fval,exitflag]=fminunc(@(x)x^2+4*x+5,1)>> a=@(x)x^2+4*x+5;>> [x,fval,exitflag]=fminunc(a,1)(6)例如:求y=1+2x-x2的最大值(结果为:x=1,y=-(-2) )---X不要取反,两次都是函数取反其函数形式为:function f=a1(x) 命令形式[x,y,z]=fminunc('a1',3)f=-(1+2*x-x^2) 或负号展开—最后再取反------需两次取反>> a1(1)ans = -2>> a1(0)ans = -1(7)求函数f(x,y)=e2x(x+y2+2y)的最小值其函数形式为:function f=a1(r)--fmin所要求的程序一定是一个参数x=r(1);y=r(2);f=exp(2*x)*(x+y^2+2*y);----有学生写成f(x,y)=……或function f=a2(a) x=a(1);y=a(2);f= 或f中直接用x(1),x(2)命令为:[x,fval,exitflag]=fminunc('a1',[2,1])—即a1调用时的参数x =0.5000 -1.0000 ---fval =-1.3591 (即-e/2)exitflag =1此题的x0也可为[1,1],[0,1],[1,0],[0,0],但不能用[1,2],如出问题,可尝试换一个初值----x0建议最好用[1,1,1]此题说明可对任意函数、任意n元求最小值(此题为二元,含exp函数)n元,则x视作一个向量,它的每个元素分别代表某一个自变量(可以a=x(1);b=x(2);…..)结果x也是一个向量,每个元素分别代表每个自变量此题不存在最大值。

matlab用外点罚函数法求解等式约束最优化问题

matlab用外点罚函数法求解等式约束最优化问题

一、引言我们需要明确什么是等式约束最优化问题。

在实际应用中,经常会遇到这样的问题:在满足一定的条件约束下,寻找一个使得某个目标函数达到最优值的解。

而等式约束最优化问题就是在满足一系列等式约束条件的前提下,求解出目标函数的最优值和对应的解向量。

在数学领域,等式约束最优化问题有着重要的理论和实际意义,对于工程、经济、管理等领域都有着广泛的应用。

二、问题描述一个典型的等式约束最优化问题可以用如下的数学形式来描述:minimize f(x)subject to:g(x) = 0其中,f(x)是目标函数,x是自变量向量,g(x)是等式约束条件函数。

三、外点罚函数法外点罚函数法是一种常用的方法,用于求解等式约束最优化问题。

它的基本思想是通过对目标函数和约束条件进行适当的变换,将等式约束问题转化为无约束问题。

具体地,外点罚函数法通过引入罚函数,将约束条件融入到目标函数中,构造出一个新的优化问题。

然后将这个新问题求解为原问题的近似解。

在优化的过程中,罚函数的惩罚项会惩罚那些违反约束条件的解,从而使得优化过程能够逼近满足约束条件的最优解。

四、matlab中的外点罚函数法求解在matlab中,可以利用现成的优化工具箱来求解等式约束最优化问题。

其中,fmincon函数是用来求解带有等式约束的最优化问题的。

它允许用户自定义目标函数和约束条件函数,并指定优化的初始点和其他参数。

通过在fmincon函数中调用外点罚函数法求解等式约束最优化问题,可以得到目标函数的最优值和对应的解向量。

五、实例分析为了更加直观地理解matlab中外点罚函数法的应用,我们来举一个简单的实例。

假设我们要求解如下的等式约束最优化问题:minimize f(x) = x1^2 + x2^2subject to:g(x) = x1 + x2 - 1 = 0我们需要将目标函数和约束条件转化成matlab可以识别的形式。

我们可以利用fmincon函数来求解这个最优化问题。

MATLAB在运筹学与优化方面的应用案例

MATLAB在运筹学与优化方面的应用案例

MATLAB在运筹学与优化方面的应用案例引言:运筹学与优化是数学的一个分支,旨在寻找最佳解决方案。

在现代社会中,运筹学与优化在各个领域都扮演着重要角色,例如交通规划、生产调度、供应链管理等。

MATLAB作为一个强大的数值计算工具,被广泛应用于运筹学与优化领域。

本文将通过一些实际案例,介绍MATLAB在这个领域的应用。

1. 生产调度优化生产调度是一个复杂的问题,需要在有限资源和时间内,合理分配任务和资源,以最大化生产效率。

MATLAB提供了一些优化工具箱,可以帮助解决这类问题。

例如,可以使用线性规划(LP)或整数规划(IP)方法,将生产调度问题表示为数学模型,并使用MATLAB的优化工具箱求解最优解。

通过对生产线上的任务顺序、机器调度等进行优化,可以显著提高生产效率和资源利用率。

2. 供应链优化供应链管理是一个涉及多个环节的复杂系统,其中包括供应商、生产商、分销商和终端用户等多个参与方。

在供应链中,优化各个环节的运作,对于提高效率、降低成本和提供更好的服务有着重要意义。

MATLAB可以帮助建立供应链模型,并使用优化工具箱对其进行优化。

通过分析供应链节点之间的关系和其它外部因素,可以减少库存成本、优化运输路线,实现供应链的高效运作。

3. 资源调度优化在某些应用场景中,资源调度是一个重要的优化问题。

例如,医院病床的分配、航空公司的飞机调度等。

MATLAB可以帮助建立相应的模型,并使用优化工具箱解决这类问题。

通过考虑资源的使用效率、最小化等候时间等因素,可以优化资源的分配和调度,提高资源利用率和服务质量。

4. 物流路径规划物流路径规划是一个常见的优化问题,它涉及到如何在给定的网络中找到最短路径或最佳路径,以实现货物的快速、安全和经济的运输。

MATLAB提供了一些图算法和优化工具,可以帮助解决这类问题。

例如,可以使用最短路径算法或遗传算法对物流路径进行分析和优化。

通过考虑路线的距离、时间、成本等因素,可以得到最佳的物流路径规划方案。

matlab优化函数的使用方法

matlab优化函数的使用方法

三.举例例1:求解线性规划问题:max f=2x1+5x2s.t先将目标函数转化成最小值问题:min(-f)=- 2x1-5x2程序:f=[-2 -5];A=[1 0;0 1;1 2];b=[4;3;8];[x,fval]=linprog(f,A,b)f=fval*(-1)结果:x = 23fval = -19.0000maxf = 19例2:minf=5x1-x2+2x3+3x4-8x5s.t –2x1+x2-x3+x4-3x5≤62x1+x2-x3+4x4+x5≤70≤x j≤15 j=1,2,3,4,5程序:f=[5 -1 2 3 -8];A=[-2 1 -1 1 -3;2 1 -1 4 1];b=[6;7];lb=[0 0 0 0 0];ub=[15 15 15 15 15];[x,fval]=linprog(f,A,b,[],[],lb,ub)结果:x =0.00000.00008.00000.000015.0000minf =-104例3:求解线性规划问题:minf=5x1+x2+2x3+3x4+x5s.t –2x1+x2-x3+x4-3x5≤12x1+3x2-x3+2x4+x5≤-20≤x j≤1 j=1,2,3,4,5程序:f=[5 1 2 3 1];A=[-2 1 -1 1 -3;2 3 -1 2 1];b=[1;-2];lb=[0 0 0 0 0];ub=[1 1 1 1 1];[x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb,ub) 运行结果:Exiting: One or more of the residuals, duality gap, or total relative errorhas grown 100000 times greater than its minimum value so far: the primal appears to be infeasible (and the dual unbounded).(The dual residual < TolFun=1.00e-008.)x = 0.00000.00001.19870.00000.0000fval =2.3975exitflag =-1output =iterations: 7cgiterations: 0algorithm: 'lipsol'lambda =ineqlin: [2x1 double]eqlin: [0x1 double]upper: [5x1 double]lower: [5x1 double]显示的信息表明该问题无可行解。

Matlab技术的实际应用案例解析

Matlab技术的实际应用案例解析

Matlab技术的实际应用案例解析随着计算机技术的发展,Matlab作为一种高级技术语言,被广泛应用于多个领域。

无论是在科研领域还是工程实践中,Matlab都扮演着重要的角色。

本文将通过几个实际应用案例,探讨Matlab技术在不同领域的应用,以期给读者提供一些启示和参考。

一、图像处理领域图像处理是Matlab的一项重要应用领域。

利用Matlab提供的强大的图像处理工具箱,可以实现各种功能,例如图像增强、滤波、分割和识别等。

以下将介绍一个实际应用案例。

案例一:肿瘤图像分割肿瘤图像的分割对于医学诊断非常关键。

在某医院的研究中,研究人员利用Matlab进行了肿瘤图像的分割工作。

首先,他们先对肿瘤图像进行预处理,包括降噪和增强等操作。

然后,利用Matlab提供的图像分割算法,将肿瘤与周围组织分离出来。

最后,通过对分割后的图像进行计算,可以得到肿瘤的大小、形状等信息,为医生提供诊断依据。

二、信号处理领域信号处理是Matlab的另一个重要应用领域。

通过利用Matlab提供的信号处理工具箱,可以实现信号的滤波、谱分析、峰值检测等功能。

以下将介绍一个实际应用案例。

案例二:语音信号增强在通信领域,语音信号是一种常见的信号类型。

在某通信公司的项目中,研发团队利用Matlab对语音信号进行增强。

首先,他们通过Matlab提供的滤波器设计算法,设计了一种高效的降噪滤波器。

然后,他们利用该滤波器对采集到的语音信号进行滤波处理,去除噪声成分。

最后,通过对处理后的语音信号进行主观听感和客观评价,证明了该算法的有效性。

三、控制系统领域Matlab在控制系统领域的应用也非常广泛。

通过Matlab提供的控制系统工具箱,可以进行控制系统的建模、仿真和优化等操作。

以下将介绍一个实际应用案例。

案例三:智能交通信号优化在城市交通系统中,智能交通信号优化是一个重要的研究方向。

在某城市的交通管理局的项目中,研究人员利用Matlab进行了智能交通信号优化的仿真研究。

MATLAB在最优化模型求解中的应用

MATLAB在最优化模型求解中的应用

MATLAB在最优化模型求解中的应用MATLAB是一种功能强大的数学软件,广泛应用于各种科学和工程领域。

在最优化模型求解方面,MATLAB可以提供许多工具和函数来解决不同类型的最优化问题。

下面将介绍一些MATLAB在最优化模型求解中的常见应用。

1. 非线性规划(Nonlinear Programming)非线性规划是一类常见的最优化问题,它在许多领域中都有应用。

MATLAB中提供了许多函数和工具箱来求解非线性规划问题,如"fmincon"函数和"Optimization Toolbox"工具箱。

这些工具可以通过定义目标函数、约束条件、变量范围等来求解非线性规划模型,并自动选择合适的算法进行求解。

2. 线性规划(Linear Programming)线性规划是一类特殊的最优化问题,其目标函数和约束条件都是线性的。

MATLAB中的"linprog"函数可以用于求解线性规划问题。

通过定义目标函数的系数矩阵、约束条件的系数矩阵和值等,"linprog"函数可以得到线性规划问题的最优解。

3. 二次规划(Quadratic Programming)二次规划是一种最优化问题,其目标函数是一个二次函数,约束条件可以是线性的或非线性的。

MATLAB中的"quadprog"函数可以用于求解二次规划问题。

"quadprog"函数可以通过定义目标函数的二次项系数矩阵、线性项系数矩阵、约束条件的系数矩阵和值等来求解二次规划问题。

4. 整数规划(Integer Programming)整数规划是一种最优化问题,其变量需要取整数值。

MATLAB中的"intlinprog"函数可以用于求解整数规划问题。

"intlinprog"函数可以通过定义目标函数、约束条件、变量范围和整数变量等来求解整数规划问题。

Matlab在运筹学与优化中的应用方法

Matlab在运筹学与优化中的应用方法

Matlab在运筹学与优化中的应用方法1. 引言运筹学与优化是一个重要的研究领域,它致力于寻求最佳解决方案以满足各种约束条件。

而Matlab作为一种强大的数值计算软件,被广泛应用于运筹学与优化中。

本文将介绍Matlab在该领域的应用方法,并探讨其在解决实际问题中的潜力和局限性。

2. 线性规划与整数规划线性规划是运筹学与优化中的基本方法之一。

它通过线性模型来描述问题,利用Matlab的优化工具箱可以方便地求解线性规划问题。

首先,我们需要定义目标函数和约束条件,然后使用linprog函数进行求解。

Matlab会返回问题的最优解以及对应的目标值。

整数规划则是线性规划的一种扩展,其中变量取整数值。

Matlab 也提供了intlinprog函数来求解整数规划问题。

3. 非线性规划在许多实际问题中,目标函数和约束条件并不是线性的,而是非线性的。

在这种情况下,我们可以使用Matlab的fmincon函数来求解非线性规划问题。

该函数利用了优化算法,可以找到目标函数的局部最小值。

然而,需要注意的是,fmincon求解的是连续非线性规划问题,并不能保证找到全局最优解。

4. 整数规划与非线性规划的组合实际问题中,常常会出现整数规划与非线性规划相结合的情况。

这种问题被称为混合整数非线性规划(MINLP)。

Matlab提供了fmincon函数的扩展,可以求解这种类型的问题。

通过设置变量的整数约束条件,我们可以将连续非线性规划问题转化为整数规划问题,然后利用Matlab的intlinprog函数求解。

5. 动态规划动态规划是一种求解最优化问题的方法,其适用于具有重叠子问题和最优子结构特性的问题。

Matlab可以很方便地实现动态规划算法。

我们可以使用Matlab的矩阵操作和循环结构来定义问题的状态转移方程,并通过动态规划来求解问题的最优解。

例如,背包问题、旅行商问题等都可以通过动态规划求解。

6. 遗传算法遗传算法是一种模拟进化过程的优化算法,它借鉴了自然界中的进化原理。

Matlab在最优化问题中的应用举例

Matlab在最优化问题中的应用举例

在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。

线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。

在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。

1。

综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。

2。

提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。

关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。

matlab最优化计算薛定宇程序

matlab最优化计算薛定宇程序

一、介绍MATLAB最优化计算薛定宇程序MATLAB是一种用于数学计算、算法开发和数据分析的高级技术计算语言和交互式环境。

在MATLAB中,最优化计算是指寻找函数的最小值或最大值的过程。

薛定宇程序是一种基于MATLAB的最优化计算工具,其灵活性和可扩展性使其成为广泛使用的工具之一。

二、MATLAB最优化计算薛定宇程序的应用领域1. 工程优化:在工程领域,MATLAB最优化计算薛定宇程序可用于优化设计,例如在结构设计中寻找最佳材料使用方案,或者在控制系统设计中调整参数以满足性能指标。

2. 金融领域:在金融领域,MATLAB最优化计算薛定宇程序可用于风险管理、资产组合优化、期权定价等。

3. 生物医学领域:在生物医学领域,MATLAB最优化计算薛定宇程序可用于基因组学、蛋白质结构预测、医学图像处理等方面的研究。

4. 人工智能领域:在人工智能领域,MATLAB最优化计算薛定宇程序可用于优化神经网络的参数,改进机器学习算法等。

三、MATLAB最优化计算薛定宇程序的基本原理MATLAB最优化计算薛定宇程序以薛定宇法为基础,这是一种通过迭代寻找函数最小值的数值方法。

其基本原理包括以下几个步骤:1. 初始化:选择一个初始点作为搜索的起点。

2. 梯度计算:计算目标函数在当前点的梯度,即函数在该点的变化率。

3. 方向选择:根据梯度计算结果选择一个搜索方向。

4. 步长确定:确定在选择的搜索方向上的步长,即在该方向上移动的距离。

5. 更新:根据步长确定的结果,更新当前点的位置。

6. 收敛判断:判断算法是否收敛,即函数值是否趋于最小值。

四、MATLAB最优化计算薛定宇程序的主要特点1. 灵活性:MATLAB最优化计算薛定宇程序支持多种最优化算法和约束条件的设置,用户可以根据具体的问题选择合适的算法和约束条件。

2. 可扩展性:MATLAB最优化计算薛定宇程序支持用户自定义函数和约束条件,可以满足不同领域的需求。

3. 高效性:MATLAB最优化计算薛定宇程序经过优化,具有较高的计算效率和稳定性。

Matlab工程应用案例分析

Matlab工程应用案例分析

Matlab工程应用案例分析引言:Matlab是一种广泛应用于科学计算、工程设计和数据分析的高级计算机语言和环境。

它的强大功能和使用简单性使得它成为许多工程师和科学家的首选工具。

在本文中,我们将通过几个工程应用案例来探讨Matlab在实际工程项目中的应用。

案例一:电力系统优化设计在电力系统设计中,优化是非常关键的一个环节。

通过对系统参数的优化,可以提高系统的效率和可靠性。

Matlab在电力系统优化设计中发挥了重要作用。

例如,在某城市的电力系统中,需要对输电线路进行改造以提高输电效率。

通过收集该地区的用电数据以及电线参数,可以建立一个电力系统模型。

然后,利用Matlab提供的优化算法和模拟工具,可以快速找到最优的输电线路配置,使总损耗最小化。

案例二:机器学习算法开发机器学习算法在各个领域有着广泛的应用。

然而,开发新的机器学习算法并不是一件容易的事。

Matlab提供了丰富的机器学习工具箱和函数,可以帮助工程师和科学家开发出新的机器学习算法。

例如,某个研究团队想要开发一种基于深度学习的图像分类算法。

他们可以利用Matlab提供的深度学习工具箱,通过构建神经网络模型和训练样本数据,来实现图像分类的自动化。

该算法可以广泛应用于图像识别、智能监控等领域。

案例三:控制系统设计与仿真在控制系统设计中,Matlab是一个不可或缺的工具。

控制系统的设计需要对系统进行分析和建模,然后通过调整控制器参数来实现期望的控制效果。

Matlab提供了丰富的控制系统工具箱,可以帮助工程师完成控制系统的建模和仿真。

例如,在飞机自动驾驶系统的设计中,工程师可以使用Matlab来建立飞机的数学模型,并根据不同的控制策略进行仿真。

通过与实际飞机系统进行对比和调整,可以优化控制系统的性能。

案例四:图像处理和计算机视觉Matlab在图像处理和计算机视觉领域也有很好的应用。

例如,在自动驾驶汽车的视觉系统中,需要对实时采集的图像进行处理和分析。

matlab最优化问题的经典例题

matlab最优化问题的经典例题

matlab最优化问题的经典例题MATLAB最优化问题的经典例题之一是线性规划问题。

线性规划是一种数学优化方法,用于寻找一组给定线性约束条件下使得目标函数达到最大或最小值的变量值。

假设有以下线性规划问题:最大化目标函数:Z = c1*x1 + c2*x2 + ... + cn*xn在满足约束条件:A*x <= bx >= 0下,求解变量x1, x2, ..., xn的最优解。

使用MATLAB求解该线性规划问题的代码如下:```% 定义目标函数系数向量cc = [c1; c2; ...; cn];% 定义不等式约束条件系数矩阵A和右侧常数向量bA = [A11, A12, ..., A1n;A21, A22, ..., A2n;...,Am1, Am2, ..., Amn];b = [b1; b2; ...; bm];% 定义变量的下界和上界lb = zeros(n, 1); % 下界为0,即 x >= 0ub = Inf(n, 1); % 上界为无穷大,即无上界% 求解线性规划问题[x, fval] = linprog(-c, A, b, [], [], lb, ub);% 输出最优解和最优值disp('最优解:')disp(x)disp('最优值:')disp(-fval)```在上述代码中,我们将目标函数系数向量c、不等式约束条件系数矩阵A和右侧常数向量b、变量的下界和上界lb、ub传递给linprog函数进行求解。

linprog函数返回最优解x和最优值-fval(由于linprog默认求解最小化问题,我们使用-c作为目标函数系数向量,将最大化问题转化为最小化问题)。

通过以上代码,我们可以求解线性规划问题的最优解和最优值,并使用MATLAB进行验证和分析。

这个例题可以帮助我们理解和掌握MATLAB中最优化问题的求解方法。

智能优化算法及matlab实例

智能优化算法及matlab实例

智能优化算法及matlab实例1. Genetic Algorithm (遗传算法): 智能优化算法的一种,通过模拟自然选择和遗传机制来搜索问题的最优解。

在Matlab中,可以使用Global Optimization Toolbox中的gamultiobj和ga函数来实现遗传算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('ga','Display','iter');% 运行遗传算法x = ga(fitnessFunction, 2, [], [], [], [], [], [], [], options);2. Particle Swarm Optimization (粒子群优化): 一种启发式优化算法,模拟鸟群或鱼群等群体行为来搜索最优解。

在Matlab中,可以使用Global Optimization T oolbox中的particleswarm函数来实现粒子群优化算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('particleswarm','Display','iter');% 运行粒子群优化算法x = particleswarm(fitnessFunction, 2, [], [], options);3. Simulated Annealing (模拟退火): 一种基于概率的全局优化算法,模拟固体退火的过程来搜索最优解。

在Matlab中,可以使用Global Optimization Toolbox中的simulannealbnd函数来实现模拟退火算法。

示例:matlab% 目标函数fitnessFunction = @(x) sum(x.^2);% 配置参数options = optimoptions('simulannealbnd','Display','iter');% 运行模拟退火算法x = simulannealbnd(fitnessFunction, zeros(2,1), [], [], options);以上是三种常见的智能优化算法及其在Matlab中的实例。

matlab多目标优化算法案例

matlab多目标优化算法案例

一、概述在实际工程和科研中,经常会遇到多目标优化问题,即需要在多个目标之间进行权衡和平衡,寻找到最优的解决方案。

而Matlab作为一款强大的数学建模软件,提供了丰富的优化算法和工具,能够有效地解决多目标优化问题。

本文将以实际案例为例,介绍在Matlab中如何应用多目标优化算法解决实际问题。

二、多目标优化问题简介多目标优化问题是指在有多个相互矛盾的目标函数下,寻找到一组解决方案,使得所有目标函数都得到最优化的问题。

在实际应用中,这种问题非常常见,比如在工程设计中需要考虑成本和性能、在生产调度中需要考虑效率和资源利用率等。

多目标优化问题的研究和应用具有重要意义。

三、Matlab多目标优化算法Matlab提供了丰富的优化算法和工具,针对多目标优化问题,主要有以下几种常用算法:1. 多目标遗传算法(MOGA):基于遗传算法的多目标优化算法,通过模拟自然选择和基因变异的过程来寻找最优解。

2. 多目标粒子裙优化算法(MOPSO):基于粒子裙优化算法的多目标优化算法,通过模拟鸟裙觅食的过程来寻找最优解。

3. 多目标差分进化算法(MODE):基于差分进化算法的多目标优化算法,通过模拟物种进化的过程来寻找最优解。

4. 多目标模拟退火算法(MOSA):基于模拟退火算法的多目标优化算法,通过模拟金属退火的过程来寻找最优解。

四、实例分析下面以一个典型的多目标优化问题为例,介绍在Matlab中如何应用多目标遗传算法(MOGA)解决实际问题。

问题描述:某公司生产某种产品,现有材料A和材料B两种可供选择的原材料。

在保证产品质量的前提下,需要在材料成本和生产效率之间进行权衡,以最大化利润。

目标函数:1. 最小化成本函数:Cost = 0.5*A + 0.8*B2. 最大化效率函数:Efficiency = 150*A + 100*B约束条件:1. A + B = 12. A >= 0, B >= 0解决方案:利用Matlab中的多目标遗传算法(MOGA)工具箱,进行多目标优化求解。

最优化方法的Matlab实现(公式(完整版))

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。

最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。

由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。

用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。

模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。

2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。

最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。

9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。

具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。

另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。

9.1.1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9-1 最小化函数表2.方程求解函数表9-2 方程求解函数表3.最小二乘(曲线拟合)函数表9-3 最小二乘函数表4.实用函数表9-4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9-6 中型方法的演示函数表9.1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得options 优化参数。

● optimget函数功能:获得options优化参数。

语法:val = optimget(options,'param')val = optimget(options,'param',default)描述:val = optimget(options,'param') 返回优化参数options中指定的参数的值。

MATLAB软件在优化设计中的应用

MATLAB软件在优化设计中的应用

MATLAB软件在优化设计中的应用首先,MATLAB在工程设计中的应用非常广泛。

例如,在机械工程中,MATLAB可以用于优化零件的尺寸、形状和结构,以提高其性能和可靠性。

通过使用MATLAB的优化算法,工程师可以确定最佳设计,同时考虑多个约束条件,例如材料成本、制造工艺等。

此外,MATLAB还可以用于优化流体力学问题,例如优化船舶的阻力和航速,优化管道的流量和压力损失等。

其次,MATLAB在金融风险计算中的应用也非常重要。

金融市场是一个高度不确定和复杂的系统,需要在投资决策中考虑多个因素和风险。

MATLAB中的金融工具箱提供了一系列用于风险建模和优化的功能,例如投资组合的风险和回报分析、风险价值和条件风险测量等。

金融机构和投资公司可以使用MATLAB进行投资组合优化,以确定最佳的资产配置,以最大化回报或最小化风险。

另外,MATLAB在电力系统优化中也有广泛应用。

电力系统是一个复杂的网络系统,其中包括发电机、变压器、输电线路等。

优化电力系统可以提高能源利用率,减少能源浪费和环境影响。

MATLAB可以用于电力系统的规划和操作优化,例如确定最佳发电机组合、优化输电线路配置、最小化电网损耗等。

此外,MATLAB还可以应用于电力市场设计和电力系统稳定性分析等方面。

除了上述几个领域,MATLAB还可以在许多其他优化设计问题中应用。

例如,在交通规划中,MATLAB可以用于优化交通信号时间表,以最大化交通流量和减少拥堵。

在医学影像处理中,MATLAB可以优化图像重建算法,以提高对图像中细微结构的分辨能力。

在化工厂的过程优化中,MATLAB可以用于寻找最佳操作条件,以提高生产效率和产品质量。

总之,MATLAB在优化设计中具有广泛的应用。

其强大的数学计算能力和灵活的编程环境使其成为解决各种优化问题的理想工具。

不仅可以用于工程设计、金融风险计算和电力系统优化等领域,还可以在交通规划、医学影像处理和化工过程优化等领域中发挥重要作用。

优化设计Matlab实例解析

优化设计Matlab实例解析

优化设计Matlab实例解析MATLAB是一种基于矩阵运算的高级编程语言和环境,被广泛应用于各个领域的科学计算和工程问题。

在实际应用中,我们经常面临优化设计的任务,即在给定的限制条件下,寻找最优的解决方案。

优化设计可以应用于诸如控制系统设计、信号处理、图像处理、机器学习等问题中。

下面我们以一个简单的例子来说明如何使用MATLAB进行优化设计。

假设我们有一个矩形花园,每边有一定的长度,我们希望找到一个长和宽使得花园的面积最大化。

令矩形花园的长和宽分别为x和y,由于边长有限制条件,即x的范围为0到20,y的范围为0到10,同时花园的长度之和不得超过30。

我们的目标是找到一组合适的x和y,使得面积A 最大。

在MATLAB中,我们可以使用优化工具箱中的函数fmincon来求解这个问题。

以下是具体的实现步骤:1.创建目标函数首先,我们需要定义一个目标函数来评估每组x和y的解决方案。

在这个例子中,我们的目标是最大化矩形花园的面积,因此我们的目标函数可以简单地定义为A=x*y。

```matlabfunction A = objective(x)A=-x(1)*x(2);%最大化面积,取负号end```2.设置限制条件接下来,我们需要定义限制条件。

在这个例子中,我们需要考虑两个限制条件,即x和y的范围以及长度之和的限制。

我们可以使用函数fmincon提供的constr函数来定义这些限制条件。

```matlabfunction [c, ceq] = constr(x)c=[x(1)-20;%x的上限x(2)-10;%y的上限x(1)+x(2)-30];%长度之和的限制ceq = []; % 无等式限制end```3.求解问题有了目标函数和限制条件,我们可以使用fmincon函数来求解问题。

```matlabx0=[10,5];%初始猜测lb = [0, 0]; % x和y的下限ub = [20, 10]; % x和y的上限options = optimoptions('fmincon', 'Display', 'iter'); % 设置选项```在这里,我们使用了初始猜测x0、x和y的上下限lb和ub以及其他选项。

遗传算法优化的matlab案例

遗传算法优化的matlab案例

遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。

它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。

在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。

下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。

假设我们要优化一个简单的函数f(x),其中x是一个实数。

我们的目标是找到使得f(x)取得最小值的x值。

具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。

代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。

我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。

以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。

在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。

变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。

横线[]表示没有约束条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。

线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。

在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。

1。

综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。

2。

提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。

关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。

K eywords:Matlab,Optimization method,Applied examples1.1选题背景及研究意义1.1.1最优化问题的相关应用首先我们来看这个最古老的问题,货郎担问题[1]该问题的基本描述是:某货郎要到若干个村庄售货,各村庄之间的路程是已知的,为了提高效率,货郎决定从所在商店出发,到每一个村庄售一次货然后返回商店,问他应选择一条什么路线才能使所走的总路程最短?货郎担问题(traveling sales person problem,即TSP 问题)是求取具有最小成本的周游路线问题,这实际上是一个最优化问题,用到最优化技术和方法。

最优化技术[2]是一个重要的数学分支,它所研究的问题是讨论在很多的方案中哪个方案最优以及如何找出最优方案。

这类问题普遍存在。

例如,工程设计中怎样选择设计参数,使得设计方案既满足设计要求又能降低成本;资源分配中怎么分配有限资源使得分配方案既能满足各方面的分配要求又能获得最佳的经济效益;生产计划安排中,选择怎样的计划方案才能提高产值和利润;原料配比和饲料配比问题,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中怎样安排机关、机关;学校、商店、医院、住户和其他单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中怎样安排各种农作物的合理布局,才能保证高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效的消灭敌人,保存自己,,有利于战争的全局。

人类活动的各个领域中,诸如此类,不胜枚举。

最优化这一数学分支正是为这些问题的解决,提供理论基础和解决方法,它是一门应用广泛、实用性强的学科。

1.2最优化理论方法最优化方法是运用科学的方法(如分析、试验、量化等)来决定如何最佳地运营和设计各种系统的一门学科.1999年,复旦大学对。

管理科学与工程学科的国内外发展动态”的研究结果表明:最优化方法是管理科学与工程学科的主流技术. 1.线性规划模型与方法线性规划是应用最为广泛、理论最为成熟的运筹学分支之一.在所有的管理与经营中,都要涉及到资金,人力、物力与时问的消耗.如何优化资源配置,使有限的宝贵资源产生最大的效益,这是所有管理者与经营者都非常关心的问题.我们将这类决策闯题划分为两个方面:一是对一定数量可控的资金、人力、物力等资源,如何合理安捧使用,使这些资源产生最大效益;二是当某个任务确定之后,如何统筹安捧,尽量用最少的资金、人力、物力等资源去完成该项任务.这两类问题实际上是一个问题的两个方面,即寻找问题的系统最优.线性规划是解决这两类问题的有效方法之一.(1)线性规划一般模型线性规划的一般形式可表示为:Max(min)f=c1x1+c2x2+…+c n x ns.t. a11x1+a12x2+…+a1n x n称厂=cl而+C2X2+⋯"_I"CnXn为目标函数,xj(j=l,2,⋯,弗)为决策变量,s.t.后面的式子为约束条件.我们把满足所有约束条件的解称为线性规划问题(LP)的可行解。

全体可行解的集合称为问题(LP)的可行域,记为o。

使目标函数值摄大(或最小)的可行解称为该线性规划的最优化理论在出版社资源优化配置中的应用最优解,与此最优解相应的目标函数值称为最优目标函数值。

因此,求解线性规划问题(LP)本质上是寻找一点艚∈o,使得v*o满足不等式厂C磅≤;厂I鼻‘)(或/(功河0‘)).(2)解法线性规划的解法很多,有内点法,多项式算法,单纯形法等。

但线性规划的通用解法是单纯形法,只要一个问题能用线性规划模型描述,均可以用单纯形法求解。

2.动态规划模型与方法动态规划是1951年由美国学者Bellman在解决多阶段决策问题时提出,之后应用非常广泛,如经济、工程、生物、军事等领域。

在我国,动态规划在水资源管理上的应用取得了巨大的成功。

(1)模型动态规划的模型应包括以下几个要素:阶段、状态、决策、状态转移方程、指标函数、动态规划方程。

按状态的性质动态规划模型有如下划分:一维动态规划模型和多维动态规划模型;确定性动态规划模型和随机动态规划模型;连续动态规划模型和离散动态规划模型。

(2)解法动态规划的解法主要是根据动态规划具体形式来确定的,对于一维确定性动态规划模型一般采用所谓常规动态规划方法求解。

对于多维动态规划模型常用的有离散微分动态规划法(DDDP)、逐次逼近法(DPSA)等。

对于随机动态规划模型,其求解方法在上述基础上还要考虑概率论的知识。

2.最优化方法的种类最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。

反之,某些最优化方法可适用于不同类型的模型。

最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。

(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。

求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。

解析法对于一般问题容易处理,但对于高次非线性问题等复杂问题求解十分困难。

(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。

此时可采用直接搜索的方法经过若干次迭代搜索到最优点。

这种方法常常根据经验或通过试验得到所需结果。

对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。

(3)数值计算法:这种方法也是一种直接法。

它以梯度法为基础,所以是一种解析与数值计算相结合的方法。

数值法大多与计算机技术相结合,这样,不仅能求解较复杂的非线性问题,而且,求解速度快、效率高。

(4)其他方法:如网络最优化方法等(见网络理论)。

根据函数的解析性质,还可以对各种方法作进一步分类。

例如,如果目标函数和约束条件都是线性的,就形成线性规划。

线性规划有专门的解法,诸如单纯形法、解乘数法、椭球法和卡马卡法等,本文主要介绍单纯形法。

当目标或约束中有一非线性函数时,就形成非线性规划。

当目标是二次的,而约束是线性时,则称为二次规划。

二次规划的理论和方法都较成熟。

如果目标函数具有一些函数的平方和的形式,则有专门求解平方和问题的优化方法。

目标函数具有多项式形式时,可形成一类几何规划。

最优解的概念最优化问题的解一般称为最优解。

如果只考察约束集合中某一局部范围内的优劣情况,则解称为局部最优解。

如果是考察整个约束集合中的情况,则解称为总体最优解。

对于不同优化问题,最优解有不同的含意,因而还有专用的名称。

例如,在对策论和数理经济模型中称为平衡解;在控制问题中称为最优控制或极值控制;在多目标决策问题中称为非劣解(又称帕雷托最优解或有效解)。

在解决实际问题时情况错综复杂,有时这种理想的最优解不易求得,或者需要付出较大的代价,因而对解只要求能满足一定限度范围内的条件,不一定过分强调最优。

50年代初,在运筹学发展的早期就有人提出次优化的概念及其相应的次优解。

提出这些概念的背景是:最优化模型的建立本身就只是一种近似,因为实际问题中存在的某些因素,尤其是一些非定量因素很难在一个模型中全部加以考虑。

.另一方面,还缺乏一些求解较为复杂模型的有效方法。

1961年H.A.西蒙进一步提出满意解的概念,即只要决策者对解满意即可。

3.最优化方法的应用最优化一般可以分为最优设计、最优计划、最优管理和最优控制等四个方面(1)最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法己使许多设计优化问题得到解决。

一个新的发展动向是最优设计和计算机辅助设计相结合。

电子线路的最优设计是另一个应用最优化方法的重要领域。

配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展(见优选法)。

相关文档
最新文档