真核生物基因表达及其调控
真核生物基因表达的调控
![真核生物基因表达的调控](https://img.taocdn.com/s3/m/32b79a3576c66137ee06197b.png)
4、DNA甲基化与基因组印迹 (1)基因组印迹:来源于父母本的一对等位基因
表达不同(如X染色体失活) (2)基因组印迹的机制--DNA高度甲基化
5、DNA甲基化与X染色体的失活 X染色体DNA序列高度甲基化,基因被关闭
(1)与X染色体的失活有关的序列:
AP2
??
结合蛋白 (protein binding)
AP2 AP1
? SP1
? TF IID +
RNApol
BLE basal level element MRE metal response element AP activator protein
应答元件的特点:
1. 具有与启动子、增强子同样的一般特性. 2. 与起始点的位置不固定(多在-200以内;单个功能充分,
非洲爪蟾的卵母细胞 rDNA的拷贝数目: 500份 2×106份,可装配1012个核糖体 当胚胎期开始,增加的rDNA便失去功能并逐渐消失
二、基因丢失
有的生物在个体发育的早期在体细胞中要丢 失部分染色体,而在生殖细胞中保持全部的 基因组。
小麦瘿蚊(染色丢失了32条,只保留8条)
马蛔虫
三、基因重排(gene rearrangement)
的下游起作用。 4、与它结合的转录因子是GCN4和GAL4,识别位
点为 ATGACTCAT。
(四)绝缘子(Insulator)
阻止激活或失活效应的元件
举例:
1、当绝缘子位于增强子和启动子间时,能阻止 增强子激活启动子作用。
2、当绝缘子位于一个活化基因和异染色质之间 时,它保护基因免受由异染色质扩展造成的失 活效应影响。
Constant
真核生物的基因表达调控
![真核生物的基因表达调控](https://img.taocdn.com/s3/m/3e9ba00b66ec102de2bd960590c69ec3d4bbdb57.png)
转录因子得结构
绝大多数转录因子至少具有以下三种不同得结构域得 一种: (1)DNA结合结构域,直接与顺式作用元件结合得转录因子 都具有此结构域。转录因子通常使用此结构域之中得 特殊α-螺旋与顺式作用元件内得大沟接触,通过螺旋上 得特殊氨基酸残基得侧链基团与大沟中得特殊碱基对 之间得次级健(主要就是氢键)相互识别而产生特异性。 许多转录因子在此结构域上富含碱性氨基酸,这可能有 利于她和DNA骨架上带负电荷得磷酸根发生作用; (2)效应器结构域,这就是转录因子调节转录效率(激活或阻 遏)、产生效应得结构域; (3)多聚化结构域,此结构域得存在使得转录因子之间能够 组装成二聚体或多聚体(同源或异源)。下面将集中介绍 前两种结构域,特别就是DNA结合结构域。
在转录水平上得基因表达调控
真核生物得蛋白质基因得转录除了启动子、RNA聚合酶II和基础 转录因子以外,还需要其她顺式作用元件和反式作用因子得参与。 参与基因表达调控得主要顺式作用元件有:增强子、沉默子、绝缘 子和各种反应元件;参与基因表达调控得反式作用因子也称为转录 因子,她们包括激活蛋白、辅激活蛋白、阻遏蛋白和辅阻遏蛋白。 激活蛋白与增强子结合激活基因得表达,而阻遏蛋白与沉默子结合, 抑制基因得表达,某些转录因子既可以作为激活蛋白也可以作为阻 遏蛋白其作用,究竟就是起何种作用取决于被调节得基因。辅激活 蛋白缺乏DNA结合位点,但她们能够通过蛋白质与蛋白质得相互作 用而行使功能,作用方式包括:招募其她转录因子和携带修饰酶(如 激酶或乙酰基转移酶)到转录复合物而刺激激活蛋白得活性;辅阻 遏蛋白也缺乏DNA结合位点,但同样通过蛋白质与蛋白质得相互作 用而起作用,作用机理包括:掩盖激活蛋白得激活位点、作为负别构 效应物和携带去修饰酶去中和修饰酶(如磷酸酶或组蛋白去乙酰基 酶)得活性。
真核生物基因表达调控的多种方式
![真核生物基因表达调控的多种方式](https://img.taocdn.com/s3/m/1334fbda534de518964bcf84b9d528ea80c72f76.png)
真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
第八章真核基因表达调控ppt课件
![第八章真核基因表达调控ppt课件](https://img.taocdn.com/s3/m/776dd97866ec102de2bd960590c69ec3d5bbdb2e.png)
在小鼠中,95%的抗体轻链是κ型,而人类抗体 轻链中,κ型和λ型各占50%左右。
人类基因组中免疫球蛋白基因主要片段的数
免疫球蛋白重链基因片段重排与组织特异性表达
酵母交配型转换
8.1.4 DNA甲基化与基因调控
A. DNA的甲基化 DNA甲基化能引起染色质结构、DNA构象、
启动区DNA分子上的甲基化密度与基因转录受 抑制的程度密切相关。对于弱启动子来说,稀少的 甲基化就能使其完全失去转录活性。当这一类启动 子被增强时(带有增强子),即使不去甲基化也可 以恢复其转录活性。若进一步提高甲基化密度,即 使增强后的启动子仍无转录活性。
P295, Fig. 8-15
C. DNA甲基化与X染色体失活
A、螺旋-转折-螺旋(helix-turn-helix, H-T-H) 结构。这一类蛋白质分子中有至少两个α螺旋,中 间由短侧链氨基酸残基形成“转折”,近羧基端的 α螺旋中氨基酸残基的替换会影响该蛋白质在DNA 双螺旋大沟中的结合。
同源域蛋白通过其第三个螺旋与双链DNA的大沟 相结合,其N端的多余臂部分则与DNA的小沟相
选择性剪接
➢ 原始转录产物可通过不同的剪接方式,得到不同 的mRNA,并翻译成不同蛋白质; ➢有些基因选择了不同的启动子,或者选择了不同的 多聚(A)位点而使原始转录物具有不同的二级结构, 产生不同的mRNA分子,但翻译成相同蛋白质。 ➢同一基因的转录产物由于不同的剪接方式形成不同 mRNA的过程称为选择性剪接。
本章主要内容提要
1.真核生物的基因结构与转录活性; 2.真核基因转录机器的主要组成; 3.蛋白质磷酸化对基因转录的调控; 4.蛋白质乙酰化对基因表达的影响; 5.激素与热激蛋白对基因表达的影响; 6.其他水平上的表达调控。
真核生物基因表达调控
![真核生物基因表达调控](https://img.taocdn.com/s3/m/5c4f5d8f19e8b8f67d1cb92b.png)
酸性激活域 (D/E-rich) 谷氨酰胺(Q)富含域 脯氨酸(P)富含域
蛋白质-蛋白质结合域 (dimerization, co-factors)
1) TF最常见的DNA binding domain
Zinc Finger
bZIP
Homeodomain
bHLH
(1) 锌指(zinc finger)
2. The pri5’ capping 3’ formation / polyA splicing
3. Mature transcripts are transported to the cytoplasm for translation
Chromatin
epigenetic control
Protein degradation RNA silencing
一般而言的基因表达调控范畴
二、基因表达的时间性及空间性
(一)时间特异性
按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。
Cys-X2-4-Cys-X3-Phe-X5-Leu-X2-His-X3-His C-terminal: α-helix binding DNA
常结合GC box
(2) 碱性亮氨酸拉链 bZIP
(3) 碱性螺旋-环-螺旋bHLH
bHLH蛋白(basic Helix-Loop-Helix)
2) TF常见的trans-activation domain
– usually expressed at high level – the level of their gene expression may vary
第九章-真核生物基因的表达及其调控
![第九章-真核生物基因的表达及其调控](https://img.taocdn.com/s3/m/da7542c577eeaeaad1f34693daef5ef7ba0d12cf.png)
第九章-真核⽣物基因的表达及其调控第九章真核⽣物基因的表达及其调控教学要点:名词:持家基因和奢侈基因静⽌⼦顺式作⽤元件反式作⽤因⼦双内含⼦ UA序列理解真核基因表达调控的复杂性掌握真核基因在染⾊体⽔平上的活化调节学习增强⼦在结构和功能上的特点掌握真核⽣物RNA聚合酶Ⅱ的结构特点及其相关启动⼦的各组分的功能。
掌握RNA编辑的机制授课时数:4学时真核⽣物基因表达调控:基因表达⽔平染⾊质⽔平转录⽔平(主要调控)转录后加⼯⽔平翻译⽔平翻译后⽔平第⼀节真核⽣物中基因表达⽔平的分析⼀、真核⽣物:受精卵→不同⽣物功能的分化细胞⼆、分化细胞:维持其正常结构和新陈代谢等⽣命活动;⾏使其特定的功能。
尽管各种⽣物的细胞中都有该种⽣物的⼀整套基因,然⽽不同种类的细胞中处于⼯作状态的基因种类却不尽相同。
三、cDNA-mRNA 杂交:所以某种mRNA 在群体中频率越⾼,相应的cDNA 的频率越⾼,cDNA 与过量mRNA 越容易形成杂合双链。
当少量单链DNA 与⼤量RNA 杂交时,所有能与RNA 互补的DNA 都会形成RNA-DNA 杂合分⼦。
第⼆节染⾊质⽔平上的基因活化调节⼀、染⾊质的疏松及活性染⾊质特征1.染⾊质纤维解旋—局部膨⼤—染⾊体泡2.染⾊质的模板容量——⼀定量的染⾊质所能合成的RNA的量3.常染⾊质与异染⾊质⼆、转录基因与核⼩体结构核⼩体相位:指同⼀类型的所有细胞中,组蛋⽩⼋聚体在DNA序列上的特殊定位。
改变调控元件的位置:启动⼦、增强⼦…三蛋⽩质的修饰与基因活化调节(⼀)组蛋⽩的调控1、组蛋⽩含量增加→DNA模板容量降低H2A、H2B、H3、H4:影响模板容量,阻⽌DNA链上RNA链的延长2、组蛋⽩修饰:核⼩体组蛋⽩上的某些氨基酸被共价修饰的现象●主要:⼄酰基化、甲基化、磷脂化、泛素化共性:组蛋⽩正电荷减少、碱性降低、松弛与DNA的结合、活化染⾊质、便于转录、调控(⼆)⾮组蛋⽩在基因表达中的作⽤—调节基因表达细胞分化:特异DNA序列上组蛋⽩与⾮组蛋⽩相互作⽤形成不同抑制区的结果。
第十章真核生物基因的表达及其调控
![第十章真核生物基因的表达及其调控](https://img.taocdn.com/s3/m/b159f378aa00b52acec7ca53.png)
使其后的基因不能转录,甲基化可能阻
碍转录因子与DNA特定部位的结合从而
影响转录。如果用基因打靶的方法除去
主要的DNA甲基化酶,小鼠的胚胎就不 能正常发育而死亡,可见DNA的甲基化 对基因表达调控是重要的。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 由此可见,染色质中的基因转录前先要有一个 被激活的过程,但目前对激活机制还缺乏认识。
第十章真核生物基因的 表达及其调控
PPT文档演模板
2020/11/28
第十章真核生物基因的表达及其调控
真核生物与原核生物的调控差异
•原核生物
•真核生物
• 操纵元调控。
• 多样化调控,更为复杂。
•
• 基因组小,大肠杆菌:总长 4.6×106bp, 编码4288个基因, 每 个基因约1100bp。
• •
因转录起始及其调控所需的蛋白因子也不完全
相同,因而不同启动子序列也很不相同,要比
原核更复杂、序列也更长。真核启动子一般包
PPT文档演模板
括转录起始点及其上游约100-200bp序列,包 含有若干具有独立功能的DNA序列元件,每个 元件约长7-30bp。最常见的哺乳类RNA聚合 酶Ⅱ启动子中的元件序列见表第1十章真核生物基因的表达及其调控
①核心启动子元件(core promoter element) 指 RNA聚合酶起始转录所必需的最小的DNA序列, 包括转录起始点及其上游-25/-30bp处的 TATA盒。核心元件单独起作用时只能确定转
PPT文档演模板
第十章真核生物基因的表达及其调控
❖②上游启动子元件(upstream promoter element) 包括通常位于-70bp附近的CAAT盒和GC盒、 以及距转录起始点更远的上游元件。这些元件 与相应的蛋白因子结合能提高或改变转录效率。 不同基因具有不同的上游启动子元件,其位置 也不相同,这使得不同的基因表达分别有不同 的调控。
真核基因表达调控的特点
![真核基因表达调控的特点](https://img.taocdn.com/s3/m/95dd00b0f80f76c66137ee06eff9aef8941e481a.png)
真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。
真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。
2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。
转录调控包括转录因子的结合和调节,以及染色质状态的改变。
转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。
它们可以增强或抑制基因的转录,从而影响基因表达。
3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。
这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。
这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。
4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。
染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。
常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。
5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。
这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。
它们可以影响基因的转录后处理和调控基因表达的多样性。
综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。
真核生物基因表达调控
![真核生物基因表达调控](https://img.taocdn.com/s3/m/558dd922a55177232f60ddccda38376baf1fe0a3.png)
真核生物基因表达调控
真核生物基因表达调控
顺式作用元件
真核生物基因表达调控
反式作用因子
-
感谢您的莅临
著特征是能在 特定时间和特定细胞 中激活特定的基因, 从而实现"预定"的、 有序的、不可逆转的 分化、发育过程,并 使生物的组织和器官 在一定环境条件范围 内保持正常功能
真核生物基因表达调控
真核生物基因表达调控的特点如下
①基因表达有转录水平和转录后的调控,且以转录水平调控为主 ②在结构基因上游和下游甚至内部存在多种调控成分,并依靠特异蛋白因子与这些调控 成分结合而调控基因的转录 ③真核生物基因表达调控的环节多:转录与翻译间隔进行,个体发育复杂,具有调控基 因特异性表达的机制 ④真核生物活性染色体结构的变化对基因表达具有调控作用:DNA拓扑结构变化、DNA碱 基修饰变化、组蛋白变化等都具有调控作用 ⑤具有细胞特异性或组织特异性:在生长发育过程中,随着细胞需求的不断改变,各种 基因变得有活性或沉寂 ⑥正性调节占主导,且一个真核生物基因通常有多个调控序列,需要有多个激活物
真核生物基因表 达调控
-
1
基因表达调控
2
真核生物基因表达调控的特点
3
转录水平的调控
真核生物基因表达调控
基因表达调控
基因表达(gene expression)是基因经过转录、翻译,产生具有特异生物学功能的蛋 白质分子或RNA分子的过程。表达调控(gene regulation)是基因表达时受到内源及外 源信号调控的过程。基因表达调控大多数是对基因的转录和翻译速率的调节,从而导 致其编码产物的水平发生变化,进而影响其功能
真核生物基因的表达调控
![真核生物基因的表达调控](https://img.taocdn.com/s3/m/1cefc62e001ca300a6c30c22590102020640f275.png)
细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。
真核生物基因表达调控的特点及主要调控环节
![真核生物基因表达调控的特点及主要调控环节](https://img.taocdn.com/s3/m/f8f10876580102020740be1e650e52ea5518ced7.png)
真核生物基因表达调控的特点及主要调控环节真核生物基因表达调控是一个复杂而精密的系统,涉及到多种调控机制和调控环节。
通过这些调控机制和环节,真核生物能够在不同的细胞类型和不同的发育阶段中表达特定的基因,从而实现细胞功能的多样化和分化。
下面我们将详细介绍真核生物基因表达调控的特点以及主要调控环节。
首先,真核生物基因表达调控具有高度的精细性和特异性。
在真核生物细胞中,每个细胞都包含着相同的基因组,但不同细胞类型和组织会表达不同的基因。
这种差异性主要是通过转录调控来实现的,即通过对特定基因的转录进行调控,使得只有需要的基因在特定的时间和空间表达。
这种精细性和特异性的调控是真核生物细胞功能多样化和分化的重要基础。
其次,真核生物基因表达调控涉及多种调控机制和调控因子。
在真核生物细胞中,基因表达的调控是一个复杂的过程,需要多种调控机制和调控因子的参与。
其中,转录因子是最为重要的调控因子之一,它们可以结合到基因的启动子区域,促进或抑制该基因的转录。
此外,还有一些非编码RNA、表观遗传学修饰等调控机制也在基因表达调控中扮演着重要角色。
这些调控机制和调控因子相互作用,共同调控着基因的表达。
另外,真核生物基因表达调控还存在着复杂的信号传导网络。
在细胞内部,存在着多种信号通路和信号分子,它们可以感知外界环境的变化,并将这些信息传递给细胞核,从而影响基因的表达。
这些信号传导网络可以通过激活或抑制转录因子的活性,改变基因的表达水平。
通过这种方式,细胞可以根据外界环境的变化做出相应的调整,保持内部稳态。
综上所述,真核生物基因表达调控具有高度的精细性和特异性,涉及多种调控机制和调控因子,以及复杂的信号传导网络。
这些特点和调控环节共同构成了真核生物基因表达调控系统的核心。
通过深入研究这些调控机制和调控环节,可以更好地理解细胞功能的多样化和分化过程,为疾病的治疗和生命科学研究提供重要的理论基础。
简述真核生物基因表达调控过程
![简述真核生物基因表达调控过程](https://img.taocdn.com/s3/m/916715f5970590c69ec3d5bbfd0a79563c1ed4c2.png)
简述真核生物基因表达调控过程真核生物基因表达调控过程是指在真核生物细胞中,如何通过一系列的调控机制,将基因中的遗传信息转化为蛋白质,以实现细胞功能的正常发挥。
基因表达调控过程可以分为转录调控和转录后调控两个阶段。
在转录调控阶段,首先是在细胞核中进行转录。
细胞核中的DNA被RNA聚合酶酶识别并解链,形成单链mRNA。
但并不是所有基因都会被转录,细胞会根据需要选择性地进行转录。
这是通过转录因子的作用来实现的。
转录因子是一类能够与DNA特定序列结合的蛋白质,它们能够促进或抑制转录的进行。
转录因子的结合位点位于启动子区域,当转录因子结合到启动子区域时,会引发一系列的反应,包括启动RNA聚合酶的活性和引导其结合到合适位置上,从而促使转录的进行。
转录因子的表达受到多种因素的调控,如细胞内的信号分子、细胞周期等。
转录后调控是指在mRNA合成后,通过一系列的调控机制来决定其在细胞中的命运。
mRNA在合成后需要经过剪接、修饰和运输等过程。
剪接是指将mRNA中的内含子去除,将外显子进行连接的过程。
通过剪接的不同方式,可以生成不同的mRNA亚型,从而在翻译过程中产生不同的蛋白质。
修饰是指在mRNA上加上帽子和尾巴等化学修饰,这些修饰可以保护mRNA不被降解,并帮助mRNA与翻译机器结合。
运输是指mRNA离开细胞核,进入到细胞质中,进一步参与翻译过程。
这个过程受到RNA结合蛋白的调控。
在翻译过程中,mRNA被核糖体识别并翻译成蛋白质。
这个过程也受到多种调控机制的影响。
一方面,mRNA上的启动子序列会影响翻译的起始位置,从而决定蛋白质的翻译起始位点。
另一方面,mRNA的稳定性也会影响翻译的效率和蛋白质的表达水平。
mRNA 的稳定性受到RNA结合蛋白和非编码RNA的调控。
总的来说,真核生物基因表达调控过程是一个复杂而精细的调控网络。
通过转录调控和转录后调控的相互作用,细胞可以根据内外环境的需要,在不同的时空位置上产生不同类型的蛋白质,以实现细胞功能的正常发挥。
真核生物基因表达调控的层次
![真核生物基因表达调控的层次](https://img.taocdn.com/s3/m/22691855c4da50e2524de518964bcf84b9d52ddb.png)
真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。
真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。
本文将就这些层次进行详细介绍。
一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。
染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。
染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。
DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。
组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。
非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。
二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。
转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。
转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。
转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。
启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。
转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。
三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。
RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。
剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。
剪切的方式和位置不同,可以产生不同的转录产物。
医学分子生物学原理-真核基因表达与调控
![医学分子生物学原理-真核基因表达与调控](https://img.taocdn.com/s3/m/d34b1b3ab307e87101f696ef.png)
(抑制)二种方式。 • 其调节机制涉及顺式作用元件、RNA聚合酶
和其它调节蛋白。
(二)转录调节因子分类 (按功能特性)
* 基本转录因子
是RNA聚合酶结合启动子所必需的一组 蛋白因子,决定三种RNA(mRNA、tRNA及 rRNA)转录的类别。TF I;TF II;TF III
一个真核生物基因的转录需要3至5个转 录因子。转录因子之间不同方案组合,生成 有活性、专一性的复合物,再与RNA聚合酶 搭配而有针对性地结合、转录相应的基因。
按不同组合,人类约3.5万个基因,估 计需转录因子300余个即可。
(四)转录起始调控模式
主要通过调节反式作用因子的活性控制转录起始;
反式作用因子(有活性) 反式作用因子(无活性)
为重要,需要2个帽结合蛋白参与(CBP80 和CBP20)
A基因表达
A
B
C
A
B
B基因关闭 D
三、转录后调控
(一)mRNA加帽和加尾的调控意义
• 5′帽子结构的作用:
– 防止mRNA被5′→ 3′核酸酶降解; – 能被帽结合蛋白识别,增强mRNA的可翻译
性,没帽子结构,翻译效率降低; – 促进mRNA从核到胞浆的运输过程; – 增强mRNA的剪接效率, 帽对exon1的剪接尤
• Ⅱ类顺式作用元件包括: 核心启动子( Core promoter),增强子(enhancer),沉 默子(silencer ),及各种反应元件等。
1. 核心启动子( Core promoter)
• Ⅱ类启动子的核心启动子常由TATA盒、位于 TATA盒上游的的上游启动子元件、以转录点 为中心的起始子和下游启动子元件,4个元件 组合而成。
真核基因的表达调控
![真核基因的表达调控](https://img.taocdn.com/s3/m/0099455917fc700abb68a98271fe910ef12daeae.png)
真核细胞--基因表达调控最明显的特征是在特定时间,特定的 细胞中特定的基因被激活,实现"预定"的、有序的、不可逆转的 分化、发育,并使生物的组织和器官保持正常功能。这是生命活 动规律决定的,环境因素在其中作用不大。
原核细胞--环境因素对调 控起到决定性的作用。群体 中每一个细胞对环境变化的 反应是直接的和一致的。
1 DNA结合 结构域
螺旋-转折-螺旋(helix-turn-helix, H-T-H)结构 这一类蛋白质分子中有至 少两个α螺旋,中间由短侧链氨基酸残 基形成“转折”,近竣基端的α螺旋中 氨基酸残基的替换会影响该蛋白质在 DNA双螺旋大沟中的结合。与DNA相 互作用时,同源域蛋白的第一、二两个 螺旋往往靠在外侧,其第三个螺旋则与 DNA大沟相结合,并通过其N-端的多 余臂与DNA的小沟相结合。
2.螺旋-环螺旋(HLH) 结构域
这一结构在总体上与亮氨酸拉链相似,只 是它的二个α-螺旋被一个非螺旋的多肽环 分成二个单体蛋白,C端α-螺旋一侧的疏 水残基可以二聚化。与亮氨酸拉链一样, HLH结构也经常与碱性结构域相邻,以形 成DNA结合所需的二聚体。
7.2.2.3 转录激活结构域
酸性激活结构域 通过比较酵母Gcn4和Gal4的转 录激活结构域、哺乳动物糖皮质激素受体以及疤疹 病毒激活子VPl6发现它们都含有很高比例的酸性氨 基酸,这样的结构域被称作酸性激活结构域,且是 许多转录激活结构域的特征。
四.没有基因专一性,可以在不同的基因组合 上表现增强效应。
五.许多增强子受外部信号的调控,如金属硫 蛋白基因启动区上游所带的增强子,就可 以对环境中的锌、镐浓度做出反应。
25
增强子的功能受DNA双螺旋空间构象的影响。增强子有 如下3种作用机制:1.影响模板附近的DNA双螺旋结构, 导致DNA双螺旋弯折或在反式因子的参与下,以蛋白质 之间的相互作用为媒介形成增强子与启动子之间"成环" 连接,活化基因转录。2.将模板固定在细胞核内特定位 置,如连接在核基质上,有利于DNA拓扑异构酶改变 DNA双螺旋结构的张力,促进RNA聚合酶在DNA链上 的结合和滑动。3.增强子区可以作为反式作用因子或 RNA聚合酶进入染色质结构的 "入口"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 从上述可见:真核基因组比原核基因组 复杂得多,至今人类对真核基因组的认 识还很有限,现在国际上制订的人基因 组研究计划(human gene project)完成,绘 出人全部基因的染色体定位图,测出人 基因组109bp全部DNA序列后,要搞清楚 人全部基因的功能及其相互关系,特别 是要明了基因表达调控的全部规律,还
原核生物的基因组基本上是单倍体,而真核基 因组是二倍体 ; 细菌多数基因按功能相关成串排列,组成操纵 元的基因表达调控的单元,共同开启或关闭, 转录出多顺反子(polycistron)的mRNA;真核生 物则是一个结构基因转录生成一条mRNA,即 mRNA是单顺反子(monocistron),基本上没有 操纵元的结构,而真核细胞的许多活性蛋白是 由相同和不同的多肽形成的亚基构成的,这就 涉及到多个基因协调表达的问题,真核生物基 因协调表达要比原核生物复杂得多。
性,转录后的调控占有了更多的分量。
• (二)真核基因的转录与染色质的结构变化 相关 。
真核基因组DNA绝大部分都在细胞核内与组蛋 白等结合成染色质,染色质的结构、染色质中 DNA和组蛋白的结构状态都影响转录,至少有 以下现象: 1.染色质结构影响基因转录
2.组蛋白的作用:组蛋白与DNA结合阻止DNA上基因 的转录,去除组蛋白基因又能够转录。组蛋白是碱性 蛋白质,带正电荷,可与DNA链上带负电荷的磷酸基 相结合,从而遮蔽了DNA分子,妨碍了转录,可能扮 演了非特异性阻遏蛋白的作用;染色质中的非组蛋白 成分具有组织细胞特异性,可能消除组蛋白的阻遏,
• 与原核生物比较,真核生物的基因组更 为复杂,可列举如下:
真核基因组比原核基因组大得多,大肠杆菌基 因组约4×106bp,哺乳类基因组在109bp数量级, 比细菌大千倍;大肠杆菌约有4000个基因,人 则约有10万个基因。
真核生物主要的遗传物质与组蛋白等构 成染色质,被包裹在核膜内,核外还有 遗传成分(如线粒体DNA等),这就增加 了基因表达调控的层次和复杂性。聚合酶(Ⅰ、Ⅱ和Ⅲ)中, 只有RNA聚合酶Ⅱ能转录生成mRNA,以下主 要讨论RNA聚合酶Ⅱ的转录调控。 (一)顺式作用元件(cis acting elements) 真核基因的顺式调控元件是基因周围能与特异 转录因子结合而影响转录的DNA序列。其中主 要是起正性调控作用的顺式作用元件,包括启 动子(promoter)、增强子(enhancer);近年又发 现起负性调控作用的元件静止子(silencer)
• 5. DNA碱基修饰变化:真核DNA中的胞 嘧啶约有5%被甲基化为5-甲基胞嘧啶(5 methylcytidine,m5C),而活跃转录的 DNA段落中胞嘧啶甲基化程度常较低。 这种甲基化最常发生在某些基因5′侧区的 CG序列中,实验表明这段序列甲基化可 使其后的基因不能转录,甲基化可能阻 碍转录因子与DNA特定部位的结合从而 影响转录。如果用基因打靶的方法除去 主要的DNA甲基化酶,小鼠的胚胎就不 能正常发育而死亡,可见DNA的甲基化 对基因表达调控是重要的。
第九章 真核生物基因的表达及其调控
• 真核生物基因的表达调控系统远比原核生物复 杂。
真核生物与原核生物的调控差异
原核生物
操纵元调控。 基因组小,大肠杆菌:总长 4.6×106bp, 编码4288个基因, 每 个基因约1100bp。
真核生物
多样化调控,更为复杂。 基 因 组 大 , 人 类 基 因 组 全 长 3×109 bp,编码10万个基因,其余为重复序 列。
基因分布在同一染色体上,操 DNA与组蛋白结合成染色质,染色质的变 纵元控制。 化调控基因表达;基因分布在不同的染色
体上,存在不同染色体间基因的调控问题。
适应外界环境,操纵元调控表达。 基因差别表达是细胞分化和功能的核 心。 转录和翻译同时进行,大部分 为转录水平调控。 转录和翻译在时间和空间上均不同, 从DNA到蛋白质的各层次上都有调控, 但多数为转录水平调控
• 二、真核基因表达调控的特点
与原核生物比较它具有一些明显的特点:
(一)
基因表达是基因经过转录、翻译、产生有生物
活性的蛋白质的整个过程。同原核生物一样,
转录依然是真核生物基因表达调控的主要环节。 但真核基因转录发生在细胞核(线粒体基因的转 录在线粒体内),翻译则多在胞浆,两个过程是 分开的,因此其调控增加了更多的环节和复杂
3.转录活跃的区域也常缺乏核小体的结构。这 些都表明核小体结构影响基因转录。 4.转录活跃区域对核酸酶作用敏感度增加。活 跃进行转录的染色质区域受DNase Ⅰ消化常出 现100-200bp的DNA片段,且长短不均一,说 明其DNA受组蛋白掩盖的结构有变化,出现了 对DNase Ⅰ高敏感点(hypersensitive site)。这种 高敏感点常出现在转录基因的5′侧区(5′ flanking region)、3′末端或在基因上,多在调控蛋白结 合位点的附近,分析该区域核小体的结构发生 变化,可能有利于调控蛋白 结合而促进转录。
• 由此可见,染色质中的基因转录前先要有一个 被激活的过程,但目前对激活机制还缺乏认识。 (三)真核基因表达以正性调控为主:真核RNA 聚合酶对启动子的亲和力很低,基本上不依靠 自身来起始转录,需要依赖多种激活蛋白的协 同作用。真核基因调控中虽然也发现有负性调 控元件,但其存在并不普遍;真核基因转录表 达的调控蛋白也有起阻遏和激活作用或兼有两 种作用者,但总的是以激活蛋白的作用为主。 即多数真核基因在没有调控蛋白作用时是不转 录的,需要表达时就要有激活的蛋白质来促进 转录。换言之:真核基因表达以正性调控为主 导。
原核基因组的大部分序列都为基因编码,而核 酸杂交等实验表明:哺乳类基因组中仅约10% 的序列为蛋白质、rRNA、tRNA等编码,其余 约90%的序列功能至今还不清楚。 原核生物的基因为蛋白质编码的序列绝大多数 是连续的,而真核生物为蛋白质编码的基因绝 大多数是不连续的,即有外显子(exon)和内含 子(intron),转录后需经剪接(splicing)去除内含 子,才能翻译获得完整的蛋白质,这就增加了 基因表达调控的环节。 原核基因组中除rRNA、tRNA基因有多个拷贝 外,重复序列不多。哺乳动物基因组中则存在 大量重复序列(repetitive sequences)。