Ansys计算温度场操作流程

Ansys计算温度场操作流程
Ansys计算温度场操作流程

Instruction of Ansys temperature field calculation

Question 1: Consider an infinite (in one direction) plate with initial temperature T0. One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s.

问题1:考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。

Basic parameters基本物性参数

Geometry几何:a=1 m, b=0.1 m

Material材料:λ=54 W/m·o C, ρ=7800 kg/m3, c p=465 J/kg·o C

Loads载荷:T0=0 o C, T e=1000 o C, h=50 W/m2·o C

Jobname and directory settings设置文件名、存储路径

Menu | File | Change Jobname

Menu | File | Change Directory

Preprocessing前处理

(1) Define Element Type定义单元类型

Preprocessor | Element Type | Add/Edit/Delete

Add: Thermal Mass | Solid | Quad 4node 55

(2) Set Material Properties设置材料属性

Preprocessor | Material Props | Material Models

Thermal: Conductivity: Isotropic KXX=54

Thermal: Density=7800

Thermal: Specific Heat=465

Modeling建模

(1) Create Node 1建立节点1

Preprocessor | Modeling | Create | Nodes | In Active CS

No.: 1, (x, y, z) = (0,0,0)

(2) Create Node 12建立节点12

Preprocessor | Modeling | Create | Nodes | In Active CS

No.: 2, (x, y, z) = (0,1,0)

(3) Fill Between Node 1 and 12在节点1,12间填充其余节点

Preprocessor | Modeling | Create | Nodes | Fill Between Nds

Number of nodes to fill: 10

Spacing ratio: 1(均匀网格)

(4) Create Node 13~24 by copying复制生成节点13~24

Preprocessor | Modeling | Copy | Nodes | Copy

Pick All选择所有节点

Total number of copies: 2复制2份(包含原先的1份)

X-offset: 0.1设置X方向偏移量

(5) Create Element 1生成单元1

Preprocessor | Modeling | Create | Elements | Auto Numbered | Thru Nodes

Select 1, 13, 14, 2(with mouse)

(6) Copy Element 2~10 by copying复制生成其余单元

Preprocessor | Modeling | Copy | Elements | Auto Numbered

Pick All选择所有单元

Total number of copies: 11复制11份(包含原先的1份)

Node number increment: 1设置节点增量

Applying Loads加载(设置边界条件和初始条件)

(1) Apply convention loads on Node 12 and 24在节点12,24上加对流载荷

Preprocessor | Loads | Define Loads | Apply | Thermal | Convection | On Nodes

Pick 12, 24

V ALI Film coefficient: 50换热系数

V AL2L Bulk temperature: 1000环境温度

(2) Set initial temperature(uniform temperature)设置初始条件(均匀温度)

Solution | Define Loads | Settings | Uniform Temp

Uniform Temperature: 0

Solution求解

(1) Set Analysis Type as Transient设置分析类型为瞬态分析

Solution | Analysis Type | New Analysis

Transient

(2) Set solution controls设置分析控制参数

Solution | Analysis Type | Sol’n Controls

”Transient” Label: Stepped Loading

”Basic” Label: Time at end of loadstep: 10000; Automatic time stepping: on; Time increment: 10;

Frequency: Write every substep

(3) Solve求解

Solution | Solve | Current LS

Viewing Results查看结果

(1) TimeHist Postpro时间历程后处理器

Add data添加数据:

TimeHist Postpro | Add data: Nodal Solution: DOF Solution: Nodal Temperature:

Variable Name: T1; Node 1

Variable Name: T5; Node 5

Variable Name: T9; Node 9

Variable Name: T11; Node 11

(2) List/Graph列表/作图

Select the variables选择变量:

List data/ Graph data

(3) Save image保存图片

Menu | PlotCtrls | Capture Image: File | Save as

(4) General Postpro通用后处理器

Select the data of certain time选择某一时刻的数据:

General Postpro | Read Results | By pick

Plot the contour map of temperature distribution绘制该时刻温度分布等值线图:

General Postpro | Plot Results | Contour Plot | Nodal Solu | Nodal Solution: DOF Solution: Temperature

(5) Save image保存图片

Menu | PlotCtrls | Capture Image: File | Save as

(6) Animate生成动画

Menu | PlotCtrls | Animate | Over Time

Number of animation frames: 100

Question 2: Consider a solid cylinder with initial temperature T0. The top surface of the cylinder is exposed to the environment of which the temperature is T e (III type boundary condition) and the other surfaces are heat insulation (II type boundary condition). Analyze the temperature distribution in the cylinder during the period of 1000s.

问题2:考虑一个初始温度为T0的圆柱体,一段暴露在温度为T e的环境中,其余界面视为绝热,分析其在1000s内温度分布情况。

Basic parameters基本物性参数

Geometry几何:r=0.025 m, h=0.05 m

Material材料:λ=25 W/m·o C, ρ=7800 kg/m3, c p=500 J/kg·o C Loads载荷:T0=25 o C, T e=100 o C, h=100 W/m2·o C

Jobname and directory settings设置文件名、存储路径

Menu | File | Change Jobname

Menu | File | Change Directory

Preprocessing前处理

(1) Define Element Type定义单元类型

Preprocessor | Element Type | Add/Edit/Delete

Thermal Mass: Solid : Brick 8node 70

(2) Set Material Properties设置材料属性

Preprocessor | Material Props | Material Models

Thermal: Conductivity: Isotropic KXX=25

Thermal: Density=7800

Thermal: Specific Heat=500

Modeling建模

(1) Create the cylinder model建立圆柱体模型

Preprocessor | Modeling | Create | V olumes | Cylinder | Solid Cylinder WP X: 0

WP Y: 0

Radius: 0.025

Depth: 0.05

(2) Adjust the view调整视图

Right Toolbar | Isometric View

(3) Mesh划分网格

Preprocessor | Meshing | MeshTool

SmartSize(optional): Mesh: select the cylinder选择圆柱体Applying Loads加载

(1) Apply convention loads on the top在上表面加对流载荷

Preprocessor | Loads | Define Loads | Apply | Thermal | Convection | On Areas

Pick the top surface by mouse选择上表面(用鼠标)

V ALI Film coefficient: 100换热系数

V AL2L Bulk temperature: 100环境温度

(2) Set initial temperature(uniform temperature)设置初始条件(均匀温度)

Solution | Define Loads | Settings | Uniform Temp

Uniform Temperature: 25

Solution求解

(1) Set Analysis Type as Transient设置分析类型为瞬态分析

Solution | Analysis Type | New Analysis

Transient

(2) Set solution controls设置分析控制参数

Solution | Analysis Type | Sol’n Controls

”Transient” Label: Stepped Loading

”Basic”Label: Time at end of loadstep: 1000; Automatic time stepping: on; Time increment: 10; Frequency: Write every substep

(3) Solve求解

Solution | Solve | Current LS

Viewing Results查看结果

(1) General Postpro通用后处理器

Select the data of certain time选择某一时刻的数据:

General Postpro | Read Results | By pick

Plot the contour map of temperature distribution绘制该时刻温度分布等值线图:

General Postpro | Plot Results | Contour Plot | Nodal Solu | Nodal Solution: DOF Solution: Temperature

(2) Save image保存图片

Menu | PlotCtrls | Capture Image: File | Save as

(3) Animate生成动画

Menu | PlotCtrls | Animate | Over Time

Number of animation frames: 100

基于ANSYS软件的电机电磁场有限元分析解读

基于ANSYS软件的电机电磁场有限元分析 发表时间:2007-9-11 作者: 黄劭刚夏永洪张景明来源: 万方数据 关键字: APDL语言同步发电机电磁场有限元 介绍了应用ANSYS自带的APDL编程语言进行软件开发,将该软件应用于同步发电机空载磁场分析中,在电机的电磁场计算中实现了电机的自动旋转、自动施加载荷的功能,使用、修改方便,并且计算速度快。通过对电磁场计算结果的后处理,得出了同步发电机的旋转磁场波形和电压波形。样机测试结果验证了分析结果的正确。 1 前言 ANSYS软件是一个功能强大、灵活的,融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件。广泛用于核工业、石油化工、航空航天、机械制造、土木工程等一般工业及科学研究领域的设计分析。 在实际的电机电磁场分析中,电机的转子磁极形状、定子齿槽形状、气隙大小以及铁磁材料均已确定,但是当转子相对十定子齿槽的位置不同时一,其计算结果也不相同。为了分析电机电磁场问题,若把定、转子相对位置固定不变进行求解,再对电磁场计算结果进行傅立叶级数分解来计算电机绕组的电势则误差太大。为此,需要对定、转子不同位置时一分别进行计算,然后通过电磁场的计算结果求出电机何个定子齿部磁通随转角变化的关系,然后根据磁通的变化率求出电机基波绕组的电势。ANSYS软件是目前应用最为广泛、使用最方便的通用有限元分析软件之一,应用ANSYS软件来分析电机电磁场是非常有效的。但是当采用ANSYS软件的图形用户界面( GUI)操作方式时,每次定、转子之间的旋转、网格剖分、施加载荷进行求解、查看计算结果等都需要人工进行重复操作,使用起来非常繁琐,并且效率低。为此,木文采用ANSYS软件的APDL语言编写的软件对同步发电机的空载磁场进行研究,实现了电机定、转子之间的自动旋转,自动网格剖分,自动施加载荷以及自动求解的功能。整个电磁场分析过程无需人工进行干预,使用方便,便于修改,并且大大提高了计算速度。通过对同步发电机电磁场计算结果进行后处理,得出了同步发电机的旋转磁场波形和电压波形。 2 软件实现 ANSYS软件提供了图形用户界面与命令流两种方式来分析电机电磁场问题。在电机电磁场计算中,命令流方式和图形用户界面方式相比,具有以下优点:(1)通用性好,对于同系列、同型号的电机电磁场计算只要对电机的尺寸参数进行修改即可,而采用ANSYS的图形用户界面方式进行电机电磁场计算,每次计算都要重新输入图形,没有通用性;(2)通过合理应用ANSYS的APDL语言编写一个两重循环程序就可实现转子自动旋转和自动施加励磁电流的功能,与ANSYS 的图形用户界面方式相比,减少了人机交互的次数,缩短了计算时间。 2.1软件编写

ansys分析电磁场

三维螺线管静态磁场分析 要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。线圈电流为6A,500匝。由于对称性,只分析1/4的模型,如图1所示: 图1螺线管制动器 在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。

施加边界条件: ! /SOLU D,2,MAG,0 ! !SOLVE ! ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH ! 建立的模型如下图所示:

对模型进行智能网格划分,如下图所示: 仿真分析所得磁场强度分布图为:

衔铁所受磁力分布图为: 衔铁所受磁力分布图为:

计算所得衔铁所受磁力为: SUMMARY OF FORCES BY VIRTUAL WORK Load Step Number: 2. Substep Number: 1. Time: 0.2000E+01 Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02 ___________________________________________________ SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N ) Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02 _____________________________________________________ Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.

ANSYS电磁场分析指南 第十六章 电路分析

第十六章电路分析 16.1 什么是电路分析 电路分析可以计算源电压和源电流在电路中引起的电压和电流分布。分析方法由源的类型来决定: 源的类型分析方法 交流(AC)谐波分析 直流(DC)静态分析 随时间变化瞬态分析 要在电磁学分析中用有限元来模拟全部电势,就必须提供足够的灵活性来模拟载流电磁设备。ANSYS程序对于电路分析有如下性能: ·用经过改进的基于节点的分析方法来模拟电路分析 ·可以将电路与绕线圈和块状导体直接耦合 ·2-D和3-D模型都可以进行耦合分析 ·支持直流、交流和时间瞬态模拟 ANSYS程序中先进的电路耦合模拟功能精确地模拟多种电子设备,: ·螺线管线圈 ·变压器 ·交流机械 16.2 使用CIRCU124单元 ANSYS提供一种通用电路单元CIRCU124对线性电路进行模拟,该单元求解未知的节点电压(在有些情况下为电流)。电路由各种部件组成,如电阻、电感、互感、电容、独立电压源和电流源、受控电压源和电流源等,这些元件都可以用CIRCU124单元来模拟。 注:本章只描述CIRCU124单元的某些最重要的特性,对该单元的详细描述参见《ANSYS单元手册》。

16.2.1 可用CIRCU124单元模拟的电路元件 对CIRCU124单元通过设置KEYOPT(1)来确定该单元模拟的电路元件,如下表所示。例如,把KEYOPT(1)设置为2,就可用CIRCU124来模拟电容。对所有的电路元件,正向电流都是从节点I流向节点J。 表1CIRCU124单元能模拟的电路元件 注意:全部的电路选项如上表和下图图1所示,ANSYS的电路建模程序自动生成下列实常数:R15(图形偏置,GOFFST)和R16(单元识别号,ID)。本章下一节将详细讨论电路建模程序。

最新ANSYS电磁场分析指南第一章磁场分析概述汇总

A N S Y S电磁场分析指南第一章磁场分析概 述

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: ·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器 ·回旋加速器 在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。 1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析

利用ANSYS可以完成下列磁场分析: ·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。参见本书“二维静态磁场分析” ·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。参见本书“二维谐波磁场分析” ·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。参见本书“三维静态磁场分析(标量位方法)” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。参见本书“三维静态磁场分析(棱边元方法)” ·3-D谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法)” ·3-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场分析(棱边元方法)” ·基于节点方法的3-D静态磁场分析,用矢量位方法。参见“基于节点方法的3-D静态磁场分析” ·基于节点方法的3-D谐波磁场分析,用矢量位方法。参见“基于节点方法的3-D谐波磁场分析” ·基于节点方法的3-D瞬态磁场分析,用矢量位方法。参见“基于节点方法的3-D瞬态磁场分析” 1.4关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D模型,什么时候选择3-D模型?标量位方法和矢量位方法有何不同?棱边元方法和基于节点的方法求解3-D问题又有什么区别?在下面将进行详细比较。 1.4.12-D分析和3-D分析比较 3-D分析就是用3-D模型模拟被分析的结构。现实生活中大多数结构需要3-D模型来进行模拟。然而3-D模型对建模的复杂度和计算的时间都有较高要求。所以,若有可能,请尽量考虑用2-D模型来进行建模求解。

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章) ANSYS电磁场分析指南第一章磁场分析概述: ANSYS电磁场分析指南第二章2-D静态磁场分析: ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析: ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法): ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法): ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法): ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法): ANSYS电磁场分析指南第十章高频电磁场分析: ANSYS电磁场分析指南第十一章磁宏: ANSYS电磁场分析指南第十二章远场单元: ANSYS电磁场分析指南第十三章电场分析: ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析: ANSYS电磁场分析指南第十七章其它分析选项和求解方法:

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器·回旋加速器

在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析 利用ANSYS可以完成下列磁场分析:

ansys电磁场分析的一些问题

1、进入求解器之后出现如下警告: Using 1 iteration per substep may result in unconvergent solutions for nonlinear analysis and the program may not indicate divergence in this case. Check your results. 不要担心,这是ANSYS程序设置中的一个友好提示,并不说明你的程序就是错误的(当然出现这个提示也不能证明你的程序就是无误的),你可以接着运行程序。 2、进行非线性求解的时候,如果你输入了材料的磁化曲线,但是很奇怪的是在进行二维分析的时候是成功的,但是三维分析的时候被告知得到的解是不收敛。 原因一:你需要检查一下程序的问题,是不是求解的步长设置的不合理。一般情况下,ANSYS 默认的是25,这个值可以满足大部分计算的需要,不过有的时候你需要把这个步长变大。 原因二、你输入的磁化曲线是正确的吗?是否满足ANSYS的要求?很多参考书上的磁化曲线数据并不满足ANSYS程序的要求,你需要用命令TBPLOT绘制出材料的BH、NB、MH三条曲线,看这三条曲线是不是都是光滑的单调的。 3、为什么绘制出的磁力线只有寥寥几根,如何加密呢? ANSYS中有很多中显示方式,你不妨去看看命令/SHOW中的说明. 4、边界条件在电磁场分析中至关重要,那么何时采用通量平行条件何时采用通量垂直条件呢? 在我看来,在ANSYS中,电磁场分析的边界条件是相当直观的。帮助文档中是这么定义的:Flux-normal: Set the normal component of A to zero Flux-parallel: Set in-plane components of A to zero. Far-field: Use element INFIN111. Far-field zer Use AX = AY = AZ = 0. Periodic: Use ANSYS' cyclic symmetry capability. Imposed external field: A(X,Y,Z) does not equal zero. 一般情况下,通量平行条件是可以不加的,但是通量垂直条件一定要加。其实,所谓的平行和垂直就是指实际情况下磁力线和边界的情况。 如果还是不太明白,你可以仔细看看帮助文档中所给出的例子。 5、电磁场分析中远场单元该怎么选择? 我曾在这方面浪费了很多时间。后来才发现原来是因为自己没有看明白帮助文件中的说明书。这个问题比较复杂,虽然我提出来,但是不知道该怎么说。建议大家还是多看看说明书。呵呵……

Ansys电磁场分析指南第一章磁场分析概述

第一章磁场分析概述 1.1磁场分析对象 利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS 可分析计算下列的设备中的电磁场,如: ·电力发电机·磁带及磁盘驱动器 ·变压器·波导 ·螺线管传动器·谐振腔 ·电动机·连接器 ·磁成像系统·天线辐射 ·图像显示设备传感器·滤波器 ·回旋加速器 在一般电磁场分析中关心的典型的物理量为: ·磁通密度·能量损耗 ·磁场强度·磁漏 ·磁力及磁矩· S-参数 ·阻抗·品质因子Q ·电感·回波损耗 ·涡流·本征频率 存在电流、永磁体和外加场都会激励起需要分析的磁场。 1.2ANSYS如何完成电磁场分析计算 ANSYS以Maxwell方程组作为电磁场分析的出发点。有限元方法计算的未知量(自由度)主要是磁位或通量,其他关心的物理量可以由这些自由度导出。根据用户所选择的单元类型和单元选项的不同,ANSYS计算的自由度可以是标量磁位、矢量磁位或边界通量。 1.3静态、谐波、瞬态磁场分析

利用ANSYS可以完成下列磁场分析: ·2-D静态磁场分析,分析直流电(DC)或永磁体所产生的磁场,用矢量位方程。参见本书“二维静态磁场分析” ·2-D谐波磁场分析,分析低频交流电流(AC)或交流电压所产生的磁场,用矢量位方程。参见本书“二维谐波磁场分析” ·2-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,包含永磁体的效应,用矢量位方程。参见本书“二维瞬态磁场分析” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用标量位方法。参见本书“三维静态磁场分析(标量位方法)” ·3-D静态磁场分析,分析直流电或永磁体所产生的磁场,用棱边单元法。参见本书“三维静态磁场分析(棱边元方法)” ·3-D谐波磁场分析,分析低频交流电所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维谐波磁场分析(棱边元方法)” ·3-D瞬态磁场分析,分析随时间任意变化的电流或外场所产生的磁场,用棱边单元法。建议尽量用这种方法求解谐波磁场分析。参见本书“三维瞬态磁场分析(棱边元方法)” ·基于节点方法的3-D静态磁场分析,用矢量位方法。参见“基于节点方法的3-D静态磁场分析” ·基于节点方法的3-D谐波磁场分析,用矢量位方法。参见“基于节点方法的3-D谐波磁场分析” ·基于节点方法的3-D瞬态磁场分析,用矢量位方法。参见“基于节点方法的3-D瞬态磁场分析” 1.4关于棱边单元、标量位、矢量位方法的比较 什么时候选择2-D模型,什么时候选择3-D模型?标量位方法和矢量位方法有何不同?棱边元方法和基于节点的方法求解3-D问题又有什么区别?在下面将进行详细比较。 3-D分析就是用3-D模型模拟被分析的结构。现实生活中大多数结构需要3-D 模型来进行模拟。然而3-D模型对建模的复杂度和计算的时间都有较高要求。所以,若有可能,请尽量考虑用2-D模型来进行建模求解。

ansys大作业ANSYS电磁场分析及与ansoft仿真分析.

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙学科(专业:机械工程 学号:21225169

所在院系:机械工程学系 提交日期2013 年 1 月 1、背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000,线圈是可视为均匀材料,空气区为自由空间(1=r μ,匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。

3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete

第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项

第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1 ?定义衔铁为2号材料(MURX = 1000 ?定义线圈为3号材料(自由空间导磁率,MURX=1

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号: 21225169 所在院系:机械工程学系 提交日期 2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为 PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料 (自由空间导磁率,MURX=1)

相关主题
相关文档
最新文档