ansys分析电磁场
基于ANSYS的电磁场分析
内蒙古科技与经济Inner Mongolia Science Technology & EconomyMay2020No. * Total No. 4512020 5第*期总第451期ansys 8 apqmn戈1,胡晓迪2(1.陕西铁路工程职业技术学院,陕西渭南714000,.中国铁路西安局集团有限公司,陕西宝鸡721000$摘 要:ANSYS EM Suit 是一款集成度很高的有限元仿真分析软件,本文对其电磁场仿真过程进行了介绍,并以同心式CRT 为例,对其电磁场仿真分析进行说明,希望能为电磁设备的电磁场仿真提 供一定的指导。
关键词:ANSYS ;电磁场;有限元中图分类号:TM15 文献标识码:A 文章编号1007—6*21(2020)0*—0079—02限元法是基于电子计算机#杂问题简单化,进而求解复杂工程的数值算法,其基本思为#的几何结构离散成有限个,并且在每个都设限个节点,将 的结构体看仅 点处相连的 集合体,从而将一个 :域中的无限自由度问题,转换成为离散域中的有限 自由度问题(1)&目前,常用的有限元软件有 ANSYS 、COM -SOL 、ABAQUS 等&笔者以有限元软件 ANSYS E lectromagnetics Suite 为例,介绍析方法&1有限元软件介绍ANSYS EM Suit 是一款集 ANSYS HFSS 、ANSYS Maxwell.ANSYS Simploer 、ANSYS Q3D Extractor 、ANSYS Icepa 、ANSYS SIwave 等多个模块于一体的集成有限元仿真软件&如图1 为 ANSYS EM Suit 界面截图&图1 ANSYS EM Suit 界面截图ANSYS HFSS 模块为三 波仿真软件,用频和高速电子元件设计,求解多种微波、射频和高速数 用&ANSYS Maxwell 模块作为业界顶级的 电磁场仿真分析软件,用 设与 设备的三限元仿真,可以完成静态和瞬态、频域和时域的 与仿真分析&ANSYS Simplorer 模块是 ANSYS 的多物理域系统集成软件,它可以将复杂的 析与 Max well限元仿真分析集成在一起,最终 1高性能的电磁、机电以及电力电子系统仿真分析&ANSYS Q3D Extractor 模块是一种寄生参数提取工具,主要供工程人员用 子封装、触摸屏和子变 器的设计,针对仿真 的、电感、电容等参数进行 &ANSYS9cepak 模块主 用 集成 封 、刷、电子装配体和完整产品的快速传递和流体流析&ANSYSS9wave 模块用子封 与 刷的信号、电源完及 干 析&如图2所示为 ANSYS EM Suit 的分布模块&ANSYS MaxwellANSYS HFSSANSYS SimplorerAN Electromag zSYSnetics SuiteANSYS Q3DANSYS SIwaveANSYS Icepak图2 ANSYS EM Suit 的分布模块2 ANSYS 电磁场分析过程限元分析包含了前处理、计算求解、后处理三大 ⑵&前处理主要是进行模型的建立与的划分,计算求解主要是对基本未知量的计算过程#理主要是对计算结果的与处理&在进行ANSYS 的有限 析之前,要根据分析对象与求解问题的特点#个集成模块中,选的模块&,基于ANSYS 的析总共分为8步,其流如图3 &,求解器分为析求解器和析求解器& 析求解器包含了静 求解器、涡流场求解器、求解器# 析求解器包含了静 求解器、直流传导 求解器、交流 求解器&边界条件有自 界条件、对 界条件、气球收稿日期!020 —01 —10陕西铁路工程职业技术学院科研基金项目(KY2018 — 80);陕西铁路工程职业技术学院科研创新团队(KJTD201901&・7*・总第451期内蒙古科技与经济界条件、主 界条件% 界条件& 主要包 、电流 以及外3种型&据求解问题的特点#的求解器、界条件与激屁图3 ANSYS 电磁分析程流程此外# 也是基于有限元法的电磁场分析的 环节,其密度 决定计算结果的精度&ANSYS EM Suit跟模型特点进行自适用划分,但若对计算结果的精度 求# 用手3分析笔者以同心式结构的变压器式可控电抗器(Controllable Reactor of Transformer type, CRT)基 限元软件的对其进行 析&设同心式CRT 有1个 绕组和3个控制绕组,且各控制绕组电流分别为5A.2. 5A 、2”5A &据同心式CRT 的特点,选择ANSYS Maxwell 模块%求解器进行 析&根据图3 的ANSYS 有限析步骤,对CRT 进行 -算,4 绕 同 心 CRT 的(如图4) &夕卜,还可以在计算结果中,查看各绕组电流波形(如图5所示),同时,也可以通过后处理得出绕组电流仿真值图5同心式CRT 各绕组电流波形截图图4同心式CRT 的磁场分布云图截图XYPIot4—Current(WindingT) >—Currer )t(Winding2) —Current(Winding3) —CurrentfWindina41jA flA i\[JU A u J J o L L Q JI w W W W WWfmno a AM a AA m J\ M 八\ VVUVVVUV v 4结束语ANSYS EM Suit 是一款集成度很高的有限元仿真分析软件,笔者对仿真 进行介绍,并以同心式CRT 为例,对仿真分析进行,希望能为 设备的仿真提供一定的指导&[参考文献]「1" 凌桂龙,李战芬.ANSYS 14. 0「M "北京:清 华大学出版社#013:95〜193.!" 龚岩.变压 抗器损耗与温升研究:D ".兰州:兰州交通大学#016.(上接第78页)牌识别、场景识别%断等&基 度学习技术的 厂高温栓金相织智能识别方法,①提升发电厂金相检验的速度与 ,并 栓组织 的变 律来测螺栓寿命,提升 厂的经济性与运行的 :,具的实用价值&②深度学用一种热的人工智能技术,金相组织识 了 的应用领域,对大人智能技术的应用的 &③ 了相组织智能识别的新方法,对相研究与应用领域具的学术意义与应用价值&[参考文献$「1" LECUN Y,BENGIO Y, HINTON G. Deeplearning !". Nature,2015 #21(7 553% :436 〜444.!" 郭丽丽,丁世飞.深度学习研究进展!丄计算机科学 #015 #2(5% : 28〜33.!" 侯宇 ,全吉成,王宏伟.深度学习发展综述!".舰船电子工程#017 #7(4% : 5〜10.[4" Zhang Lixin , Xu Zhengguang # Wei Shuailinget al. Grain Size Automatic Determinationfor 7050 Al Alloy Based on a Fuzzy Logic Method!". Rare Metal Materials and Engi- n;;ring #2016#45(3%:548〜554.!"葵,傅一迪.基于人工 非金属夹杂物的检测与研究!" 2014,24(11% : 14〜18.!" 何维娜,张丽丽.人工神经网络在金相图像分割中的应用研究!".电子设计工程#013,21(3%:143〜147.・80・。
ANSYS电磁场分析报告指南设计
ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章 2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章 3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩· S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。
ANSYS电磁场分析指南-第六章3-D静态磁场分析(棱边单元方法)
第六章3-D静态磁场分析(棱边单元方法)6.1何时使用棱边元方法在理论上,当存在非均匀介质时,用基于节点的连续矢量位A来进行有限元计算会产生不精确的解,这种理论上的缺陷可通过使用棱边元方法予以消除。
这种方法不但适用于静态分析,还适用于谐波和瞬态磁场分析。
在大多数实际3-D分析中,推荐使用这种方法。
在棱边元方法中,电流源是整个网格的一个部分,虽然建模比较困难,但对导体的形状没有控制,更少约束。
另外也正因为对电流源也要划分网格,所以可以计算焦耳热和洛伦兹力。
用棱边元方法分析的典型使用情况有:·电机·变压器·感应加热·螺线管电磁铁·强场磁体·非破坏性试验·磁搅动·电解装置·粒子加速器·医疗和地球物理仪器《ANSYS理论手册》不同章节中讨论了棱边单元的公式。
这些章节包括棱边分析方法的概述、矩阵列式的讨论、棱边方法型函数的信息。
对于ANSYS的SOLID117棱边单元,自由度是矢量位A沿单元边切向分量的积分。
物理解释为:沿闭合环路对边自由度(通量)求和,得到通过封闭环路的磁通量。
正的通量值表示单元边矢量是由较低节点号指向较高节点号(由单元边连接)。
磁通量方向由封闭环路的方向根据右手法则来判定。
在ANSYS中,AZ表示边通量自由度,它在MKS单位制中的单位是韦伯(Volt·Secs),SOLID117是20节点六面体单元,它的12个边节点(每条边的中间节点)上持有边通量自由度AZ。
单元边矢量是由较低节点号指向较高节点号。
在动态问题中,8个角节点上持有时间积分电势自由度VOLT。
ANSYS程序可用棱边元方法分析3-D静态、谐波和瞬态磁场问题。
(实体模型与其它分析类型一样,只是边界条件不同),具体参见第7章,第8章。
6.2单元边方法中用到的单元表 1三维实体单元6.3物理模型区域的特性与设置对于包括空气、铁、永磁体、源电流的静态磁场分析模型,可以通过设置不同区域不同材料特性来完成。
ANSYS电磁场教程电磁模拟
THANKS FOR WATCHING
感谢您的观看
03Байду номын сангаас
本文介绍了ANSYS电磁场教程的基本内容和应用实例,包括静电场、静磁场和 时变电磁场的模拟分析,旨在帮助读者更好地理解和掌握ANSYS在电磁场分析 中的应用。
展望
随着科技的不断进步和应用需求的不断增加,电磁模拟技 术将越来越受到重视,ANSYS作为该领域的领先软件,将 继续发挥重要作用。
未来,ANSYS将不断更新和完善其功能和工具,以更好地 满足用户的需求,包括提高模拟精度、增加新的分析模块 和优化计算效率等。
后处理
分析结果、可视化展示等。
03 电磁场模拟案例分析
案例一:简单电场模拟
建立模型
创建一个简单的二维电场模型, 包括两个电极板和空气区域。
求解设置
选择合适的求解器类型和迭代 次数,进行电场模拟。
总结词
通过ANSYS软件进行简单电场 模拟,了解电场分布和电势分 布。
边界条件
设置电极板为电势边界条件, 设置空气区域为零电势边界条 件。
结果分析
查看电场分布云图和电势分布 云图,分析电场强度和电势的 变化趋势。
案例二:磁场模拟
总结词
通过ANSYS软件进 行磁场模拟,了解磁 场分布和磁感应强度 分布。
建立模型
创建一个简单的三维 磁场模型,包括一个 永磁体和空气区域。
边界条件
设置永磁体为磁化方 向边界条件,设置空 气区域为零磁感应强 度边界条件。
结果分析实例
磁场分布
通过后处理技术,将模拟得 到的磁场分布进行可视化展 示,并与理论值进行对比分 析。
ANSYS电磁场分析指南
ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩·S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。
ANSYS Workbench 17·0有限元分析:第18章-电磁场分析
第18章 电磁场分析 在电磁学里,电磁场是一种由带电物体产生的物理场,处于电磁场的带电物体会感受到电磁场的作用力。
★18.1 电磁场基本理论电磁场理论由一套麦克斯韦方程组描述,分析和研究电磁场的出发点就是对麦克斯韦方程组的研究。
18.1.1 麦克斯韦方程组麦克斯韦方程组实际上是由4个定律组成,分别是安培环路定律、法拉第电磁感应定律、高斯电通定律(简称高斯定律)和高斯磁通定律(亦称磁通连续性定律)。
1. 安培环路定律无论介质和磁场轻度H 的分布如何,磁场中的磁场强度沿任何一条闭合路径的线积分等于穿过该积分路径所确定的曲面的电流总和,这里的电流包括传导电流(自由电荷产生)和位移电流(电场变化产生),利用积分表示为:()D Hdl J dS tΓΩ∂=+∂∫∫∫ (18-1)ANSYS Workbench 17.0有限元分析从入门到精通 式中,J 为传导电流密度矢量(A/m 2),D t∂∂为位移电流密度,D 为电通密度(C/m 2)。
2. 法拉第电磁感应定律 闭合回路中的感应电动势与穿过此回路的磁通量随时间的变化率成正比,利用积分表示为:(B Edl J dS tΓΩ∂=−+∂∫∫∫ (18-2) 式中,E 为电场强度(V/m ),B 为磁感应强度(T 或Wb/m 2)。
3. 高斯电通定律在电场中,不管电解质与电通密度矢量的分布如何,穿出任何一个闭合曲面的电通量等于已闭合曲面所包围的电荷量,这里的电通量也就是电通密度矢量对此闭合曲面的积分,积分形式表示为:v S DdS dv ρ=∫∫∫∫∫ (18-3)式中,ρ为电荷体密度(C/m 3)。
4. 高斯磁通定律在磁场中,不论磁介质与磁通密度矢量的分布如何,穿出任何一个闭合曲面的磁通量恒等于零,这里的磁通量即为磁通量矢量对此闭合曲面的有向积分,用积分形式表示为: 0SBdS =∫∫ (18-4) 式(18-1)~式(18-4)还分别有自己的微分形式,也就是微分形式的麦克斯韦方程组,分别对应式(18-5)~式(18-8):D H J t ∂∇×=+∂ (18-5) B E t ∂∇×=∂ (18-6)D ρ∇= (18-7)0B ∇=(18-8)在电磁场计算中,经常对上述这些偏微分进行简化,以便能够用分离变量法、格林函数等求得电磁场的解,其解的形式为三角函数的指数形式以及一些用特殊函数表示的形式。
ANSYSWorkbench基础教程与工程分析详解第九章电磁场分析
2.麦克斯韦第二方程
麦克斯韦第二方程也称为法拉第电磁感应定律:
ANSYS Workbench 基础教程与工程分析详解
JJ G JG JG G ∂D J 其积分形式为: v ∫ E ⋅ d I = −∫s ∂τ ⋅ d S JG JG ∂E 微分形式: ∇ × E = − ∂τ 该式说明:变化的磁场产生电场。即电场不仅由电H1−H2)=Js 或 H1t−H2t=Js n×(E1−E2)=0 H1t=H2t
法向分量的边界条件:
第 电磁场分析
9
章
n×(B1−B2)=0 B1n=B2n − n·(D1 D2)=ρs 或 D1n−H2n=ρs
在工程上求解电磁场问题,实际上就是在确定的边界条件下联合求解上述诸方程。由 微分形式的麦克斯韦方程式可知:时变电场是有旋有散的,时变磁场是有旋无散的。在时 变电磁场中电场与磁场是不可分割的。因此,时变电磁场是有旋有散场。但是在电荷及电 流均不存在的无源区中,时变电磁场是有旋无散的。电场线与磁场线相互交链,自行闭合, 351 从而在空间形成电磁波。此外,时变电场的方向与时变磁场的方向处处互相垂直。 JG JJ G JJ G J G ∂E ∂D ∂H ∂B = = = 0 。那么,上述麦克斯韦方程变 = 对于不随时间变化的静态场有: ∂t ∂t ∂t ∂t 为静电场方程与恒定磁场方程,此时电场与磁场不再相关,而是彼此独立。
350
3.麦克斯韦第三方程
麦克斯韦第三方程也称为电场的高斯定律。 JJ G JJ G 其积分形式为: v ∫ s D ⋅ dS = q JJ G 微分形式: ∇ × D = ρ 该式表明:穿过任何闭合曲面的电通量等于该闭合曲面所包围的静电荷,也表明了电 荷能产生磁场。
4.麦克斯韦第四方程
ANSYS电磁场分析
2.2.8 建立有限元模型——实体建 模
2.2 建立有限元模型
2.2.6 定义材料属性
实例2-1 定义单元类型,材 料属性
2.2 建立有限元模型
2.2.7 建立有限元模型——直接建 模
实例2-2 两端固定杆件建模
2 结构场分析
2.3.1 网格 控制
1
2.3.2 网格 产生
2
2.3 划分网格
2.4 加载负载
6.1 ANSYS电磁场求解及结果查 看概述
6.2 磁场负载
6.2. 1永 磁铁
6.2.2 矢量磁
位
6.2.3 磁场激
励
6.2.4 磁场标
识
6.2.5 麦 克斯韦面 (MXW
F)
6.2.6 磁 虚位移
(MVDI)
实例6-1 永 磁铁建模和
加载
6.3 电场负载
实例6-2 二维带小孔平行 板电容
6.3.5 无限表 面标识 (INF)
5.3.4 映射网格默认单元 大小
实例5-2 带小孔矩形网格划 分控制
5.4 自由网格和映射网格控制
5.4.1 面的映射网格划分 5.4.2 体的映射网格划分
实例5-3 正五边形网格划分
5 网格化有限元模型的建立
5.5.1 产生点单 元
5.5.3 产生面单 元
5.5.2 产生线单 元
5.5.4 产生体单 元
4 电磁场实体建模
4.2 工作平面
4 电磁场实体建模
4.3 群组命令介绍
4.4 自底向上建模
4.4.1 关键点
4.4.2 硬点
4.4.3 线
实例4-1 马蹄形磁铁 建模
4.4.4 面
4.4.5 体
基于ANSYS的直流励磁电机电磁场分析与计算
组 。 经过 适 当迭 代 后 , 过 收 敛求 得 节 点磁 位 值 , 通过 有 限 元 通 再 后 处 理求 得 所 需 场 量 。
2 实 例分 析
的励 磁 绕组 与 电枢 绕 组 串联 , 励 磁 电 流 就 是 电枢 电流 , 内部 其 其 磁 场 随 负载 的变 化 而 变 化 ,利 用 传 统 磁 路 法 对 电 机 内 部 电 磁场
电 磁场 分 析 问题 是 求 解 给定 边界 条 件 下 的麦 克 斯 韦 方 程组 问题 。电 机 电磁 场 分 析 采 用 比 场 量更 容 易 建 立 边 界 条 件 的 位 函 数 ( 来 进 行 分 析 计算 。在 二 维 电磁 场 中 , 面场 域 Q 内 的 电磁 A) 平 场 问 题 转化 为 以下 边 值 问题 :
n击 卜 :
转 子结 构 尺 寸 及槽 形数 据 :
D = 7( a 5mm)
CX= 1
D = 1( O mm) 9
Q=29
L =4 ( a 0mm) g = 06 ( 0 mm) b =1 ( mm) h2 11 ( 2 0 .0 mm) = r= Omm) r= Omm) 2 15 ( 1 2 15 ( 2 h 70 ( = 0mm) h= ( 20mm)
12 0
基 于 A S S的直 流 励 磁 电机 电磁 场 分析 与 计 算 N Y
基于 A S的直流励磁电机电磁场分析与计算 S NY
Ee tO Ic r ma n t il n S r s E ct d g e i Fe d i e i x i DC c e e Mo o B s d O s s t r a e R An y
分 析 不 够准 确 。 保 证计 算 的准 确 , 用 有 限元 法 对 电机 内部 电 为 采
ANSYS电磁场分析指南磁宏
ANSYS电磁场分析指南磁宏磁宏分析是ANSYS中的一种电磁场分析方法,用于模拟磁场中的行为。
它基于麦克斯韦方程组和磁性材料的本质特性,可以用来研究磁场的分布、场强和磁通量等。
以下是使用ANSYS进行磁宏分析的一般步骤:1.创建几何模型:使用ANSYS的几何建模工具创建您要分析的几何体。
您可以使用ANSYS的二维或三维建模功能,根据您的需求选择适当的几何形状。
2.设置材料属性:在进行磁宏分析之前,您需要为模型中的材料定义磁性属性。
这包括磁导率、磁饱和和磁滞等。
可以通过库中的材料属性进行选择,或者根据实际材料的特性手动输入。
如果您使用的是标准材料,可以轻松从ANSYS材料库中选择。
3.设置边界条件:确定分析的边界条件非常重要。
根据您的应用场景,您可以设置边界条件为固定零磁场、非磁性条件或具有特定磁场分布的条件。
对于二维问题,您可以设置边界上的磁通量。
这些边界条件将在后续计算中起作用。
4.生成网格:ANSYS使用有限元方法进行分析,因此需要生成适当的网格。
您可以选择不同的网格生成技术,例如自动网格细化、手动加密和剖面网格。
网格的质量对分析结果的准确性和计算时间都有重要影响。
5.定义分析类型和求解器:在ANSYS中,您可以选择不同的分析类型和求解器来求解磁场问题。
例如,您可以选择求解静态磁场、谐振频率或非线性磁场等。
根据您的需求选择适当的求解器,以获得准确的结果。
6.运行计算:在设置了适当的材料属性、边界条件和网格后,您可以运行计算。
ANSYS将使用选择的求解器进行计算,并在计算结束后生成结果。
7.分析结果:计算完成后,您可以查看和分析生成的结果。
这包括磁场分布图、场强、感应电流和磁通量等。
ANSYS提供了丰富的后处理工具,可以帮助您更好地理解分析结果。
除了这些基本步骤,在进行磁宏分析时还有一些注意事项和技巧:1.材料特性选择:选择适当的磁性材料特性对分析结果至关重要。
根据实际材料数据进行选择,并注意磁导率的非线性特性。
ansys电磁场分析的一些问题
1、进入求解器之后出现如下警告:Using 1 iteration per substep may result in unconvergent solutions fornonlinear analysis and the program may not indicate divergence in thiscase. Check your results.不要担心,这是ANSYS程序设置中的一个友好提示,并不说明你的程序就是错误的(当然出现这个提示也不能证明你的程序就是无误的),你可以接着运行程序。
2、进行非线性求解的时候,如果你输入了材料的磁化曲线,但是很奇怪的是在进行二维分析的时候是成功的,但是三维分析的时候被告知得到的解是不收敛。
原因一:你需要检查一下程序的问题,是不是求解的步长设置的不合理。
一般情况下,ANSYS 默认的是25,这个值可以满足大部分计算的需要,不过有的时候你需要把这个步长变大。
原因二、你输入的磁化曲线是正确的吗?是否满足ANSYS的要求?很多参考书上的磁化曲线数据并不满足ANSYS程序的要求,你需要用命令TBPLOT绘制出材料的BH、NB、MH三条曲线,看这三条曲线是不是都是光滑的单调的。
3、为什么绘制出的磁力线只有寥寥几根,如何加密呢?ANSYS中有很多中显示方式,你不妨去看看命令/SHOW中的说明.4、边界条件在电磁场分析中至关重要,那么何时采用通量平行条件何时采用通量垂直条件呢?在我看来,在ANSYS中,电磁场分析的边界条件是相当直观的。
帮助文档中是这么定义的:Flux-normal: Set the normal component of A to zeroFlux-parallel: Set in-plane components of A to zero.Far-field: Use element INFIN111.Far-field zer Use AX = AY = AZ = 0.Periodic: Use ANSYS' cyclic symmetry capability.Imposed external field: A(X,Y,Z) does not equal zero.一般情况下,通量平行条件是可以不加的,但是通量垂直条件一定要加。
ANSYS电磁场分析例子
ANSYS电磁场分析例子我们将考虑一个简单的电磁场问题,即一个平行板电容器的电场分布。
这个问题可以很容易地通过ANSYS进行建模和求解。
首先,我们需要进行几何建模。
在ANSYS的建模界面中,我们可以使用几何建模工具来创建一个具有平行板结构的电容器。
我们可以定义平行板的尺寸、间距以及材料属性等。
接下来,我们需要定义边界条件。
在这个问题中,平行板上的电势是已知的。
我们可以在边界条件中指定平行板上的电势值,然后在求解过程中,ANSYS将根据这些边界条件计算电势分布。
然后,我们需要设置求解器选项。
ANSYS提供了多种求解器选项,包括有限元法、有限差分法等。
我们可以根据我们的具体问题选择合适的求解器。
接下来,我们需要应用材料属性。
我们可以在材料库中选择合适的材料,并将其应用于电容器的几何模型中,以便ANSYS可以根据这些材料属性计算电场分布。
最后,我们可以运行求解器并分析结果。
一旦求解器完成计算,我们可以在ANSYS的后处理界面中查看电场分布结果。
ANSYS提供了丰富的后处理工具,包括可视化和数据分析工具,可以帮助我们更好地理解和解释电场分布结果。
通过以上步骤,我们可以使用ANSYS进行电磁场分析,并得到电场分布结果。
根据这些结果,我们可以评估电容器的性能,例如电势分布、电场强度等。
这些信息对于设计和优化电容器以及解决其他电磁问题非常有价值。
总结起来,ANSYS电磁场分析是一种强大的工具,可以用于解决各种电磁问题。
通过几何建模、边界条件设置、求解器选项设置、应用材料属性和结果分析等步骤,我们可以使用ANSYS获得准确和可靠的电场分布结果,为问题的解决和优化提供有力支持。
ANSYS电磁场分析例子
• 建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
• 选择Apply (重复显示和输入) • 建立线圈面
利用TAB 键移动输 入窗口
• 选择 Apply
• 选择 OK 衔铁
到了这步,建立了全部平 面,但它们还没有连接起 来.
• 点 OK
• 加通量平行边界条件 Preprocessor>loads>apply>-magnetic-boundary-flux-par’l
• 选On Lines并选取相应的线 • 选 OK
“所选取的线” 注:未划分单元前,加
上这种边界条件
“所选取的线”
• 生成有限元网格 • 利用智能尺寸选项来控制网格大小
• 定义材料 Preprocessor>Material Props>Isotropic
• 定义空气为1号材料(MURX = 1)
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
• 定义衔铁为2号材料 • 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
• 定义线圈为3号材料 (自由空间导磁率,MURX=1) • 选择 OK
线圈
• 用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas
• 按Pick All
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
这种操作后,原先平面被删除, 而新的平面被重新编号
• 这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas
ANSYS电磁场分析
基于ANSYS的连铸坯感应加热温度场数值模拟目前,连铸技术虽然已经得到了广泛的应用,但连铸与后续轧制工序的衔接仍然普遍采用高能耗、高污染、低效率的加热炉重新加热的工艺,因而造成了巨大的钢材损失和能源浪费。
而连铸坏直轧技术(Continuous Casting- Direct Rolling,简称CC-DR)则很好地解决了这个问题。
它在连铸工序和轧制工序之间采用在线电磁感应加热工艺将连铸和轧制直接联系起来。
刚刚从连铸结晶器拉出的铸坯,在温度尚未大幅度下降之前,利用电磁感应加热工艺进行补热及温度均匀化处理,使铸坯完全满足轧制需要,并直接送人轧制工序,从而完成连铸热直轧过程。
感应加热技术应用于钢厂热轧平板钢坏边部均温加热的研究,起步比较早的有法国和日本的一些公司,它们均已投入大量的人力和财力在进行研究,我国起步较晚。
1 数学模型的建立1.1电磁场数学模型与边界条件的确定因为感应加热装置的频率都是基于中低频的,此时各种场域中的位移电流密度幅值远小于传导电流幅值,故对于感应加热线圈中的电磁场,可忽略位移电流效应。
当感应线圈中通入正弦交变电流时,其产生的交变电磁场为动态位电磁场,涡流场的数学模型为正弦似稳态问题。
为了简化概念以简便地构造数学模型,在此引入复矢量磁位A和复标量电位Φ两个位函数,根据向量微积分法则,引入库仑规范,通过麦克斯韦力一程组可求得描述正弦电磁场的复矢量动态位微分方程为:式中,为拉普拉斯运算符号(算子);为梯度算子;j为复数的基本单位;ω为角速度;μ为材料磁导率;σ为电导率;为激励源施加电流密度复数形式。
在坯料与空气的交接面S1与S2上,必须满足磁通连续性条件,即:式中,A1与A2分别为坯料与空气两种介质的复矢量位。
联立方程(1)—(3)可以得出涡电流的分布,涡流场的电流密度表达式为式中,J为电流密度的复数形式。
1.2 温度场数学模型与边界条件的确定感应加热过程中工件温度场的求解不同于一般的热传导问题。
ANSYS教程:ANSYS电磁场分析
ANSYS教程:ANSYS电磁场分析静态磁场分析:用于分析不随时间变化的磁场,主要包括三类情况:用磁场的磁场,稳恒电流产生的磁场,匀速运动的导体所产生的磁场。
对于三位静态磁场分析,ansys程序采用了两种方法:标量势法(scalar method)和单元边法(edge-based-method),其中标量势法根据其标量势方程的不同又可分为三种不同的标量势分析方法:简化标量势法(RSP)、微分标量势法(DSP)和广义标量势法(GSP)。
使用单元边法时,电流源是作为整个系统的一部分一起进行网格划分的,由此使用该方法不仅能计算常规物流量(如磁场、磁动势等),还能计算诸如焦耳热损、洛伦兹力等。
根据以下原则选择不同的分析方法:当所分析的问题中不含铁芯区域或虽含铁芯区域但不含电流源时,采用RSP法,在含有铁芯和电流源的模型分析中通常不使用RSP 法。
对于“单连通”铁芯区域模型,使用DSP法,对于“多连通”铁芯区域模型,使用GSP法。
单连通区域指的是带有空气隙的磁路不封闭的铁芯系统,没有空气隙的则为磁路封闭多连通铁芯区域系统。
对于非连续介质模型一般采用单元边法进行求解。
提示:单元边法中使用的单元的节点自由度矢量磁势是沿单元边切向积分的结果,其求解精度高于标量势法的求解精度。
单元边法不仅适用于三维静态磁场分析中,也适用于三维谐性和瞬态磁场分析中。
1 电磁场分析中的默认单位制为MKS单位制,即米、安培和秒。
可以定义其他的单位制:main menu/preprocessor/material props/electromag units2 电磁场分析中大多材料的磁性能可以从ansys程序的材料库中读入,用于也可以自己定义材料性能,方法如下:2.1 定义路径main menu/preprocessor/material props/material library/library path2.2 读入材料参数main menu/preprocessor/material props/material library/import librarymain menu/preprocessor/loads/load step opts/change mat props2.3 修正材料参数main menu/preprocessor/material props/material library/export library2.4 定义材料B-H曲线main menu/preprocessor/material props/material models/electomagnetics/BH curve2.5 在模型上施加电流密度载荷main menu/preprocessor/loads/define loads/apply/magnetic/excitation/current density/on elements2.6 施加电压载荷main menu/preprocessor/loads/define loads/apply/magnetic/excitation/volt drop/on elements2.7 进行求解main menu/solution/solve/electromagnet/static analysis/opt&solv2.8 退出求解器main menu/finish谐性磁场分析:用于分析激励源按正弦或余弦规律变化的磁场问题,如变压器、感应式电机,感应加热炉等电磁装置引发的磁场均属于谐性磁场问题。
基于ANSYS的异步电动机电磁场分析
( c ol f c a ia E g e r ga dA tm t n F z o nv r t, uin3 0 0 , hn ) S h o o h ncl n i e n n u a o , u h uU ie i F j 5 1 8 C ia Me n i o i sy a
te idu to tr o gn h p nd c r a u ai n,h n u t n moo s a ay e y u ig h r ni i ain h n cin moo s c g i g s a e a oe s t r t o t e id c i trwa n lz d b sn a mo c smult o o
优化 设计 奠定基 础 。
关 键词 : 步 电动机 ; 异 场路耦合 ; 电磁 场 ; N Y A SS
中图分类号 : M 4 T 33 文献标 识码 : B
An l ss o h e t o a n tc Fil f a y c o us M o o s d o a y i ft e Elc r m g e i e d o n As n hr no t r Ba e n ANSYS WA h i a C N D — e NG S u— HE ew i f
ANSYS电磁场分析指南
ANSYS电磁场分析指南引言一、准备工作在进行电磁场分析之前,需要准备以下材料和信息:1.CAD模型:电磁场分析通常需要一个几何模型,可以是CAD软件创建的三维模型。
2.材料参数:需要知道模型中各个部分的材料参数,包括导体材料的电导率和非导体材料的介电常数等。
3.边界条件:需要定义模型的边界条件,例如电磁辐射的入射条件和模型表面的电磁辐射条件等。
二、建立模型在ANSYS中建立模型的方法有很多,可以根据需要选择适合的方法。
最常用的方法是通过导入CAD模型。
将CAD模型导入ANSYS后,可以对几何模型进行修剪、划分等操作,以确保模型的准确性和可靠性。
三、设置材料参数设置材料参数是电磁场分析中的重要步骤之一、根据模型中各个部分的材料,可以在ANSYS中设置对应的材料参数。
对于导体材料,需要设置其电导率;对于非导体材料,需要设置其介电常数。
四、设置边界条件在电磁场分析中,边界条件的设置非常重要。
边界条件决定了电磁场在模型中的传播方式和行为。
根据具体情况,可以设置不同的边界条件,包括入射条件、辐射条件、开路条件等。
五、设置求解器ANSYS提供了多种求解器用于求解电磁场问题,常用的有静态场和频率域两种求解器。
静态场求解器适用于求解稳态电磁场问题,而频率域求解器适用于求解频率响应问题。
根据具体问题的需求,选择适合的求解器进行分析。
六、设置分析参数在进行电磁场分析之前,需要设置一些分析参数,以确保分析的准确性和有效性。
可以设置初始条件、收敛准则、迭代次数等参数,以优化分析的效果。
同时,还需要设置输出参数,以便在分析结束后获取所需的结果。
七、进行分析设置好所有参数后,可以开始进行电磁场分析。
根据分析类型和求解器的不同,分析过程可能需要一定时间。
一般情况下,ANSYS会提供进度条显示分析的进展情况。
分析结束后,可以查看分析结果,并根据需要进行后续处理。
八、结果处理与后处理在进行电磁场分析之后,可以通过ANSYS提供的后处理工具进行处理和分析结果。
Ansys教程电磁场分析
第5页/共19页
B
B
Quarter symmetry model of
the simple magnetizer
• 1/4模型与全模型比较 • 磁通密度分布相同 • 贮能为1/4 • 所示线圈上的Lorentz力 1/2 • 作用在极面上力为1/2
平面: +Z 电流方向出平面
铁板
轴对称: +Z 电流方向进平面
磁流密度矢 量显示
铁环
线圈
两种情况都是施 加正向电流
第12页/共19页
• 磁力线描述 • 平面: AZ等值线 • 轴对称: r AZ 等值线
平面或 轴 对称 ?
电枢
线圈
定子
第13页/共19页
平面或 轴 对称 ?
• 力、能量、电感的描述 • 平面: 单位长度 • 轴对称: 整个圆周上的值
• 沿A-A必须加约束
A
(1/2)对称模型
第3页/共19页
• 半对称模型与全模型比较: • 磁通量密度是相同的 • 线圈上Lorentz 力是相同的 • 贮能为 1/2 • 极面上力为 1/2 • 加载电流密度与全模型相同
简单导磁体的半对称模型
第4页/共19页
线圈 (象征性的)
• 沿B-B磁通量垂直边条件需满足 • B-B线上下两边如下参数是相同的 • 几何形状 • 材料性质 • B-B线上下两边励磁相同
• 轴对称 • 平面 • 点取单元选项
第10页/共19页
• 选择 OK
用于定义平面属性的参考号 用于直流模拟
几何体型 式
因为plane13 用于耦合场模拟,故该 单元可以具有应力/应变结构选项
ansys大作业ANSYS电磁场分析报告及与ansoft仿真分析报告结果比较
期末大作业题目:简单直流致动器ANSYS电磁场分析及与ansoft仿真分析结果比较作者某某:柴飞龙学科(专业):机械工程学号:21225169所在院系:机械工程学系提交日期2013 年 1 月1、背景简述:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE工具之一。
而ansoft Maxwell软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。
本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。
现就对一电磁场应用实例,用ANSYS进行仿真分析,得到的结果与ansoft得到的结果进行简单核对比较。
2、问题描述:简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。
衔铁是导磁材料,导磁率为常数(即线性材料,rμ=1000),线圈是可视为均匀材料,空气区为自由空间(1=rμ),匝数为2000,线圈励磁为直流电流:2A。
模型为轴对称。
3、ANSYS仿真操作步骤:第一步:Main menu>preferences第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete第三步:设置单元行为模拟模型的轴对称形状,选择Options(选项)第四步:定义材料Preprocessor>Material Props>•定义空气为1号材料(MURX = 1)•定义衔铁为2号材料(MURX = 1000)•定义线圈为3号材料(自由空间导磁率,MURX=1)第五步:建立衔铁面、线圈面、空气面Preprocessor>Modeling>Greate>Area>Rectangle>By Dimensions 建立衔铁面建立线圈面建立空气面最终结果第六步:用Overlap迫使全部平面连接在一起Preprocessor> Modeling>Booleans>Operate> Overlap>Areas 按Pick All第七步:平面要求与物理区和材料联系起来Preprocessor>Meshing> Meshing Attributes>Picked Areas用鼠标点取衔铁平面Preprocessor>Meshing> Meshing Attributes>Picked Areas选取线圈平面第八步:加磁通量平行边界条件Preprocessor>Solution>Define loads>apply>magnetic>boundary>Vector Poten>Flux par’1>On lines选取如下边界线段第九步:智能尺寸选项来控制网格大小Preprocessor>-Meshing>Size trls>smartsize>basic第十步:网格生成Preprocessor >Meshing>Mesh>Areas>Free>Pick All结果如下:第十步:衔铁定义为一个单元组件(1)选择衔铁平面Utility>select>entities(2)选择与已选平面相对应的单元(3)图示衔铁单元Utility>plot>elements第十一步:使单元与衔铁组件联系起来Utility>Select>p/Assembly>Create ponent第十二步:加力边界条件标志Preprocessor>Solution>Define loads>apply>magnetic>Magnetic>Flag>p Force第十三步:给线圈平面施加电流密度(1)选择线圈平面Utility>Select>Entity(2)得到线圈截面积.Preprocessor>Modeling>Booleans>Operate Operate>Calc Geometric Items>Of Areas选择OK(3)将线圈面积赋予参数CAREAUtility>Parameter>Get Scalar Data第十四步:把电流密度加到平面上Preprocessor> Solution>Define loads>Apply>Excitation>Curr Density>On Areas第十五步:solve进行计算Preprocessor> Solution >solve>electromagnet>Static Analysis>Opt & Solve第十六步:后处理(1)生成磁力线圈General Postproc>plot results>Contour Plot>2D flux lines(2)计算电磁力General Postproc>Elec&Mag Calc>ponent Based>Force(3)显示总磁通密度值(BSUM)General Postproc>Plot Results>Contour Plot>Nodal Solution 最后结果如下:此时,完成了用ANSYS仿真分析简单直流致动器的全部过程,之后将附上用ansoft 仿真同一简单直流致动器的结果并做简单比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维螺线管静态磁场分析
要求计算螺线管,如下图所示,衔铁所受磁力,线圈为直流激励,产生力驱动衔铁。
线圈电流为6A,500匝。
由于对称性,只分析1/4的模型,如图1所示:
图1螺线管制动器
在仿真分析时,空气相对磁导系数为1.0;使用智能网格划分(LVL=8);设定全部面为通量平行,这是自然边界条件,自动得到满足。
因为是采用的1/4对称模型,所以磁力的计算结果要乘以4。
施加边界条件:
!
/SOLU
D,2,MAG,0
!
!SOLVE
!
ALLSEL,ALL MAGSOLV,3,,,,,1 FINISH
!
建立的模型如下图所示:
对模型进行智能网格划分,如下图所示:
仿真分析所得磁场强度分布图为:
衔铁所受磁力分布图为:
衔铁所受磁力分布图为:
计算所得衔铁所受磁力为:
SUMMARY OF FORCES BY VIRTUAL WORK
Load Step Number: 2.
Substep Number: 1.
Time: 0.2000E+01
Units of Force: ( N )
Component Force-X Force-Y Force-Z ARM 0.14339E+02 0.11359E+02 -0.12846E+02
___________________________________________________
SUMMARY OF FORCES BY MAXWELL STRESS TENSOR Units of Force: ( N )
Component Force-X Force-Y Force-Z ARM 0.79007E+01 0.55769E+01 -0.11511E+02
_____________________________________________________
Note: Maxwell forces are in the Global Cartesian coordinate system. Virtual work forces are in the element ESYS coordinate system.
The following element table items are available for printing and
plotting of the forces obtained by Virtual Work and the Maxwell Stress
Tensor methods.
Element Item Name Method Direction
FVW_X Virtual Work X
FMX_X Maxwell Stress X
FVW_Y Virtual Work Y
FMX_Y Maxwell Stress Y
FVW_Z Virtual Work Z
FMX_Z Maxwell Stress Z
___________________________________________________________________ 本题采用输入命令流的方法处理,命令流如下:
!/BACH,LIST
/TITLE,3-D STATIC FORCE PROBLEM - TETRAHEDRAL ! 定义工作标题/FILNAME,EMAGE_3D,1 ! 定义工作文件名KEYW,MAGNOD,1 ! 指定磁场分析
/PREP7
! 定义分析参数
N=500 ! 线圈匝数
I=6 ! 每匝通过的电流
! 定义单元类型
ET,1,96
!给空气和衔铁定义材料属性
MP,MURX,1,1
TB,BH,2,,40
TBPT,,355,0.7
,,405,0.8
,,470,0.9
,,555,1.0
,,673,1.1
,,836,1.2
,,1065,1.3
,,1220,1.35
,,1420,1.4
,,1720,1.45
,,2130,1.5
,,2670,1.55
,,3480,1.6
,,5950,1.7
,,7650,1.75
,,10100,1.8
,,13000,1.85
,,15900,1.9
,,21100,1.95
,,26300,2.0
,,32900,2.05
,,42700,2.1
,,61700,2.15
,,84300,2.2
,,110000,2.25
,,135000,2.3
,,200000,2.41
,,400000,2.69
,,800000,3.22
TBCOPY,BH,2,3
!创建电极体
/PNUM,VOLU,1
BLOCK,0,63.5,0,25/2,0,25
/VIEW,1,1,1,1
/REPLOT
BLOCK,38.5,63.5,0,25/2,25,125
BLOCK,13.5,63.5,0,25/2,125,150
VGLUE,ALL
!创建衔铁、空气体并压缩编号
BLOCK,0,12.5,0,5,26.5,125 ! 衔铁体BLOCK,0,13,0,5.5,26,125.5 ! 空气体VOVLAP,1,2
NUMCMP,VOLU
CYL4,,,0,0,100,90,175
VOVLAP,ALL
NUMCMP,VOLU
!设置几何体的属性
VSEL,S,VOLU,,1
V ATT,3,1,1 ! 设置衔铁属性VSEL,S,VOLU,,3,5
V ATT,2,1,1 ! 设置电极属性!给模型划分网格
ALLSEL,ALL
SMRT,8 ! 定义网格智能划分等级为8
MSHAPE,1,3D
MSHKEY,0
/PNUM,MAT,1
/NUMBER,1
EPLOT
!
!把衔铁定义成一个组件并施加力标志
!
ESEL,S,MA T,,3 ! 选择衔铁材料单元CM,ARM,ELEM
FMAGBC,'ARM'
!
!转换模型单位制为米
!
ALLSEL,ALL
VLSCALE,ALL,,,0.001,0.001,0.001,,0,1
!
!创建线圈
!
LOCAL,12,0,0,0,75/1000
WPCSYS,-1,12
RACE,0.0285,0.0285,0.014,N*I,0.018,0.0966,,,'COIL1'
/ESHAPE,1
EPLOT
SA VE
FINISH
!
!施加边界条件
!
/SOLU
D,2,MAG,0
!
!SOLVE
!
ALLSEL,ALL
MAGSOLV,3,,,,,1
FINISH
!
!对衔铁受力求和
!
/SOLU
*DIM,CUR,ARRAY,1
CUR(1)=I
LMATRIX,1,'COIL','CUR'
FINISH。