油藏数值模拟方法.pdf

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章油藏数值模拟方法分析
1.1油藏数值模拟
1.1.1油藏数值模拟简述
油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。

其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。

其基础理论是基于达西渗流定律。

油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。

基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。

其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。

充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。

这组流动方程组由运动方程、状态方程和连续方程所组成。

油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。

具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。

油藏数值模拟技术从50 年代的提出到90 年代间历经40 年的发展,日益成熟。

现在进入另外一个发展周期。

近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。

在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。

油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。

图1 油藏数值模拟流程图
1.1.2油藏数值模拟的类型
油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。

以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型;以开采过程来划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。

以油藏和流体描述为基础的油藏模型分为两类:黑油模型和组分模型。

(1)黑油模型,是常规油田开发应用的油藏数值模型,用于开采过程中,对油藏
流体组分变化不敏感的情况,是最完善、最成熟的。

黑油模型假设质量转移完全取决于压力变化,适应于油质比较重的油藏类型,在这些模型中,流体性质B o、B g、R s决定PVT 的变化,如普通稠油及中质油的油气藏。

(2)组分模型,应用于开采过程中对组分变化敏感的情况。

这些情况包括:挥发性油藏和凝析气藏的一次衰竭采油阶段,以及压力保持阶段。

同时,多次接触混相过程通常也采用组分模型进行模拟。

在组分模型中,适用于油质比较轻、气体组分比较高的油气藏,使用三次状态方程表示PVT变化,如轻质油或凝析气藏。

(3)根据一些特殊开采方式的需要而形成的其他类型的数值模型,如热采模型、注聚合物驱油模型、化学驱油模型、裂缝模型等。

其中:热采模型使用了物质平衡方程和能量守恒方程,也用到了组分模型的方法;化学驱油模型与黑油模型有所不同,其附加的守恒方程是用来表示驱油工程中的某种化学用剂的变化。

这些模型都是以黑油模型或组分模型为基础演变而来的,采用了最灵活的假设条件和计算方法,只不过在编程过程中加入了一些与特殊开采相应的方程。

(4)按照研究的需要和地质模型的维数来区分,一般油藏数值模拟模型可分为一维的平面和垂直模型,二维的平面{x,y}和剖面{x,z}模型、柱坐标{y,z}中二维2D的锥进模型,直角坐标系{X,Y,Z}中的三维3D模型。

一维模型可用于有关实验室岩心驱替的模型,二维的平面模型主要研究平面上油水运动规律,不考虑层间的影响;二维的剖面模型主要用来研究层间非均质的影响;二维的锥进模型主要用来研究油井不同射开井段、不同开采强度对气、水锥进的影响;三维模型主要研究一个井组、一个区块甚至整个油藏的开发动态和开发指标。

1.2油藏数值模拟方法
油藏数值模拟方法是利用计算机技术模拟地下油气藏开采、驱替的过程,是石油地质人员科学认识、评价油藏的重要技术手段。

例如,中石油公司进行的前处理的地质建模工作、清华大学核研院研发的油藏数值模拟管理平台(PNSMP )、大庆油田有限责任公司勘探开发研究院研发的VIP 和Simbest 格式数据文件相互转换的程序等。

油、气、水三相流广泛存在于石油工业中,对于三相流的测量具有重要的意义。

现在,油藏数值模拟方法已可用于解决大量的复杂油藏工程问题。

如砂岩油藏中考虑油层中各种非均质变化以及重力、毛管力、弹性力等各种作用力的三维三相多井系统的渗流问题,考虑多相、多组分间相平衡关系和传质现象的多相、多组分三维渗流问题等。

油藏数值模拟方法不仅在理论上用于探讨各种复杂渗流问题的规律和机理,而且普遍用于开发设计、动态预测、油层参数识别、工程技术问题的优化设计以及重大开发技术政策的研究等。

油藏数值模拟方法已经普遍应用于各种油气藏开发过程,成为油气田开发不可或缺的方法和工具,被称作“现代油藏工程”。

跟其它油藏研究方法相比,有着不可替代的优势。


藏数值模拟方法的局限性主要在于:①模拟误差,②结果不唯一。

误差主要来自两方面,一是模型本身有误差,二是油气藏资料不全或不准。

油藏数值模拟理论是利用计算机模拟地下油气水的流动,给出某一时刻油气水分布,预测油藏动态。

1.3常用求解方法
数学模型建立后,线性方程组的求解是油藏数值模拟方法中最核心的步骤之一,而对模型进行数值求解的第一步是偏微分方程离散化,使之产生线性的或非线性的代数方程组,方程组的线性或非线性是由问题本身的性质以及有限差分近似的性质(系数的显式或隐式处理),以便进行数值计算。

其方法有:有限差分法和有限单元法。

求解线性代数方程组所用的方法有直接法和迭代法两大类,直接法常用的有高斯消元法、高斯-约当降阶法、Crout 分解法、主元素法、D4 方法等;迭代法常用的有交替方向隐式方法、超松弛方法、强隐式方法等。

线性的偏微分方程式或者方程组可以直接求解。

但油藏模拟中的多相渗流方程组常常是非线性的,即使通过有限差分近似法得到的是个非线性方程组,也可以通过线性化方法来将其转化为线性形式,或者还可以用某种迭代的方法进行求解。

在油藏数值模拟中,常用的线性化方法有显式方法、半隐式方法、全隐式方法等。

当前最常用的两种求解方法是IMPES方法和Newton-Raphson 方法。

在Newton-Raph-son 方法中,流动方程的有限差分形式中的各项展开成当前迭代级的各项之和,再加上一项在迭代过程中与初始未知变量有关的各项的变化量。

为了计算这些变化量,必须计算方程中各项的导数——数值解或解析解。

这些导数存储在加速矩阵或Jacobian 矩阵中。

第二章油藏数值模拟技术发展趋势
2.1油藏数值模拟发展现状
①并行算法
并行算法是一些可同时执行的诸进程的集合,这些进程互相作用和协调动作从而达到给定问题的求解。

并行算法首先需合理地划分模块, 其次要保证对各模块的正确计算, 再次为各模块间通讯安排合理的结构, 最后保证各模块计算的综合效果。

并行机及并行软件的开发和应用将极大地提高运算速度, 以满足网格节点不断增多的油藏数值模型。

在并行计算机上使用并行数值解法是提高求解偏微分方程的计算速度, 缩短计算时间的一个重要途径。

在共享内存的并行机上把一个按向量处理的通用油藏模拟器改写成并行处理是容易的, 但硬件扩充难; 分布内存并行机编程较共享式并行机困难, 但硬件扩充容易, 关键是搞好超大型线形代数方程组求解的并行化。

并行部分包括输入输出、节点物性、构造矩阵、节点流动及井筒等。

②网格技术
为了模拟各种复杂的油藏、砂体边界或断层,渗透率在垂向或水平方向的各向异性, 以及近井地区的高速、高压力梯度的渗流状态, 近年来在国外普遍发展了各种类型的局部网格加密及灵巧的网格技术。

这种系统大体可以分为二类: 一类称控制体积有限元网格( CVFE) , 这是将油藏按一定规则剖分为若干个三角形以后, 把三角形的中心和各边的中点连接起来所形成的网格。

另一类则称垂直等分线排比网格( PEBI) , 其剖分方法是将油藏分成若干三角形后, 使三角形各边的垂直等分线相交而形成网格。

这些方法在处理复杂几何形状油藏及进行局部网格加密时简单而一致。

在多相流情况下, 参照某一给定的几何准则时该方法是单调的, 这保证了其稳定性和收敛性。

这两种方法都能
以直观的控制体积的概念出发并且采用一致的上游权而推导得出。

这些方法对网格的方向不敏感, 在某些情况下比九点差分格式的效果好。

③计算机辅助历史拟合技术
斯伦贝谢公司的Eclipse 数模软件最新推出计算机辅助历史拟合模块( Simopt) 。

运用均方差、海赛( Hessian) 矩阵、相关性矩阵、协方差矩阵对结果进行分析以确定敏感参数; 引入梯度带分析技术对地质模型进行优化; 在进行常规历史拟合后, 应用置信度限制( 规定需优化的参数及参数的可调范围) , 通过线性预测分析, 实现计算机辅助调整参数, 减少模拟次数。

④网格粗化技术
对于一些油藏参数( 如孔隙度、深度、饱和度等) , 采用体积加权平均法; 对于与流体有关的参数( 如渗透率等) 就不能用简单的加权平均计算得出,而要基于流动计算再进行粗化。

流动算法相对精确, 首先解出沿压力降方向的总流量, 然后再解相同的流动方程, 从而解出等效渗透率。

在垂向分层合并计算中, 把相同性质的油砂体( 按相同的物性、储量类型) 的网格单元合并在一起,使油藏的数值模拟的网格系统反映出地质沉积特点。

网格合并可以按不同井组、区块进行合并计算, 为井组模型和分区模拟提供数据模型。

模拟还可以按不均匀网格, 考虑水平方向非均质性及储量分布程度因素等进行内插计算, 提供不均匀网格模型。

⑤动态地质建模
动态地质建模是壳牌公司的Kortekass 概括了当前世界上关于油藏地质建模的经验, 提出的建立动态、集成化油藏模型的新概念和技术方法。

其强调把动态资料以至数值模拟技术等应用于油藏建模, 从而使所建立的地质模型更加符合油藏的实际情况, 并且要随着油田开发中资料的增多和新资料的获得而不断更新。

这种新方法包括一系列获得和运用各种所需资料的技术和方法, 包括地质、地质统计、地震、测井、岩心和流体分析、试井、驱替特征以及网格的细分和粗化, 拟函数的应用等, 但关键是使所建立的地质模型更加符合油藏的实际情况, 而且还可以加快建模的过程。

⑥分阶段模拟
对开发历史较长、地下储层物性和原油物性发生较大变化的油藏, 把随开发时间变化的地质静态模型划分为多个不同开发阶段的地质模型。

常规的油藏数值模拟是从一个油藏( 区块) 投入开发时开始模拟, 一直拟合到目前状况, 再进行方案预测优选。

我国许多老油田已进入了高含水或特高含水期。

由于开发历史长、综合调整、措施次数多,地下岩石和流体的物性发生了较大的变化, 这给常规模拟工作带来了极大的困难。

一方面是历史拟合计算一次所需要的机时非常多, 另一方面是常规模拟无法考虑流体和岩石随时间的变化。

因此, 模拟结果的可信度会大大降低。

分阶段模拟就是一种解决上述问题的行之有效的方法。

分阶段模拟可将一个长期开发的油藏, 按照一定原则划分成几个模拟阶段。

⑦动态跟踪模拟
油田开发是一个长期过程, 储层物性和原油物性随开发期的不同以及油水井措施发生变化。

根据开发期及措施类型制定数值模拟的时间步长, 在油水井见效初期采用较小的时间步长, 进入见效稳定期后以较大的时间步长, 将分析周期由常规的以年计算提高到以月或天计算。

对方案实施后的效果、生产状况等再进行跟踪模拟, 并提出新的方案。

如此反复研究, 使人们对油藏的构造、物性、油水状况及生产动态的认识更趋合理。

⑧数值解法
古老的差分法继续得到创造性的发展和应用,也得到深入的分析和研究。

差分法的另一重大发展就是全隐式、自适应隐式方法。

由于全隐式方法对所有方程系数进行隐式处理, 所以与IMPES、半隐式和SEQ 相比, 稳定性好, 隐式程度高, 适应范围更宽。

它能解决油、
气、水三相渗流、注气、水气锥进、高速气渗等强非线性渗流问题。

但是全隐式模型的求解需要采用牛顿迭代法, 因此, 其工作量和存储量比IMPES、半隐式、SEQ 大。

所以, 20 世纪80年代初期美国的托马斯等人为了解决方程隐式程度高低和计算量大小之间的矛盾, 提出了自适应隐式方法, 其特点是对不同的网格节点和不同的时间步采用不同的隐式程度来处理, 以便在具有同样稳定性的前提下减小计算量、加快计算速度。

1985 年Berteger W I 等人又提出了一种近似的自适应隐式方法, 其稳定性进一步增强。

差分法的又一个重大发展就是多重网格法和预处理共轭梯度法。

两者的共同点都在于加速数值解的收敛性。

多重网格法实质上是外推与内插技术的创造性应用。

近年来, 共轭梯度法与各种不完全分解预处理相结合, 并采用D4 网格排序及Orthomin加速技术, 从而使预处理共轭梯度法成为20 世纪80 年代油藏数值模拟中最引人注目的方法之一。

预处理共轭梯度法克服了油藏数值模拟中由于局部网格加密、混合网格嵌套、隐式井底压力处理、大断层大裂缝处理、死节点处理以及自适应隐式方法等产生的不规则系数矩阵的求解问题。

由于Ort homin 方法收敛性好, 且运算过程简单、不需要迭代参数、不需要估计矩阵的特征值, 是一个稳定、有效的迭代加速方法。

因此, 目前该法在油藏数值模拟中获得了相当成功的运用。

⑨三维动态显示
数值模拟结果的可视化程度高, 人机交互性能强。

可三维动画显示油藏中流体的流动规律, 再现油藏的开发历史及剩余油的空间分布, 并可任意旋转、平移、缩放、光照, 多重照相、透视和透明处理; 灵活的剖面切割功能, 任意参数的区间显示, 用户可按自己的爱好定义或修改颜色和注释。

2.2油藏数值模拟技术发展趋势
工作站由于价格昂贵以至很难普及。

而今PC机越来越强大, 速度日益加快, 内存越来越大且易扩展, 价格便宜, 应用广泛, 因而将数模软件开发在PC机上的远景极为广阔。

但目前的困难是PC 并行机尚没有统一的标准且易出现网络问题。

并行算法的进一步完善、各种灵巧网格的随意化、自适应化以及历史拟合的自动化将大幅度提高数值模拟的精度, 减少模拟计算的工作量。

在大规模粗化前利用流管法, 预先筛选地质模型。

根据物质平衡方程和达西定律, 在单时间步内采用隐压显饱解法计算流线上流体的流动: 全隐式有限差分压力, 沿流线解饱和度方程。

在考虑重力影响时, 先沿流线再沿重力线求解压力和饱和度。

勘探开发一体化越来越受到关注。

油气勘探开发的各个环节中计算机应用技术的突飞猛进, 带动了勘探开发工作向着多学科综合集成方向发展, 改变了以往以单项专业为主的顺序化工作方式。

各学科间的信息交换、数据共享、成果可视和知识继承遵照统一的标准进行综合集成: 通过岩心声波测量建立油藏参数与地震响应间的关系; 利用油藏数值模拟技术预测压力和含水饱和度的变化、生成不同观测数据的合成地震记录; 开发地震包括了四维地震和地震反演技术, 通过井的约束以及和油藏数模技术的结合, 将进一步减少多解性的困扰并大幅度提高分辨率, 从而扩展开发地震的实际应用范围,特别对比较复杂的砂泥岩薄互层也能够加以应用。

这些技术的发展, 将大大加深对井间储层非均质特征及油藏剩余油分布状况的认识。

但当前面临的困难是: 种类各异的数据格式、各式各样的数据库系统、互不相通的应用软件以及不同的用户界面等严重妨碍了多学科的协同工作、数据资源及研究成果的共享。

借助多井试井数据、数值模拟和优化技术, 通过对试井实测压力数据的拟合, 反演油藏中某些非均质参数分布, 能有效地解释测试井的径向平面渗透率变化情况。

借助于多井试井数据, 结合油藏的地质信息, 将突破目前建立在单层、单相、均质储层等基本假设条件下的局限, 为非均质、多层、多相等复杂问题提供满意的解释。

第三章断块油藏数值模拟技术
3.1断块油藏地质及开发特征
3.1.1地质特征
(1)断块复杂,断块小而多。

复杂断块油藏的形成主要来源于众多的断层切割作用,断层多是这类油田共同的、最突出的地质特征。

一个较大的复杂断块油田,往往有几十条甚至上百条的断层分布,由于油藏被众多断层切割,结果形成许多被切割的不连通小断块单元油藏。

(2)含油层系多,常具有多套油水系统,油水关系复杂。

复杂断块油藏大多含有多套含油层系。

在这类油藏中,凡有断裂系统到达的层位,只要有储集岩发育,差不多都有油层发育。

复杂断块油藏内含油层系虽多,但富集程度差别较大。

通常只有一套或少数几套分布广泛,油层厚度相对较大,富集程度相对较大的主力含油层系,是小断块油藏单元的最主要的开发层系。

(3)储层变化大,物性较差,层间非均质严重。

在复杂断块油藏中,一般没有一个层位能够在全油藏规模上连片含油。

就单个含油层系来说,常常只在油藏的一部分面积上含油,甚至只在很小的一部分面积上含油。

纵向上,砂体类型多、变化大、连通差、非均质严重。

(4)原油性质变化大,生产动态差异大。

大多数复杂断块油田内部原油性质变化幅度大。

常引起油层产能和动态的差别。

此外, 产能和动态特点还受到储层物性和其它地质条件的影响,复杂断块油藏中含油层系多,每套层系的岩石性质,沉积环境和成岩作用又各不相同。

即使同一套含油层系,由于不同断块的埋深不同,物性也会有很大的差异。

因此在一个复杂断块油藏内部常常存在物性差别很大的储层,从而引起产能和生产动态出现明显差别。

3.1.2开发特征
(1)开发单元小而多,单元间差异大。

复杂断块油藏的大多数断块含油面积都很小,而且同一个断块里各个油层位置常常相互错开,叠合在一起能自然地组合成一个开发单元的储量少,所以开发单元一般都很小。

由于开发单元小,所以与同样规模的油藏来比较,复杂断块油藏的开发单元数就比大油藏多得多。

每个开发单元的动态特征不一样,针对性的有效开发措施也不一样。

(2)初期产量高,产量递减快,很快就会进入中后期能量低产生产。

由于开发单元小,油井初期的较高产量只是短暂的,随后产量迅速降低,当能量消耗较多时,就只有维持低能量低产生产。

断块油藏控制单元井间连通性差、边界封闭、地层能量有限,开采中地层能量下降很快,难以采用早起注水等方式大规模开采。

用CO2吞吐强化开采是有效的方法。

3.2二氧化碳吞吐机理
3.2.1二氧化碳机理
二氧化碳吞吐机理是通过与地层原油之间的多次接触非混相过程达到驱替和携带原油的目的,其机理包括以下几个方面:
①二氧化碳溶解引起原油体积膨胀。

大量室内和现场试验表明,原油中充分溶解CO2后可使原油体积膨胀10 %~40 % ,注入CO2后原油的体积增加,其结果不仅增加了原油的内动能,而且也大大减少了原油流动过程中
的毛管阻力和流动阻力,从而提高了原油的流动能力。

②二氧化碳溶解降低原油粘度。

当原油中的CO2溶解气饱和后,能够大大降低原油的粘度。

在地层条件下,压力越高,CO2在原油中的溶解度就越高,原油的粘度降低越显著。

③二氧化碳溶解气具有弹性驱动作用。

油层中的CO2溶解气,在井下随着温度的升高部分游离汽化,以压能的形式储存部分能量。

当油层压力降低时,大量的CO2则从原油中游离,将原油驱入井筒,起到溶解气驱的作用,由于气体具有较高的运移速度,从而将油层堵塞物返吐出来。

④二氧化碳时原油中轻质烃萃取和汽化
轻质烃与CO2间具有很好的互溶性,当压力超过一定的值(此值与原油性质及温度有关) 时, CO2能使原油中的轻质烃萃取和气化,这种现象对轻质原油表现得尤为突出。

CO2对原油中的轻质烃的萃取和汽化现象是注入CO2增油的主要机理之一。

⑤改善原油和水的流度比
由于大量注入的CO2在原油和水中的溶解,地层水的碳酸化,使原油流度增加,而水的流度降低,从而使原油和水的流度趋于接近,使水的驱油能力提高,同时也进一步扩大了水驱的波及面积,大大提高了扫油效率。

⑥酸化解堵。

CO2溶解于水后略呈酸性,与地层基质相应地发生反应,从而酸解一部分杂质,尤其在碳酸盐岩中能将部分岩石溶解,生成易溶于水的碳酸氢盐,从而提高碳酸盐岩层的渗透性。

由于注入CO2气的酸化作用导致油层渗透性提高,在一定压差下,一部分游离气对油层的堵塞物具有较强的冲刷作用,可有效地疏通因二次污染造成的地层堵塞.
3.2.2 CO2吞吐数值模拟
3.3数值模拟
3.3.1建立油藏数值模型
在油藏地质模型研究的基础上,从PETREL建模软件中直接输出粗化模型,纵向上以单砂体为单元,,其它高压物性数据、相渗数据等直接应用该断块该层系实验数据,时间单元以月为单位,确保模拟时能满足因生产中层位和频繁作业对时间步的要求。

3.3.2历史拟合
历史拟合的主要目标是完善和验证油藏模拟模型,初始模拟输入数据在一定程度上不能拟合油藏历史动态,以达到精确预测未来动态的目的。

历史拟合过程总是使对油藏过程有更好的理解。

含水面支撑的平面,流体迁移的路径,以及原油绕流的区域都能在历史拟合过程中得到认识。

通过历史拟合,一方面可以求解油藏参数,另一方面可以对油藏动态进行预测,为开发方案的调整提供依据。

(1)历史拟合的指标
历史拟合的指标主要是那些能反应油藏及单井动态的指标。

油藏数值模拟的指标包括:油藏原始地质储量、油藏累计产油量、累计生产气油比、综合含水率、地层平均压力、累计注水量等随是火箭的变化。

油井动态指标包括:瞬时产油量、含水率、产水量、瞬时气油比、。

相关文档
最新文档