烟气脱硫FGD设备及工艺原理讲义

合集下载

烟气脱硫FGD设备及工艺原理讲义

烟气脱硫FGD设备及工艺原理讲义

烟气脱硫FGD设备及工艺原理讲义一、概述烟气脱硫FGD是一种用于减少烟气中SO2含量的环保设备,广泛应用于火力发电厂、燃煤锅炉等工业生产中。

FGD工艺通过将含有SO2的烟气与吸收剂接触,最终形成硫酸盐,并将其分离出处理。

本讲义将介绍烟气脱硫FGD设备及其工艺原理。

二、FGD设备1.洗涤塔洗涤塔是烟气脱硫FGD的主要设备,主要由吸收塔、喷嘴、泵站、底部料液分离器等组成。

烟气通过洗涤塔时,与喷入的吸收剂充分接触,SO2被吸收生成硫酸溶液,烟气中的SO2含量得以降低。

2.氧化风机氧化风机主要作用是将洗涤塔中吸收的二氧化硫气体氧化成亚硫酸气体,进一步加速反应的进行。

通常选择使用压力风机或离心风机。

3.除雾器除雾器主要用于防止SO2吸收后形成的硫酸雾进入大气中,从而对环境和人体造成伤害。

除雾器可采用湿式或干式结构,使得硫酸雾物理或化学地沉降。

三、FGD工艺原理1.化学反应烟气脱硫FGD过程中,主要发生以下化学反应:SO2 + CaCO3 + 1/2O2 + H2O → CaSO4•2H2O + CO2化学反应中,烟气中的SO2与吸收剂CaCO3产生反应生成硫酸盐CaSO4•2H2O。

这个反应是FGD工艺中的核心反应。

2.吸收与再生烟气中的SO2通过洗涤塔与吸收剂接触吸收,形成硫酸盐。

硫酸盐随后经过氧化风机的氧化反应,形成亚硫酸盐。

最后,亚硫酸盐通过再生装置进行再生,得到纯净的吸收剂,并且产生浓缩的硫酸。

3.处理副产品FGD工艺除了可以减少烟气中SO2的含量外,还能产生有价值的副产品硫酸。

硫酸可作为化肥原料或者工业原料使用,具有较高的经济价值。

以上就是对烟气脱硫FGD设备及工艺原理的简要介绍,FGD工艺在环保和资源利用方面具有重要意义,对减少大气污染和促进资源回收利用具有重要作用。

烟气脱硫FGD设备及工艺原理四、FGD工艺的应用1.环保效果烟气脱硫FGD工艺可以有效降低燃煤电厂和工业锅炉等设施排放的二氧化硫,减少大气中的酸雨、酸性沉积物等问题,保护生态环境,改善空气质量。

脱硫系统的基本原理和设备介绍及其注意事项

脱硫系统的基本原理和设备介绍及其注意事项

石膏脱水系统
2.真空皮带式脱水机的工作原理: 石膏旋流器底流浆液通过进料箱输送到皮带脱水 机,均匀地排放到真空皮带机的滤布上,依靠真 空吸力和重力在运转的滤布上形成石膏饼。石膏 中的水分沿程被逐渐抽出,石膏饼由运转的滤布 输送到皮带机尾部,落入石膏库。在此处,皮带 转到下部,滤布冲洗喷嘴将滤布清洗后,转回到 石膏进料箱的下部,开始新的脱水工作循环。滤 液收集到滤液水箱。从脱水机吸来的大部分空气 经真空泵排到大气中。
石膏脱水系统
石膏旋流器 4.减小d50,大小颗粒之间实现更好的分离,旋流器
分级效率更高。 5.减小d50有两种途径:一是提高旋流器入口压力,
二是选用小直径设备。 6. 旋流器设计选型的主要任务是选定旋流器的直径
和入口压力,而这两个参数综合起来,就是选定 其分离粒度d50。 7.每台炉设一套石膏旋流站。
下,植物产生急性危害,叶片表面产生坏死斑点或直接使 植物叶片枯萎脱落。 • (3)、SO2对金属的腐蚀:大气中的SO2对金属的腐蚀主要 是对钢结构的腐蚀,据统计,发达国家每年因金属腐蚀而 带来的直接经济损失占国民经济总产值的2%~4%。 • (4)、对生态环境的影响:SO2形成的酸雨和酸雾危害也是 相当大,主要表现为对湖泊,地下水,建筑物,森林,古 文物以及人的衣物构成腐蚀,同时,长期的酸雨作用还将 对土壤和水质产生不可估量的损失。
吸收系统
1.吸收塔 • 布局划分:吸收区、脱硫产物氧化区和除雾区。 • 结构类型:填料塔、喷淋塔、鼓泡塔、液柱塔、
液幕塔、文丘里塔、孔板塔。
吸收系统
1.吸收塔(喷淋塔) • 吸收塔自下而上可分为三个主要的功能区:(1)
氧化结晶区,该区即为吸收塔浆液池区,主要功 能是电石渣溶解、亚硫酸钙的氧化和石膏结晶; (2)吸收区,该区包括吸收塔入口及其以上的3 层喷淋层。其主要功能是用于吸收烟气中的酸性 污染物及飞灰等物质;(3)除雾区,该区包括两 级除雾器,用于分离烟气中夹带的雾滴,降低对 下游设备的腐蚀、减少结垢和降低吸收剂及水的 损耗。

烟气脱硫技PPT课件

烟气脱硫技PPT课件

FGD方法 项目
石灰石/石 灰-石膏工

喷雾干燥法
炉内喷钙 尾部增湿
电子束法
氨法脱硫 工艺
镁法脱硫
技术成熟程 度
成熟
成熟
成熟
工业试验 工业试验 成熟
适用煤种
不限
中低硫煤 中低硫煤 中低硫煤 不限 中低硫煤
单机应用的 经济性规模
200MW 及以上
100MW 及以下
200MW及以 200MW 200MW 200MW
1.物理脱硫方法
• 煤的物理脱硫主要指重力选煤(跳汰选煤、重介质选煤、 空气重介质流化床干法选煤、风力选煤、斜槽和摇床选 煤等)、浮选、电磁选煤等。
• 目前,我国采用较多的煤炭脱硫方法是物理方法,几种 处理工艺所占比例依次为跳汰59%、重介质23%、浮 选14%、其他4%。
2.化学脱硫方法
• 一般采用强酸、强碱和强氧化剂,在一定温度和压力下
第21页/共96页
2、吸收塔
吸收塔主要有喷淋塔、填料塔、双回路塔和喷射鼓泡塔 等四种类型。
(1)喷淋塔
吸收塔自上而下可分为吸收区(喷淋)和氧化结晶区两部分,上
部 氧
吸 化
收 区
区 域
pH值较 在低pH
高 值
, 下
有 运
利 行
于 ,
有SO利2等于酸石性灰物石质的的溶吸解收及;副下产部品
的生成。
吸收塔的工作原理是:当新石灰石浆液通过浆液泵送入吸收
第24页/共96页
湍球塔是以气相为连续相的逆 向三相流化床,在湍球塔的 两层栅栏之间装有许多填料 球(通常为聚乙烯或聚丙烯 注塑而成的空心球),如图 1-2所示。烟气由烟道进入 塔的下部,填料球处于均匀 流化状态,吸收剂自上而下 均匀喷淋,润湿小球表面, 进行吸收。由于气、液、固 三相接触,小球表面的液膜 不断更新,增强了气、液两 相的接触和传质,达到高效 脱硫和除尘的目的。

干法脱硫工艺系统及设备讲义

干法脱硫工艺系统及设备讲义

脱硫系统技术培训工艺系统及设备目录第一章 CFB-FGD工艺原理简介 (1)1、本工程项目脱硫工艺原理介绍 (1)2、主要化学反应 (3)3、 CFB-FGD工艺的主要特点 (3)第二章 CFB-FGD工艺系统及设备介绍 (5)1. 烟道系统 (5)2. 吸收塔系统 (6)3. 脱硫布袋除尘器系统 (9)4. 脱硫灰循环系统 (10)5. 脱硫灰输送系统 (10)6. 灰库系统 (11)7. 吸收剂供应系统 (11)8. 工艺水系统 (12)9. 压缩空气系统 (14)10. 蒸汽系统 (14)第三章工艺流程介绍 (15)1. 脱硫除尘岛的主要设计工艺数据 (15)2. 工艺流程及布置介绍 (16)第一章CFB-FGD工艺原理简介1、本工程项目脱硫工艺原理介绍福建龙净的循环流化床干法烟气脱硫技术(CFB-FGD)具有脱硫效率高、投资运行费用低、可靠性高、占地面积小、无废水产生、副产物易处理等优点。

现将这种工艺简要介绍如下:燃料中的硫在燃烧过程中与空气中的氧发生反应生成硫氧化物(SO2和SO3),本工艺所要脱除的就是尾气中的有害气体SO2和SO3。

一个典型的CFB-FGD工艺系统由吸收塔、脱硫除尘器、脱硫灰循环及排放、吸收剂供应、工艺水以及电气仪控系统等组成,其工艺流程见下图1-1。

图1-1 CFB-FGD工艺流程示意图本工程采用旁路布置。

锅炉引风机出来的原烟气温度一般为120~150℃左右,从底部进入吸收塔,在吸收塔的进口段,高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,在这一区域主要完成吸收剂与HCl、HF的反应。

烟气通过吸收塔底部的文丘里管加速,进入循环流化床床体,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,形成类似循环流化床锅炉所特有的内循环颗粒流,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;吸收塔顶部结构的惯性分离进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度及Ca/S。

FGD电站烟气脱硫系统介绍

FGD电站烟气脱硫系统介绍
漏风的产生,要求脱硫塔的脱硫效率相应提高, 以保证整个FGD系统的脱硫效率满足要求。
回转式烟气加热器的漏风是绝对的,但管式加热器的不漏 却是相对有时段的。在运行一段时间后,由于焊缝的裂缝 和冷端的腐蚀,也会产生漏管,而且一旦漏风发生,很难 消除,只能堵管或换管。
占地和重量
对小型机组来讲,二者差不多,但对大型机组而言,回转 式烟气加热器比管式烟气加热器重量要小很多,占地也小, 这样,对于加热器的基础和支撑结构,也有较大差别
风机选型(三)
静调风机主要是靠改善风机的气体流动特性设计 叶型和轮毂,使含尘气体避免冲刷叶片根部而冲 刷叶尖部和后导叶,另外,同样要求下,静调的 转速比动调低一至二档。同时在叶片和后导叶上 喷涂耐磨材料,寿命相对长一些,叶片更换费用 也较低。
备品备件的费用
静调风机以焊接结构件为主,风机轴承采用无油 系统的油脂润滑;动调风机加工件多,又有调节 油站和润滑油站。因而动调的备品备件和专用工 具也较多,这也会产生一定的费用。
材料
由于管式换热器全部为焊接结构,其材料的选择 有很大的限制性,管子一般选择耐腐蚀钢材,增 加了成本。而回转式换热器则可在较大范围内选 择更为有效的防腐材料,如传热元件采用镀搪瓷 技术等。
所以,推荐使用回转式烟气加热器。
冷却塔排放烟气
与常规做法不同,烟气不通过烟囱排放,而被送至 自然通风冷却塔,在塔内,烟气从配水装置上方 均匀排放,与冷却水不接触。由于烟气温度约 50℃,高于塔内湿空气温度,发生混合换热现象, 混合的结果改变塔内气体流动工况。塔内气体向 上流动的原动力为湿空气产生的热浮力,热浮力 克服流动阻力而使气体流动。一般情况下,进入 冷却塔的烟气密度低于塔内气体的密度,对冷却 塔的热浮力产生正面影响。而且,进入塔内的烟 气占塔内气体的容积份额一般不会超过10%,因 为所占容积份额小,对塔内气体流速影响甚微。 此外,冷却塔的阻力系数主要决定于配水装置, 而烟气在配水装置以上进入,对配水装置区间段 阻力不产生影响。因此,对总阻力的影响甚微, 在工程上亦可忽略不计。

烟气脱硫(FGD)系统课件

烟气脱硫(FGD)系统课件

二、电厂烟气脱硫工艺原理及系统流程
5.烟气系统
一套机组配备一套烟气系统,每期共2套。 烟气从原钢结构烟道烟气引出,经烟道进口挡板、升压风机后,进入吸收塔。烟气在吸收 塔内与自上而下的循环石灰石/石膏浆液逆流充分接触后,烟气中的SO2溶解于石灰石/石 膏浆液,并被吸收,大部分烟尘被截流,进入石灰石/石膏浆液。洗涤后的烟气通过除雾器 出吸收塔,经烟道出口挡板回到钢烟道净烟气接口,并通过烟囱排放。SO2吸收系统是石 灰石/石膏湿式脱硫装置的核心部分,所有脱除SO2的化学反应都在吸收塔内进行并完成。 SO2吸收系统按1炉1塔配备。 SO2吸收系统由吸收塔(包括壳体、喷淋层、除雾器、搅拌器)、浆液循环泵、石膏浆液 排出泵及管线等组成。 吸收塔的上部为洗涤、溶解、吸收区,该区域布置有喷淋层,浆液循环泵将循环浆液(由 石灰石浆液、亚硫酸钙和石膏浆液组成)送入喷淋层通过喷嘴喷淋,浆液自上而下与自下 而上的烟气接触,洗涤烟气中的尘、杂质、溶解烟气中的SO2,并与CaCO3发生化学反应 而被吸收,生成的CaSO3向下汇集至吸收塔的下部浆池。浆池分为氧化区和结晶区。在氧 化区,由氧化风机向浆液池鼓送压缩空气,将CaSO3氧化成CaSO4。石膏浆液由结晶区 排出经石膏浆液排出泵送至石膏旋流站。在吸收塔上部装有两层除雾器,以除去脱硫净化 后烟气夹带的液滴,烟气由塔顶引出,经出口挡板进入钢制原烟道,从烟囱排放(或从吸 收塔顶部临时排放)。 吸收塔设3层喷淋层,同时设有3台浆液循环泵(每层喷淋层一台浆液循环泵)满足脱硫装 置满负荷运行。浆液循环泵开启数量可根据进FGD的烟气量的大小来决定。 吸收塔浆池部分设置4台搅拌器,防止结晶区内浆液沉淀和使氧化区内CaSO3被氧化空气 充分氧化,达到尽可能生成稳定的CaSO4的目的。
烟气脱硫(FGD)系统课件

烟气脱硫脱硝

烟气脱硫脱硝
-缺点 -脱硫后烟气温度低(一般低于露点),需进行烟气再热 -废水二次污染
25
(1)石灰石-石膏湿法脱硫
钙基湿法脱硫工艺(石灰石/石灰洗涤法)
-是应用最广、技术最为成熟且运行最为可靠的FGD工艺 -回收法:通过强制氧化使CaSO3转化为石膏CaSO4进行 回收 -抛弃法
石灰石-石膏脱硫基本原理
-烟气在吸收塔内同石灰石浆料进行反应,生成亚硫酸钙,再 用空气强制氧化得到石膏,石膏经过脱湿后作为副产品回收利 用。
– 活性炭可单独用来脱硫或脱氮(借助于氨),或用来联合脱硫 脱氮,近年来已经开始应用于火电厂的烟气净化。
16
• 其他脱硫吸收剂
– 某些脱硫工艺采用低廉的碱性物质(如火电厂排放 的废弃物)作为脱硫剂,比如,利用飞灰中的碱性 物的质含(量C大aO于,8M%g时O),脱可除以SO取2,得当比飞较灰有中经的济碱价性值物的质脱 硫效率(大于50%)。
• 2) 固体废弃物
– 脱硫副产品采用抛弃堆放等处理方式 – 对堆放场的底部进行防渗处理,以防污染地下水 – 对表面进行固化处理,以防扬尘。
24
1、湿法烟气脱硫技术
-烟气与含有脱硫剂溶液接触,发生脱硫反应,其脱硫生成物 的生成和处理均在湿态下进行。
-优点 -气液反应,脱硫速度快; -煤种适应性好 -脱硫效率和脱硫剂利用率高,Ca/S=1时,脱硫率可达 90%
• 对于连续运行的脱硫设备,入口SO2的浓度是 随时间变化的,而且变化幅度有时很大。某一 监测时段内设备的脱硫效率,应取整个时段内 脱硫效率的平均值。
• 在计算脱硫效率时,只计入SO2的脱除率,而 通常不考虑SO3的脱除率。
FG
C' SO2
C
" SO2
C' SO2

烟气脱硫技术ppt课件

烟气脱硫技术ppt课件
优点 工艺较为简单,占地面积较少,投资 较低,脱硫率一般为60-80%。技术成熟,投
资低于湿法工艺。 缺点 关键设备旋转喷雾器的稳定性和使用 寿命是其主要问题。效率不够高,高硫煤不适
用。此外,该法增加了除尘负荷。
应用 在西欧的德国、奥地利、意大利、丹麦、瑞典、芬兰 等国家应用比较多,美国也有15套装置(总容量5,000MW)正
氧化过程:
2CaSO3● 1/2H2O +O2+3H2O ←→
2CaSO4● 2H2O
12
5.3.1湿式石灰石/石灰-石膏法
湿式石灰石/石灰-石膏法影响因素: 1、料浆的pH值 2、烟气温度(性质) 3、吸收剂的类型与细度 4、液气比 5、防垢措施
13
5.3.1湿式石灰石/石灰-石膏法
pH 值
32
5.3.7 烟气脱硫技术现状
电子束法 (1)较高的脱硫效率 (2)脱硫脱硝同时进行 (3)副产物可利用 (4)吸收系统简单 (5)无废水排放 (6)有潜在危险(氨挥发、电子辐射)
33
5.3.7电子束法
优点 同时脱硫脱硝,无废水排放,运行 操作简单,副产品可用作氮肥,脱硫效率 可达90%。
11
5.3.1湿式石灰石/石灰-石膏法
湿式石灰石/石灰-石膏法原理 脱硫过程: CaCO3+SO2+1/2H2O←→
CaSO3● 1/2H2O +CO2↑
Ca(OH)2 +SO2←→ CaSO3● 1/2H2O +1/2H2O
CaSO3● 1/2H2O +SO2+ 1/2H2O ←→Ca(HSO3)2
22
5.3.3 双碱法
23
5.3.3 双碱法
烟囱
石灰浆液 纯碱
PHIC

烟气脱硫设备及工艺流程介绍

烟气脱硫设备及工艺流程介绍

市场发展趋势
环保政策推动: 政府对环保的重 视将推动烟气脱 硫设备的市场需 求
技术进步:新技 术的不断出现将 提高烟气脱硫设 备的性能和效率
成本降低:随着 技术的成熟和规 模效应,烟气脱 硫设备的成本将 逐渐降低
应用领域扩大: 烟气脱硫设备将 在更多领域得到 应用,如钢铁、 化工等行业
未来发展展望
干法脱硫工艺流程
石灰石粉制备:将石灰石粉碎成粉末,用于后续脱硫反应
吸收剂制备:将石灰石粉与水混合,制成吸收剂浆液
吸收塔:将吸收剂浆液喷入吸收塔,与烟气中的SO2反应, 生成石膏
石膏脱水:将石膏脱水,制成石膏产品
烟气排放:脱硫后的烟气排放到大气中
石膏处理:将石膏产品进行回收利用,如用于建材生产等
添加标题
添加标题
添加标题
添加标题设备组成:吸Fra bibliotek塔、喷淋系统、 氧化系统、石膏脱水系统等
缺点:设备投资大,运行成本高, 废水处理困难
干法脱硫设备
干法脱硫设备原理:利用石灰石、 白云石等碱性物质吸收烟气中的 二氧化硫
设备特点:干法脱硫设备具有占 地面积小、投资成本低、运行费 用低等优点
添加标题
添加标题
添加标题
添加标题
设备类型:干法脱硫设备主要有 干法喷钙脱硫设备、干法喷镁脱 硫设备等
应用领域:干法脱硫设备广泛应 用于电力、钢铁、化工等行业的 烟气脱硫处理
半干法脱硫设备
设备组成:吸收塔、喷淋系 统、除尘器、烟囱等
工作原理:利用石灰石或石 灰作为吸收剂,吸收烟气中 的二氧化硫
优点:脱硫效率高,运行成 本低,设备简单,操作方便
缺点:需要定期更换吸收剂, 产生固体废物,需要处理
脱硫设备的比较

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训1. FGD设备组成FGD设备包括吸收塔、循环泵、石膏浆液处理系统以及废水处理系统等部分。

吸收塔通常由吸收段、冷却段、排气段和再循环泵组成,其中吸收塔是核心设备,用于与烟气进行接触和反应。

2. 工艺原理FGD工艺原理主要是通过将烟气与喷射进入吸收塔中的石膏浆液进行接触,使其二氧化硫被吸收并转化成硫酸盐。

烟气在吸收塔中延迟停留时间,使二氧化硫与石膏浆液充分接触,从而达到脱硫的目的。

3. 技术特点FGD设备的技术特点包括高效减排、设备结构简单、操作方便、运行成本较低等。

脱硫效率可达到90%以上,具有良好的环保效益和经济效益。

4. 关键操作在FGD设备及工艺中,关键的操作包括调节吸收塔进出口浆液的浓度、泵站的流量和温度等,确保设备稳定运行并达到脱硫效果。

通过对FGD设备及工艺原理的培训,操作人员能够掌握其操作技术和工艺原理,提高设备的运行效率和脱硫效果,为保护环境、减少大气污染做出贡献。

烟气脱硫(FGD)设备及工艺原理是工业领域中常用的环保技术。

在这项技术中,二氧化硫(SO2)是一种主要的有害气体,它会通过烟囱排放到大气中,对环境和人类健康造成危害。

因此,通过FGD设备及工艺,可以有效减少工业烟气中的二氧化硫排放,从而保护环境和人们的健康。

FGD设备通常包括吸收塔、循环泵、石膏浆液处理系统以及废水处理系统等部分。

其中,吸收塔是整个设备的核心部件,它由吸收段、冷却段、排气段和再循环泵组成。

吸收塔的主要作用是与烟气进行充分接触,从而使烟气中的二氧化硫被吸收并转化成硫酸盐,达到减少大气污染的效果。

FGD工艺的原理是通过将烟气与喷射进入吸收塔中的石膏浆液进行接触,使烟气中的二氧化硫得到吸收。

在吸收塔中,石膏浆液会延迟停留一段时间,与烟气充分接触和反应,从而使二氧化硫被有效吸收。

吸收塔内的冷却段用于控制温度,避免石膏浆液在吸收塔内结垢,影响脱硫效果。

而排气段则用于排出处理后的烟气。

烟道气脱硫(FGD)技术

烟道气脱硫(FGD)技术

烟道气脱硫(FGD)技术综述烟道气脱硫技术广泛用于控制燃煤、燃油电站和精炼厂等大型固定排放源的二氧化硫(SO )和三氧化硫(SO )的排放。

它们与烟道气处理技术不同,烟道气处2 3理技术是用于脱除废弃物燃烧炉排放的污染物。

烟道气脱硫技术种类繁多,大部分是用碱性吸收剂,从烟道气中脱除酸性的硫化物。

最为广泛应用的烟道气脱硫技术是石灰石石膏法和石灰石法的改型以及喷雾干燥法,石灰石石膏法产生的是一种可出售的石膏副产品,石灰石法产生的是一种易处理的残渣,而喷雾干燥法产生的则是一种混合固体废弃物。

烟道气脱硫技术投资成本一直在不断降低,目前的投资成本在100~125美元/k W(65~80英镑/k W)之间,预计到2000及其以后,投资成本将进一步降低。

在未来10年,烟道气脱硫装置的总需求很可能会超过10亿英镑/年,北美洲和中国将是烟道气脱硫装置的最大市场。

目前的研究和开发的要求是进一步降低成本,提高脱硫效率及设备元件的可靠性。

烟道气脱硫技术的利益烟道气脱硫技术作为一种控制大型固定排放源(如发电站、精炼厂、冶金厂等)SO排放2的方法(如图1),适用范围广泛。

烟道气脱硫技术的广泛应用,连同其他排放源的SO减排措2施(如用电或气代替煤用于家庭供热;低硫汽车燃料),将大大减少全球范围内的人类活动而产生的排放量,从而有助于改善空气质量,有利于人类身体健康和环境。

英国贸工部的支持自1990年以来,英国贸工部已支持了8个与烟道气脱硫技术有关的项目,共投入32万英镑,8个项目的总投资为188.7万英镑。

引言硫是地壳中最常见的元素之一,作为煤炭、原油和许多矿石中的一种杂质广泛存在。

因而,在工业加工,如煤炭、石油和油制燃料的燃烧以及石油加工和从矿石中提炼金属的过程中,硫大量产生。

目前,全球因人类活动而排放的SO总量达~1.4亿t/年,其中英国每年产生 2002万t(占全球排放量的1.4%)。

然而,在最近30年中,英国的SO硫的排放量已大大降低(图2)。

烟气脱硫技术基础原理与工艺流程教学课件

烟气脱硫技术基础原理与工艺流程教学课件

CaCO3 (s) + H2O CaCO3 (aq) + H+
性高,应
HSO3- + 1/202
Ca2+ + SO42-+ 2H2O
SO2 (aq) HSO3- + H+ HCl (aq) Cl- +H3O+
CaCO3 (aq) + H2O Ca2+ + HCO3OH- + CO2
加热再生吸附 洗涤再生吸附 分子筛吸附法 电子束/电晕法
活性焦加热再生吸附法
三、烟气脱硫技术的通用命名
1、作为气体吸收,也就是需要发生化学反应的脱硫技术, 脱硫剂为微溶解性物质时,通用命名方式是:脱硫剂+脱硫终 产物+反应环境+……;例如:石灰石-石膏湿法、石灰-亚 硫酸钙(半)干法、氧化镁-亚硫酸镁湿法、氢氧化镁-硫酸 镁湿法等;
SO42- + H+ CaSO4 x 2H2O
典型工艺流程
烟气系统
烟囱
净烟气挡板
旁路挡板
锅炉引风机 原烟气挡板
增压风机
GGH
SO2吸收系统
除雾器 氧化风机
石灰石浆液制备系统
根据石灰石的磨制方式是干磨或湿 磨,可将石灰石浆液制备分为干式制浆 系统和湿式制浆系统。 干式制浆系统
主要包括石灰石接收、输送和贮存、 石灰石粉制备和输送、石灰石粉贮存。
经过近十年的应用、消化、吸收, 我国第一套国产化(部分)烟气脱硫装 置于2000年在华能珞璜电厂投产。脱硫 工艺为石灰石-石膏湿法烟气脱硫工艺, 单元配套二期工程法国360MW锅炉机组, 开拓了我国自主研发、生产烟气脱硫装 置的先河。
第二部分 常见典型烟气脱硫技术

烟气脱硫脱销工艺介绍

烟气脱硫脱销工艺介绍

湿法脱硫技术一、技术原理烟气进入脱硫装置的湿式吸收塔,与自上而下喷淋的碱性石灰石浆液雾滴逆流接触,其中的酸性氧化物SO2以及其他污染物HCL、HF等被吸收,烟气得以充分净化;吸收SO2后的浆液反应生成CaSO3,通过就地强制氧化、结晶生成CaSO4·2H2O,经脱水后得到商品级脱硫副产品—石膏,最终实现含硫烟气的综合治理。

二、反应过程1、吸收SO2 + H2O<=> H2SO3SO3 + H2O<=> H2SO42、中和NeutralizationCaCO3 + H2SO3 <=> CaSO3+CO2 + H2OCaCO3 + H2SO4 <=> CaSO4+CO2 + H2OCaCO3 +2HCL <=> CaCL2+CO2 + H2OCaCO3 +2HF <=> CaF2+CO2+ H2O3、氧化Oxidation2CaSO3+O2<=>2 CaSO44、结晶CrystallizationCaSO4+ 2H2O <=>CaSO4 ·2H2O三、系统组成⑴、石灰石储运系统⑵、石灰石浆液制备及供给系统⑶、烟气系统⑷、SO2吸收系统⑸、石膏脱水系统⑹、石膏储运系统⑺、浆液排放系统⑻、工艺水系统⑼、压缩空气系统⑽、废水处理系统⑾、氧化空气系统⑿、电控制系统四、流程图五、技术特点⑴、吸收剂适用范围广:在FGD装置中可采用各种吸收剂,包括石灰石、石灰、镁石、废苏打溶液等;⑵、燃料适用范围广:适用于燃烧煤、重油、奥里油,以及石油焦等燃料的锅炉的尾气处理;⑶、燃料含硫变化范围适应性强:可以处理燃料含硫量高达8%的烟气;⑷、机组负荷变化适应性强:可以满足机组在15~100%负荷变化范围内的稳定运行;⑸、脱硫效率高:一般大于95%,最高达到98%;⑹、专利托盘技术:有效降低液/气比,有利于塔内气流均布,节省物耗及能耗,方便吸收塔内件检修;⑺、吸收剂利用率高:钙硫比低至1.02~1.03;⑻、副产品纯度高:可生产纯度达95%以上的商品级石膏;⑼、燃煤锅炉烟气的除尘效率高:达到80%~90%;⑽、交叉喷淋管布置技术:有利于降低吸收塔高度。

烟气脱硫工艺介绍

烟气脱硫工艺介绍
风机振动监测系统是保护风机的一种装置。由于风机工况不同,风机有可能出现失速或喘振,当风机的振幅达到一定值时,振动监测系统会发出联锁信号,将风机电源切断,使风机停止转动。
下面是静调和动调风机曲线:
由上图我们可以看出,静调风机有一个非运行区,静调风机在启动时必须窜过该区域,才能到达需要的运行工况。另外,静调风机的理论失速线非常陡,这是静调风机的最大弱点。
吸收塔搅拌器
吸收塔搅拌器主要作用有两个,一个是使吸收塔浆液池的固体物质离底悬浮,第二个作用使氧化空气均匀分布在吸收塔浆液池内,提高氧化效果。搅拌器是一个技术性很强的设备,一般由专业的搅拌器厂家制造。它的关键部件有:搅拌器叶片、机械密封和轴承;主要技术参数有叶片和轴的直径、搅拌器转速。
EKATO公司在FGD侧进式搅拌器使用的材料
(2)石灰石浆液系统:石灰石浆液系统主要设备包括石灰石浆液箱搅拌器、石灰石浆液泵等。
(3)吸收系统:吸收系统主要设备包括吸收塔(包括吸收塔搅拌器、托盘、喷淋层、喷嘴、除雾器及除雾器清洗系统)、浆液循环泵、氧化风机等。
(4)石膏处理系统:石膏处理系统主要设备有石膏排出泵、石膏旋流器、真空皮带过滤机及辅助设备、真空泵、石膏布料皮带、废水旋流器及废水泵等
对于动调增压风机主要由以下部分组成:进气箱、机壳、转轴、轴承、轮毂、叶片、导流筒、冷却风机系统、润滑油系统、液压调节系统、风机振动监测系统等。对于静调增压风机还有进口导叶及导叶调节系统等。
风机的进气箱主要起到整流作用,使烟气流畅地进入风机而不产生涡流。
机壳配合转子工作的外壳,对转子起支撑作用。
转子包括风机转轴、轮毂、叶片等,是风机工作的主要动部件,它将机械能转化为烟气的动能和势能(静压能),转化效率一般在85%以上。
42CrMo

烟道气脱硫(FGD)技术.

烟道气脱硫(FGD)技术.

烟道气脱硫(FGD)技术综述烟道气脱硫技术广泛用于控制燃煤、燃油电站和精炼厂等大型固定排放源的二氧化硫(SO )和三氧化硫(SO )的排放。

它们与烟道气处理技术不同,烟道气处2 3理技术是用于脱除废弃物燃烧炉排放的污染物。

烟道气脱硫技术种类繁多,大部分是用碱性吸收剂,从烟道气中脱除酸性的硫化物。

最为广泛应用的烟道气脱硫技术是石灰石石膏法和石灰石法的改型以及喷雾干燥法,石灰石石膏法产生的是一种可出售的石膏副产品,石灰石法产生的是一种易处理的残渣,而喷雾干燥法产生的则是一种混合固体废弃物。

烟道气脱硫技术投资成本一直在不断降低,目前的投资成本在100~125美元/k W(65~80英镑/k W)之间,预计到2000及其以后,投资成本将进一步降低。

在未来10年,烟道气脱硫装置的总需求很可能会超过10亿英镑/年,北美洲和中国将是烟道气脱硫装置的最大市场。

目前的研究和开发的要求是进一步降低成本,提高脱硫效率及设备元件的可靠性。

烟道气脱硫技术的利益烟道气脱硫技术作为一种控制大型固定排放源(如发电站、精炼厂、冶金厂等)SO排放2的方法(如图1),适用范围广泛。

烟道气脱硫技术的广泛应用,连同其他排放源的SO减排措2施(如用电或气代替煤用于家庭供热;低硫汽车燃料),将大大减少全球范围内的人类活动而产生的排放量,从而有助于改善空气质量,有利于人类身体健康和环境。

英国贸工部的支持自1990年以来,英国贸工部已支持了8个与烟道气脱硫技术有关的项目,共投入32万英镑,8个项目的总投资为188.7万英镑。

引言硫是地壳中最常见的元素之一,作为煤炭、原油和许多矿石中的一种杂质广泛存在。

因而,在工业加工,如煤炭、石油和油制燃料的燃烧以及石油加工和从矿石中提炼金属的过程中,硫大量产生。

目前,全球因人类活动而排放的SO总量达~1.4亿t/年,其中英国每年产生 2002万t(占全球排放量的1.4%)。

然而,在最近30年中,英国的SO硫的排放量已大大降低(图2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设备规格
Q=10000m3/h P=2000Pa N=7.5kW Q=1.1x1131000Nm3/h,P=1.2x2850Pa N=2500kW
回转式,换热面积9500m2,驱动电机N=5.8kW Q=1500Nm3/h,P=8000Pa N=7.5kW φ11.3×25.7m,壁厚8-10mm 侧进式,N=10kW
湿法石灰石(石灰)/石膏法烟气脱硫技术系统图
大港改建工程2台1080t/h锅炉配套 湿法烟气脱硫装置。
• 湿式脱硫装置:吸收塔、GGH烟气加热器、增压风机、烟 道等为每台锅炉各自独立设备,其他系统共用。
• 湿法烟气脱硫主要工艺流程为:锅炉排出的烟气经引风机 送入混凝土公用烟道,再从砼烟道引出经过升压风机升压、 冷却后,进入吸收塔,在吸收塔中与石灰石浆液综合反应 吸收,烟气中的二氧化硫与石灰石浆液反应生成石膏,由 吸收塔排出经脱水处理后,固体石膏再利用。吸收塔排出 的净烟气,经加热后回到混凝土公用烟道,经烟囱排向大 气。
目前国内外应用最广泛的方法是烟气脱硫!!
三、 烟气脱硫方法
1.按有无液相介入分类 在电力界尤其是脱硫界以有无液相介入来进行分类。

湿法
有 无
半干法


干法


电子束法


海水法
湿 法:进入湿吸收剂;排出湿物质
湿法是利用碱性溶液为脱硫剂,应用吸收原理在气、液、 固三相中进行脱硫的方法,脱硫产物和残液混合在一起,为 稀糊状的流体。湿法脱硫的操作温度在44-55ºC。
(2)喷雾干燥脱硫技术,约占8.4%; (3)吸收剂再生脱硫法,约占3.4%; (4)炉内喷射吸收剂/增温活化脱硫法,约占1.9%; (5)海水脱硫技术; (6)电子束脱硫技术; (7)脉冲等离子体脱硫技术; (8)烟气循环流化床脱硫技术等。
以湿法脱硫为主的国家有:日本(约占98%)、 美国(约占92%)和德国(约占90%)等。
烟气脱硫(FGD)设备及工艺原理
一、脱硫的发展与应用 二、火电厂脱硫方式 三、 烟气脱硫方法 四、国内火电厂烟气脱硫的应用 五、石灰石/石膏湿法脱硫工艺流程及设备
一、脱硫的发展与应用
1. 全国火电厂二氧化硫排放状况
1998年全国火电装机容量为20988万千瓦,占总 装机容量的75.7%。二氧化硫排放约为780万吨,占 全国二氧化硫排放量的37.3%。预计2000年达40%, 2010年将达到60%。95年统计,由于酸雨和二氧化 硫污染造成农作物、森林和人体健康等方面的经济 损失约为1100多亿元,已接近当年国民生产总值的 2%,成为制约我国经济和社会发展的重要因素。
4m3/h, 离心泵,Q=4.6m3/h H=30m N=1.1 kW
6.6t/h,(石膏含水10%)N=3kW 水环式Q=2300m3/h, N=75kW, P=34kPa
液下泵 Q=20m3/h H=20m N=1.5 kW 液下泵 Q=30m3/h H=30m N=5.5 kW
V=800m3 14×14×4.5m 液下泵, 机械密封, Q=54m3/h N=15kW H=35m
石膏水力(第一级)旋流器站 废水旋流器站 石膏浆转运泵
真空皮带过滤机
真空泵 石膏脱水排水坑泵
吸收塔排水坑泵 事故浆液池
事故浆液池泵 给料称重机
23
湿式球磨机
24
石灰石仓
25
石灰石浆液箱
26
石灰石浆池搅拌器
27
石灰石浆泵(至吸收塔)
数量 392t 2 2 2 2 2 8 2 4 2 2 1 2 2 1 2 2 1 1 1 1 2 2 1 1 1 2
除雾装置
工艺水
喷淋装置
A

增压风机
吸收塔
循环泵
烟 气 系 统
锅炉产生的原烟气从砼 烟道引入增压风机后,经升 压进入GGH对加热元件进行 加热后,进入吸收塔。
脱硫后的净烟气由吸收塔 上部引出,经GGH净烟气侧 进行加热后,进入烟囱,经 达标的烟气排入大气。
罗茨风机Q=1.1x3500Nm3/h, P=100kPa N=130kW Q=5300m3/h,,H=24.5/26/27.5m, N=400/450/500kW
离心式, 机械密封, Q=42m3/h H=40m N=11kW 离心式, 机械密封, Q=100m3/h N=21kW H=55m
V=150m3 φ6m h=5.4m 33.15m3/h旋流子8个加1个备用
钙法:以石灰石、生石灰为基础。
镁法:以氧化镁为基础的
氨法:以合成氨为基础
(1)脱硫过程
Na2CO3+SO2→Na2SO3+CO2↑ 2NaOH+SO2→Na2SO3+H2O Na2SO3+SO2+H2O→2NaHSO3
(2)再生过程(用石灰乳)
2NaHSO3+Ca(OH)2→Na2SO3+CaSO3 Na2SO3+Ca(OH)2→2NaOH+CaSO3
二、火电厂脱硫方式(燃烧前、中、后)
煤炭洗选:使用前脱硫。目前仅能除去煤炭中的部分无 机硫,对于煤炭中的有机硫尚无经济可行的去除技术。
循环流化床锅炉(CFBC)-- 洁净煤燃烧技术:燃烧过程中 脱硫。具有可燃用劣质煤、调峰能力强、可掺烧石灰石脱硫、 控制炉温减少氮氧化物排放等特点。
烟气脱硫(FGD) :燃烧后脱硫。在锅炉尾部电除尘后至 烟囱之间的烟道处加装脱硫设备,目前95%以上的燃煤锅炉采 用此方式实施脱硫,是控制二氧化硫和酸雨污染最有效、最主 要的技术手段。
电子束法使用的脱硫剂为合成氨,目前仅限于吨位不大的燃 煤锅炉烟气脱硫。
2.按脱硫剂分类
目前开发的多种烟气脱硫技术,尽管设备构造和工艺流 程各不相同,但基本原理都是以碱性物质作SO2的吸收剂。
以石灰石、生石灰为基础的钙法

以氧化镁为基础的镁法


以合成氨为基础的氨法

分 类
以有机碱为基础的碱法
以亚硫酸钠、氢氧化钠为基础的钠法
四、国内火电厂烟气脱硫的应用
技术内容
普通石灰石/ 石膏脱硫技术
技术成熟程度
成熟
适用煤种
不限
喷雾干燥 脱硫技术
成熟
中低硫煤
炉内喷钙+尾部 增湿脱硫技术
成熟
电子束 脱硫技术
海水脱硫技术
国家示范 工程
双减法脱硫
中低硫煤
单机应用规模 脱硫率 吸收剂
市场占有率
200MW 及以上 95%以上
石灰石/石灰

200MW 及以下
序号 设备名称
1
烟道
2
挡板密封风机
3
轴流式升压风机
4
再生式气/气换热器(GGH)
5
大6 港6
技8
改9
工 10
程 11
脱 12

13
14
装 15
置 16 主 17 要 18
设 19
备 20
表 21
22
密封空气风机 吸收塔
吸收塔搅拌器 氧化风机(包括消声段) 离心式,吸收塔再循环泵
吸收塔排出泵 工艺水泵 工艺水箱
Q=4t/h N=1.1KW Q=4t/h N=150KW 500m3 6m×6m×14m ,锥高5m两个出口 φ4.2×5.4m,V=70m3
N=3.5KW Q=8m3/h H=50m N=2.5kW
石灰石湿法工艺流程图
PWP1,2 GHC
A
BD1
RD1
CD
BD2
CD
RD2
OAC1,2
ARP1,2,3 GBP1,2
双碱法FGD工艺
钠法:以亚硫酸钠、氢氧化钠为基础。
3、常用的脱硫技术
近年来,世界各发达国家在烟气脱硫(FGD)方面均取得了很大的 进展,美国、德国、日本等发达工业国家计划在2000年前完成200- - 610 MW的FGD处理容量。
目前国际上已实现工业应用的燃煤电厂烟气脱硫技术主要有:
(1)湿法脱硫技术,占85%左右,其中石灰-石膏法约占36.7%,其 它湿法脱硫技术约占48.3%;
半山、重庆等
恒运
下关、钱清
成都热电厂
深圳西部电力 有限公司
多家
国际最新5种主流烟气脱硫技术 1、石灰石--石膏湿法烟气脱硫技术 2、镁法--烟气脱硫技术 3、钠法--烟气脱硫技术 4、氨法--烟气脱硫技术 5、海水法--烟气脱硫技术
■ 设备、安装(包括土建)费用 ■ 运行费用
五、石灰石/石膏湿法脱硫工艺流程及设备
炉内
CaCO3 → CaO + CO2 CaO + SO2 + 1/2 O2→ CaSO4 CaO+SO3 → CaSO4
活化
CaO + H2O → Ca(OH)2 Ca(OH)2 +SO2 → CaSO3 + H2O CaSO3 + 1/2 O2 → CaSO4
炉内喷钙+尾部增湿法
介于炉内脱硫和烟气脱硫两者之间,在炉膛内喷石灰石粉,排 出的烟气进入尾部烟气增湿塔活化反应,两次脱硫。
2.国家对SO2的治理要求
法律的要求: 1995年修订的《中华人民共和国大气污染防治法》提出:在“两
区”内的火电厂新建或已建项目不能采用低硫煤的,必须建设配套脱 硫、除尘装置。
国家污染物排放标准的要求: 《火电厂大气污染物排放标准》(GB13223-1996),对1997年1月1
日起新、扩、改建火电厂,在实行全厂排放总量控制的基础上,增加 了烟囱二氧化硫排放浓度限制。
75-80%
石灰
一般
200MW 及以下
80-90%
石灰石
一般
200MW 及以下
300MW
高能电子束 海水
100MW 及以下
95%
可溶性的 钠碱
技术 特点及经济性
相关文档
最新文档