超宽带无线通信技术

合集下载

超宽带无线通信技术课件

超宽带无线通信技术课件

信号使用7GHz带宽,当信噪比S/N低至-10dB时,
超宽带可以提供的信道容量为C=7G×log2 (1+0.1)≈ 0.963Gbps,接近1Gbps。
➢ 数据表明,超宽带的空间通信容量是现有的通信系 统(如:无线局域网、蓝牙等)的10-1000倍以上。
超宽带的特点
3、低成本,低功耗
➢ 脉冲超宽带是最早采用的一种传输方式,它不 需要载波,而是利用极短的脉冲传输信息,因 此,在发射端脉冲超宽带不需要功放和混频器, 接收端也不需要中频处理,大大降低了收发机 的硬件实现复杂性和成本。同时,为了避免对 现有通信系统的干扰,超宽带信号发射功率很 低,简单的收发设备以及低功率,使得脉冲超 宽带系统的功耗非常低,可以使用电池长时间 供电。
脉冲波形
➢ 高斯脉冲微分,升余弦、Herimite(厄密特)脉冲等。
高斯函数脉冲
高斯脉冲宽度 和频域带宽取 决于参数α, α的值越大, 高斯脉冲越宽, 相应的频域带 宽就越小
p(t)
1
2 2
e
t2 2
2
2 e
2
t
2
2
高斯脉冲二阶导
w2 (t)
4 2
e
2 t 2
2
1
4 t 2
2
高斯脉冲各阶导数
原始的发送信息。
(a)发射部分
在发射端,欲传输的基带信
号与一个码片速率很高的伪
随机码进行时域相乘,其输 d(t)
出为一个频谱带宽被扩展的
扩频码流,然后将此扩频码
流变换为射频信号发射出去。c(t)
在接收端,射频信号经过变
频后输出中频信号,它与本 d(t)*c(t)
地的伪随机码进行时域相乘,

超宽带技术的应用前景

超宽带技术的应用前景

超宽带技术的应用前景超宽带技术,简称UWB技术,是一门非常重要的通信技术,其可用于无线传感、高速数据传输、室内定位、车联网和智能家居等众多领域。

本文将从其技术原理、应用前景等多个角度来探讨超宽带技术的应用前景。

一、UWB技术原理UWB技术是一种利用极短脉冲波进行通信的无线通信技术。

其主要原理是通过发射极短脉冲信号,利用超宽带的频谱传输数据,使其在传输过程中不被其它信号所干扰。

同时,由于其信号的短暂性,可避免多径效应,从而提高了信道传输的可靠性和抗干扰能力。

二、UWB技术的应用前景1. 无线传感随着无线传感网技术的逐渐成熟,UWB技术的应用前景也越来越广泛。

利用UWB技术,可以在传感器之间快速地传递数据,实现实时监测并采集海量数据,从而提高传感网络的效率和准确度。

2. 高速数据传输在大数据时代,需要进行大规模数据的传输和处理,而传统的有线光纤和无线通信技术都存在一定的局限性。

利用UWB技术,可以实现更快的数据传输速率和更高的传输安全性,更好地满足大数据时代的需求。

3. 室内定位UWB技术在室内定位方面的应用也非常广泛。

通过在物品上安装UWB标签,可以实时、准确地追踪其位置,对于物流、人员定位、宠物定位等领域都有很好的应用前景。

4. 车联网目前随着智能交通系统的快速发展,车联网也逐渐成为越来越重要的一部分。

利用UWB技术,对车辆进行高精度的距离判断和位置感知,可以实现自动泊车、自动驾驶、车辆通信等方面的应用,进一步推动车联网的发展。

5. 智能家居UWB技术在智能家居领域也有着巨大的应用前景。

通过将UWB技术应用于智能家居中,可以实现家庭智能化、智能电视、智能家电、智慧音箱等方面的应用,进一步提高家居生活的便利性和安全性。

三、总结综上所述,UWB技术具有应用广泛、传输速率快、抗干扰能力强、定位精度高等优点,其应用前景前景是非常广阔的。

同时,可以预见,随着 UWB技术的不断发展和应用,其在未来会扮演越来越重要的角色,也将能够为人们的生活、商业和科技进步带来更大的贡献。

UWB超宽带

UWB超宽带

UWB超宽带什么是UWB超宽带?UWB(Ultra-WideBand)超宽带是一种通过在超宽频带范围内传输数据的无线通信技术。

它基于短脉冲信号,能够在极短的时间内传输大量数据。

UWB超宽带技术在无线通信领域具有广泛应用,包括室内定位、物体追踪、雷达和无线传感器网络等。

UWB超宽带的特点1.宽频带范围: UWB超宽带技术的一项主要特点是其宽频带范围。

通常,UWB的频带范围从几百兆赫兹(MHz)到几千兆赫兹(GHz),因此能够支持高速数据传输和较长的传输距离。

2.低功率: UWB超宽带技术在传输数据时使用低功率,这使得它可以在不干扰其他无线设备的情况下工作。

3.高精度定位: UWB超宽带技术可以实现高精度的室内定位。

由于UWB信号能够穿透墙壁和障碍物,因此可以在室内环境中实现准确的物体定位。

4.抗多径干扰:多径干扰是指由于信号在传播过程中碰撞、反射和折射等原因导致信号传输路径的多样性。

UWB超宽带技术通过使用信号的多径特性来抵消多径干扰,提高信号传输的可靠性。

UWB超宽带的应用1. 室内定位UWB超宽带技术在室内定位方面具有特殊优势。

通过将UWB设备部署在建筑物内部,可以实现对人员和物体的高精度定位。

这在商场、医院和仓库等场所可以提供实时的位置信息,便于管理和安全监控。

2. 物体追踪利用UWB超宽带技术,可以实现对物体的追踪。

通过将UWB标签附着在物体上,可以准确追踪其位置和运动轨迹。

这在物流管理、仓库管理和供应链领域具有广泛应用。

3. 雷达应用UWB超宽带技术在雷达领域也得到了广泛应用。

与传统雷达相比,UWB雷达具有更高的分辨率和更好的目标检测能力。

它可以在不同的天气和环境条件下提供高质量的目标识别和跟踪。

4. 无线传感器网络UWB超宽带技术在无线传感器网络中起到重要作用。

通过使用UWB传感器,可以实现对环境参数(如温度、湿度和压力等)进行高精度和实时的测量。

这在工业自动化、环境监测和智能家居等领域有着广泛的应用前景。

关于超宽带(UWB)无线通信技术的分析研究

关于超宽带(UWB)无线通信技术的分析研究

关于超宽带(UWB)无线通信技术的分析研究
随着科技的不断发展,无线通信技术也在逐步提升。

超宽带(UWB)无线通信技术作为一种新兴的无线通信技术,已逐
渐被工业界和学术界广泛认可。

本文将对超宽带无线通信技术进行分析研究。

首先,超宽带技术是指利用极短的脉冲信号进行通信的一种无线通信技术。

它具备宽带、低功耗、高速、高精度、低干扰等优点,可以在短距离范围内实现高速数据传输和定位服务。

与传统的无线通信技术相比,超宽带技术具有更高的频带利用率和系统容量,可以实现更安全和高效的通信服务。

其次,超宽带技术已经被广泛应用于各种领域。

在物联网领域,超宽带技术可以应用于智能家居、智能医疗、智能交通等多个领域,可以为人类生活带来更加便利和舒适的体验。

在电子商务领域,超宽带技术可以实现高速数据传输和快速支付,可以为现代商业带来极大的便利和效益。

此外,在智能制造、智慧城市等领域也可以应用超宽带技术。

再次,超宽带技术还存在一些挑战和问题。

例如,超宽带技术的系统复杂,需要高精度的硬件和软件支持。

此外,超宽带技术的应用范围和可靠性还需要进一步完善。

综上所述,超宽带无线通信技术已经成为当前无线通信领域的热门技术之一。

尽管它还存在一些挑战和问题,但它有着广阔的应用前景和市场前景。

随着科技的不断提升和完善,相信超宽带无线通信技术将在未来得到更广泛的应用和推广。

浅谈超宽带无线通信技术的发展

浅谈超宽带无线通信技术的发展

浅谈超宽带无线通信技术的发展超宽带无线通信技术是一种近年来快速发展的通信技术。

它利用较大的带宽传输数据,可以实现较高的数据传输速率和较低的干扰、噪声抑制,广泛应用于军事、医疗、民用等领域。

随着技术的不断发展,超宽带无线通信技术也得到了快速的发展。

从最初的简单研究到今天的成熟应用,超宽带无线通信技术的发展历程可以分为三个阶段。

第一个阶段是在20世纪90年代初期,由美国军方开始开发。

其重点在于利用超宽带信号实现弱信噪比下的传输,并且在基带中采取分步传输技术,提高传输速率和可靠性。

第二个阶段是在21世纪初期,由学术界开始研究。

此时超宽带技术的全球标准化工作逐渐建立,主要标准为IEEE802.15.3a。

随着技术的不断提高,超宽带无线通信技术开始逐渐应用于民用领域。

第三个阶段是现代阶段,随着物联网的兴起,超宽带无线通信技术得到了越来越广泛的应用。

目前除了在民用领域得到了广泛应用外,还广泛用于医疗器械、汽车等领域,成为未来通信技术发展的一大趋势。

总的来说,超宽带无线通信技术的发展历程是一个不断探索、不断完善的过程。

虽然技术上还存在一些问题,但随着技术的不断提高,我们相信这种技术将会在未来实现更广泛的应用。

SWOT分析法是一种经典的市场营销分析工具,它可以帮助分析企业的内部优势、挑战、外部机会和威胁。

以下是SWOT分析法的分析内容和案例。

内部优势:公司有市场知名度、客户群体忠诚度高、高效的生产制造能力等。

比如,一家家具公司拥有自己的设计团队和品牌,能够生产高品质的家具,并且在当地市场一直处于领先地位。

挑战:公司面临的内部问题如组织结构不合理,管理者缺乏经验等。

比如,企业家在创办公司之初没有做好完备的管理规划,导致企业生产、运营方面的不顺畅。

外部机会:公司在市场发展、政策环境等方面面临的机会,如技术进步、市场竞争情况等。

比如,一家新兴的电动汽车制造商可以利用政府对新能源汽车支持政策和公众对环保的关注来扩大市场份额。

新版超宽带(UWB)无线通信技术课件.ppt

新版超宽带(UWB)无线通信技术课件.ppt

参考文献
[1] J.D. Taylor. Introduction to Ultra Wideband Radar Systems[M]. Boca Raton: CRC, 1995. [2] FCC. FCC Notice of Proposed Rule Making, Revision of Part 15 of the Commission’s Rules
多径衰落的统计特性
图4 UWB信号的信道冲激响应曲线
精品课件
UWB无线室内信道特性
路径损失和阴影衰落特性
路径损失表示为:

PL(d )(dB)

C0
10 nΒιβλιοθήκη log10(4d
)

X
C0是参考距离的路径损失, 是信号中心频率对应的波
长,d是收发天线间的距离,X表示阴影衰落。
图3 一种频谱利用率高的UWB窄脉冲的时域波形和频域波形
精品课件
UWB通信的信号形式
调制载波形式
调制载波形式通过调制载波, 将UWB信号搬移到合 适的频段进行传输, 从而可更加灵活、有效地利用 频谱源。
调制载波系统的信号处理方法与一般通信系统采用 的方法类似, 技术成熟度高, 在目前的工艺条件下, 比基带窄脉冲形式更容易实现高速系统。
述了每簇中电波(rays)的到达。
簇到达的时间分布:
p(Tl | Tl1) exp[(Tl Tl1)], l 0
簇中路径到达的时间分布:
p( k,l | (k1),l ) exp[( k,l (k1),l )], k 0
信道冲激响应模型:
/papers/MultiBand_OFDM_Physical_Layer_Proposal_for_IEEE_80 2.15.3a_Sept_04.pdf[DB/OL]. 2004-9-14. [5] R.Roberts. XtremeSpectrum CFP document. /groups/802/15/pub/2003/ Mar03/03154r0P802-15_TG3aXtremeSpectrum-CFP-Document.pdf[DB/OL]. 2003-3. [6] J.R.Foerster, A.Molisch. A Channel Model for Ultrawideband Indoor Communication[DB/OL]. /reports/docs/TR2003-73.pdf[DB/OL]. 2004-7-2 [7] J.Kunisch, J.Pamp. Measurement Results and Modeling Aspects for the UWB Radio Channel[A]. UWBST(C). Baltimore:IEEE, 2002. 19–24. [8] R.J.M.Cramer, R.A.Scholtz, M.Z.Win. Evaluation of an Ultrawide-band Propagation Channel[J]. IEEE Trans on Antennas Propagation, 2002, 50(5):561-570. [9] D.Cassioli, M.Z.Win, A.R.Molisch. A Statistical Model for the UWB Indoor Channel[A]. Vehicular Technology Conference[C]. Israel:IEEE, 2001. 1159–1163. [10] L.Rusch, C.Prettie, D.Cheung, Q.Li, M.Ho. Characterization of UWB Propagation from 2 to 8 GHz in a Residential Environment[DB/OL]. /technology/ultrawideband/pres_tech.htm. 2004-2-20. [11] Sumit Roy, Jeff R.Foerster, V.Srinivasa Somayazulu, Dave G.Leeper. Ultrawideband Radio Desigan:the Promise of High-speed, Short-range Wireless Connectivity[J]. Proceedings of the IEEE, 2004,92(2),:295-311.

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。

许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。

为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。

1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。

1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。

此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。

图1给出了带宽计算示意图。

可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。

为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。

美国NTIA等通信团体对此大约提交了800多份意见书。

2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。

根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。

根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。

为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。

超宽带(UWB)无线通信技术介绍

超宽带(UWB)无线通信技术介绍
从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。
从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。
3.1 UWB与IEEE802.11a
IEEE802.11a是IEEE最初制定的一个无线局域网标准之一,它主要用来解决办公室局域网和校园网中用户与用户终端的无线接入,工作在5GHzU-NII频带,物理层速率54Mbps,传输层速率25Mbps。采用正交频分复用(OFDM)扩频技术;可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口,支持语音、数据、图像业务。IEEE802.11a用作无线局域网时的通信距离可以达到100m,而UWB只能在10m以内的范围通信。根据英特尔照FCC的规定而进行的演示结果显示,对于10m以内的距离,UWB可以发挥出高达数百Mbps的传输性能,但是在20m处反倒是IEEE802.11a/b的无线局域网网设备更好一些。因此在目前UWB发射功率受限的情况下,UWB只能用于10m以内的高速数据通信,而10m到100m的无线局域网通信,还需要由802.11来完成,当然与UWB相比,802.11的功耗大,传输速率低。
3.2 UWB与Bluetooth
自从2002年2月14日,FCC批准UWB用于民用无线通信以来,就不断有人将UWB评论为蓝牙(Bluetooth)的杀手,因为从性能价格比上看,Bluetooth是现有无线通信方式中最接近UWB的,但是从目前的情况看UWB不会取代Bluetooth。首先从应用领域来看,Bluetooth工作在无须申请的2.4GHz ISM频段上,主要用来连接打印机、笔记本电脑等办公设备。它的通信速率通常在1Mbps以下,通信距离可以达到10m以上。而UWB的通信速率在几百Mbps,通信距离仅有几米,因此二者的应用领域不尽相同。其次,从技术上看,经过多年的发展,Bluetooth已经具有较完善的通信协议。Bluetooth的核心协议包括物理层协议和链路接入协议,链路管理协议及服务发展协议等等,而UWB的工业实用协议还在制定中。还有,Bluetooth是一种短距离无线连接技术标准的代称,蓝牙的实质内容就是要建立通用的无线电空中接口及其控制软件的公开标准,从这方面讲,UWB可以看作是采用一种特殊无线电波来高速传送数据的通信方式,严格地讲,它不能构成一个完整的通信协议或标准。考虑到UWB高速、低功耗的特点,也许在下一代Bluetooth标准中,UWB可能被用做物理层的通信方式。最后,从市场角度分析,蓝牙产品已经成熟并得到推广和使用,而UWB的研究还处在起步阶段。基于以上原因,在未来的几年内,UWB和Bluetooth更有可能既是竞争对手,又是合作朋友。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TOA (Time of Arrival)
位置坐标
(x, y, z)
位置相关 参数估计 接收 信号
定位 算法
演示系统
位置相关 参数估计
测距模块 利用测距 算法估计 参考节点 和目标节 点间距离

定位模块 利用多个 节点的测 距结果估 计目标节 点的位置
超宽带信号模型
根据传输技术不同分为两类: 脉冲超宽带
功率谱密度
功率谱密度
f c Ri f c
f c Ri
f
f c Ri
fc
f c Ri
f
(a)信息调制时输出信号功率谱
(b)发送的扩频信号功率谱
功率谱密度 噪声
干扰信号 发送信号
fc
功率谱密度
有用信号
干扰信号
噪声
f f
fc
(c)接收信号功率谱
(d )解扩后的信号功率谱
功率谱密度
有用信号
干扰信号 噪声
超宽带的特点
2、信道容量大,传输速率高
香农信道容量公式 C W log 2 (1 ) (b / s) N 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹 (GHz)带宽,理论上可以提供极高的信道容量,பைடு நூலகம்达到Gbps以上的传输速率,或者在很低的信噪比下, 以一定的传输速率实现可靠传输。假定一个超宽带 信号使用7GHz带宽,当信噪比S/N低至-10dB时, 超宽带可以提供的信道容量为C=7G×log2 (1+0.1)≈ 0.963Gbps,接近1Gbps。 数据表明,超宽带的空间通信容量是现有的通信系 统(如:无线局域网、蓝牙等)的10-1000倍以上。
超宽带的应用
超宽带的应用
雷达、探测
超宽带依赖于极微弱的、与雷达中所使用的相 近的基带窄脉冲,具有很强的穿透能力,能穿 透树叶、墙壁、地表、云层等障碍,辨别出障 碍物后隐藏的物体或运动着的物体,测距精度 的误差只有一两厘米。 可以应用在:穿墙雷达、安全监视、透地探测 雷达、工业机器人控制、监视和入侵检测、道 路及建筑检测、贮藏罐内容探测等。
超宽带的特点
4、信号衰减小,穿透能力强
正弦载波在自由空间的衰减与距离平方成反比, 在密集多径情况下,信号的功率衰减更是与距 离的3-4次方成反比。脉冲超宽带信号为定向窄 脉冲,不需要载波,具有较强的方向性,在相 同的功率下,比正弦电磁波的衰减更小。 同时基带窄脉冲信号包含的低频部分的长波具 有较强的穿透能力,能够穿透多种材料,使其 可以应用于成像、检测、监视和测量等领域。
跳时扩频调制超宽带
TH-SS PPM UWB s (t ) E p
Ts
1 2 3 4 5 6 ……
N f 1
n 0 j 0
p(t nT
s
jT f (ct ) j Tc d n )
Tf
1 2 3
TS=NfTf
4 5 6 …… Nf
Tc
Tf=NcTc
发射信号
-8
PAM-TH-UWB 发射信号
时间 [s]
直接序列扩频
直接序列扩频就是在发射端 信源 直接利用高码片速率的扩频 码序列扩展发送信号的频谱。 然后在接收端,用相同的扩 频码序列相乘解扩,恢复出 原始的发送信息。 在发射端,欲传输的基带信 号与一个码片速率很高的伪 随机码进行时域相乘,其输 d (t ) 出为一个频谱带宽被扩展的 扩频码流,然后将此扩频码 c( 流变换为射频信号发射出去。t) 在接收端,射频信号经过变 频后输出中频信号,它与本 d (t )* c(t ) 地的伪随机码进行时域相乘, 得到解扩信号,经信息解调 c(t ) 器恢复成原始数字信号。 只有当 c(t) c(t) 时,才能进行 r (t ) 正确的解扩和解码。
……
TH-SS PAM UWB
s (t ) E p d n p (t nTs jT f (ct ) j Tc )
n 0 j 0
N f 1
x 10 14 12 10 8
-3
幅度[V]
6 4 2 0 -2 -4 -6 0 0.5 1 1.5 2 2.5 x 10 3
超宽带无线通信技术
目录
1 2 3 4 5 超宽带的定义
超宽带的特点和应用
超宽带的传输方式 超宽带的信道模型 超宽带的关键技术
超宽带的定义
Ultra-Wideband (UWB) Wireless Communication
美国联邦通信委员会(FCC:Federal Communications Commission)
与其它短距离无线技术的比较
UWB 蓝牙 802.11a HomeRF
速率(bps)
最高达1G
<1M
54M
1~2M
距离(米) 功率
<10 1毫瓦以下
10 1~100毫瓦
10~100 1瓦以上
50 1瓦以上
超宽带的应用
通信
UWB系统带宽极大,可支持大的信道容量,同时系统功率受限,只能 传播较短距离,因此UWB技术特别适合于短距离高速无线通信。 例如基于UWB技术的无线USB 2.0,可取代有线USB,实现PC之间及 消费类电子设备(电视、数码相机、DVD播放器、MP3等)之间的无 线数据互连与通信。 无线个域网(WPAN) 、高速智能无线局域网、智能交通系统,公路信 息服务系统,汽车检测系统,舰船、飞机内部通信系统,楼内通信系 统、室内宽带蜂窝电话,战术组网电台,非视距超宽带电台,战术/战 略通信电台,保密无线宽带因特网接入等等
超宽带的应用
测距,定位
超宽带信号在户内和户外都可以提供精确地定 位信息,在军事和民用上都有广泛的应用。 例如在敌方领土上营救人员,儿童搜寻,寻找 丢失的宠物和行李,跟踪、搜索和解救人员, 定位贵重的物品的位置等等
危险环境 人员和物资的追踪管理 - 安全位置的紧急搜索 - 定位人员 - 安全有效
技术 GPS Bluetooth IEEE802.11 UWB
定位精度
5-20m
3m
3m
15cm
超宽带的特点
6、保密和安全性能好
超宽带信号的功率谱密度非常小,淹没在环境 噪声和其他信号中,同时又具有极宽的带宽, 很难被基于频谱搜索的侦测设备检测到。 同时超宽带系统可以采用多种扩频多址方式, 包括:跳时扩频、跳频扩频、直接序列扩频等, 在接收端必须采用与发射端一致的扩频码才能 正确的解调数据,这使得使非合法用户很难获 取合法用户的传输信息,系统的安全性和保密 性非常高。
优点
1. 系统简单、成本低、功 耗小 2. 多径分辨能力强 3. 信号随距离衰减小,穿 透能力强
多频带超宽带
优点
1. 易实现高信息传输速率 2. 频谱利用率可以较高 3. 频谱使用灵活
缺点
1. 2. 3. 4. 系统复杂 成本高 功耗高 高频段时信号穿透力弱
缺点
1. 信息传输速率不高 2. 频谱利用率不高 3. 频谱使用不灵活
(1) (2) 探地雷达 穿墙成像 墙内成像 监视系统 医疗成像
室内UWB设备辐射掩蔽 室外手持设备
超宽带的特点
1、共存性能好
超宽带技术可以与现有的其他通信系统共享频谱。超宽带通信 使用的频谱范围从3.1GHz到10.6GHz,频谱宽度高达 7.5GHz,通过发射功率的限制,避免了对其他通信系统的干 扰。从上图 中可以看到,超宽带信号的最高辐射功率为41.3dBm,这仅仅相当于一台个人计算机的辐射。这样在很 低的功率谱密度下共享频谱的方式,在频谱资源非常紧张的今 天具有极其重要的意义,这也是超宽带兴起和发展的主要原因 之一.
f L 1.2 GHz
f H 2.8 GHz
窄带 宽带 超宽带
相对带宽<1% 1%<相对带宽<20% 相对带宽>20%
fH fL 2.8 1.2 相对带宽 100% 80% ( f H f L ) 2 (2.8 1.2) 2
超宽带信号的辐射掩蔽
为了避免对现有的通信系统带来干扰,必需将超宽带系统的发射功率限定 在一定范围内,即在超宽带通信频率范围内的每个频率上都规定一个最大 的允许功率,这个功率值一般通过辐射掩蔽(emission mask)来决定.

2 t 2

2
e

2
4 t 2 1 2
高斯脉冲各阶导数
阶数越高,高斯导数波形的过零点次数就越多,相应的信号带宽就越宽。
扩频技术
扩频通信是将待传送的信息数据用扩频序列调制,实现频谱扩展后再传输;接收端则 采用相同的扩频序列进行解调及相关处理,恢复原始信息数据。
多址接入 隐蔽性和保密性好 抗干扰性强,误码率低
脉冲波形
高斯脉冲微分,升余弦、Herimite(厄密特)脉冲等。
高斯函数脉冲
高斯脉冲宽度 和频域带宽取 决于参数α , α 的值越大, 高斯脉冲越宽, 相应的频域带 宽就越小
p(t )
1 2 2

t2 2 2
e

2

2 t 2

e
2
高斯脉冲二阶导
w2 (t )
4
S
超宽带的特点
3、低成本,低功耗
脉冲超宽带是最早采用的一种传输方式,它不 需要载波,而是利用极短的脉冲传输信息,因 此,在发射端脉冲超宽带不需要功放和混频器, 接收端也不需要中频处理,大大降低了收发机 的硬件实现复杂性和成本。同时,为了避免对 现有通信系统的干扰,超宽带信号发射功率很 低,简单的收发设备以及低功率,使得脉冲超 宽带系统的功耗非常低,可以使用电池长时间 供电。
超宽带脉冲波形设计
脉冲波形设计原则
1. 符合UWB 信号定义,-10dB 绝对带宽大于500MHz 或 相对带宽大于20%。 2. 波形波动小,即不能有太多的峰值数。否则,当相关检 测时,微小的延时会造成匹配不上,不利于检测接收。 3. 功率谱密度在频域上满足FCC 辐射掩模的规定。 4. 脉冲的直流分量为零或者低频分量上的能量尽可能地小。
相关文档
最新文档