超宽带无线通信技术
超宽带无线通信技术课件
信号使用7GHz带宽,当信噪比S/N低至-10dB时,
超宽带可以提供的信道容量为C=7G×log2 (1+0.1)≈ 0.963Gbps,接近1Gbps。
➢ 数据表明,超宽带的空间通信容量是现有的通信系 统(如:无线局域网、蓝牙等)的10-1000倍以上。
超宽带的特点
3、低成本,低功耗
➢ 脉冲超宽带是最早采用的一种传输方式,它不 需要载波,而是利用极短的脉冲传输信息,因 此,在发射端脉冲超宽带不需要功放和混频器, 接收端也不需要中频处理,大大降低了收发机 的硬件实现复杂性和成本。同时,为了避免对 现有通信系统的干扰,超宽带信号发射功率很 低,简单的收发设备以及低功率,使得脉冲超 宽带系统的功耗非常低,可以使用电池长时间 供电。
脉冲波形
➢ 高斯脉冲微分,升余弦、Herimite(厄密特)脉冲等。
高斯函数脉冲
高斯脉冲宽度 和频域带宽取 决于参数α, α的值越大, 高斯脉冲越宽, 相应的频域带 宽就越小
p(t)
1
2 2
e
t2 2
2
2 e
2
t
2
2
高斯脉冲二阶导
w2 (t)
4 2
e
2 t 2
2
1
4 t 2
2
高斯脉冲各阶导数
原始的发送信息。
(a)发射部分
在发射端,欲传输的基带信
号与一个码片速率很高的伪
随机码进行时域相乘,其输 d(t)
出为一个频谱带宽被扩展的
扩频码流,然后将此扩频码
流变换为射频信号发射出去。c(t)
在接收端,射频信号经过变
频后输出中频信号,它与本 d(t)*c(t)
地的伪随机码进行时域相乘,
超宽带技术的应用前景
超宽带技术的应用前景超宽带技术,简称UWB技术,是一门非常重要的通信技术,其可用于无线传感、高速数据传输、室内定位、车联网和智能家居等众多领域。
本文将从其技术原理、应用前景等多个角度来探讨超宽带技术的应用前景。
一、UWB技术原理UWB技术是一种利用极短脉冲波进行通信的无线通信技术。
其主要原理是通过发射极短脉冲信号,利用超宽带的频谱传输数据,使其在传输过程中不被其它信号所干扰。
同时,由于其信号的短暂性,可避免多径效应,从而提高了信道传输的可靠性和抗干扰能力。
二、UWB技术的应用前景1. 无线传感随着无线传感网技术的逐渐成熟,UWB技术的应用前景也越来越广泛。
利用UWB技术,可以在传感器之间快速地传递数据,实现实时监测并采集海量数据,从而提高传感网络的效率和准确度。
2. 高速数据传输在大数据时代,需要进行大规模数据的传输和处理,而传统的有线光纤和无线通信技术都存在一定的局限性。
利用UWB技术,可以实现更快的数据传输速率和更高的传输安全性,更好地满足大数据时代的需求。
3. 室内定位UWB技术在室内定位方面的应用也非常广泛。
通过在物品上安装UWB标签,可以实时、准确地追踪其位置,对于物流、人员定位、宠物定位等领域都有很好的应用前景。
4. 车联网目前随着智能交通系统的快速发展,车联网也逐渐成为越来越重要的一部分。
利用UWB技术,对车辆进行高精度的距离判断和位置感知,可以实现自动泊车、自动驾驶、车辆通信等方面的应用,进一步推动车联网的发展。
5. 智能家居UWB技术在智能家居领域也有着巨大的应用前景。
通过将UWB技术应用于智能家居中,可以实现家庭智能化、智能电视、智能家电、智慧音箱等方面的应用,进一步提高家居生活的便利性和安全性。
三、总结综上所述,UWB技术具有应用广泛、传输速率快、抗干扰能力强、定位精度高等优点,其应用前景前景是非常广阔的。
同时,可以预见,随着 UWB技术的不断发展和应用,其在未来会扮演越来越重要的角色,也将能够为人们的生活、商业和科技进步带来更大的贡献。
UWB超宽带
UWB超宽带什么是UWB超宽带?UWB(Ultra-WideBand)超宽带是一种通过在超宽频带范围内传输数据的无线通信技术。
它基于短脉冲信号,能够在极短的时间内传输大量数据。
UWB超宽带技术在无线通信领域具有广泛应用,包括室内定位、物体追踪、雷达和无线传感器网络等。
UWB超宽带的特点1.宽频带范围: UWB超宽带技术的一项主要特点是其宽频带范围。
通常,UWB的频带范围从几百兆赫兹(MHz)到几千兆赫兹(GHz),因此能够支持高速数据传输和较长的传输距离。
2.低功率: UWB超宽带技术在传输数据时使用低功率,这使得它可以在不干扰其他无线设备的情况下工作。
3.高精度定位: UWB超宽带技术可以实现高精度的室内定位。
由于UWB信号能够穿透墙壁和障碍物,因此可以在室内环境中实现准确的物体定位。
4.抗多径干扰:多径干扰是指由于信号在传播过程中碰撞、反射和折射等原因导致信号传输路径的多样性。
UWB超宽带技术通过使用信号的多径特性来抵消多径干扰,提高信号传输的可靠性。
UWB超宽带的应用1. 室内定位UWB超宽带技术在室内定位方面具有特殊优势。
通过将UWB设备部署在建筑物内部,可以实现对人员和物体的高精度定位。
这在商场、医院和仓库等场所可以提供实时的位置信息,便于管理和安全监控。
2. 物体追踪利用UWB超宽带技术,可以实现对物体的追踪。
通过将UWB标签附着在物体上,可以准确追踪其位置和运动轨迹。
这在物流管理、仓库管理和供应链领域具有广泛应用。
3. 雷达应用UWB超宽带技术在雷达领域也得到了广泛应用。
与传统雷达相比,UWB雷达具有更高的分辨率和更好的目标检测能力。
它可以在不同的天气和环境条件下提供高质量的目标识别和跟踪。
4. 无线传感器网络UWB超宽带技术在无线传感器网络中起到重要作用。
通过使用UWB传感器,可以实现对环境参数(如温度、湿度和压力等)进行高精度和实时的测量。
这在工业自动化、环境监测和智能家居等领域有着广泛的应用前景。
关于超宽带(UWB)无线通信技术的分析研究
关于超宽带(UWB)无线通信技术的分析研究
随着科技的不断发展,无线通信技术也在逐步提升。
超宽带(UWB)无线通信技术作为一种新兴的无线通信技术,已逐
渐被工业界和学术界广泛认可。
本文将对超宽带无线通信技术进行分析研究。
首先,超宽带技术是指利用极短的脉冲信号进行通信的一种无线通信技术。
它具备宽带、低功耗、高速、高精度、低干扰等优点,可以在短距离范围内实现高速数据传输和定位服务。
与传统的无线通信技术相比,超宽带技术具有更高的频带利用率和系统容量,可以实现更安全和高效的通信服务。
其次,超宽带技术已经被广泛应用于各种领域。
在物联网领域,超宽带技术可以应用于智能家居、智能医疗、智能交通等多个领域,可以为人类生活带来更加便利和舒适的体验。
在电子商务领域,超宽带技术可以实现高速数据传输和快速支付,可以为现代商业带来极大的便利和效益。
此外,在智能制造、智慧城市等领域也可以应用超宽带技术。
再次,超宽带技术还存在一些挑战和问题。
例如,超宽带技术的系统复杂,需要高精度的硬件和软件支持。
此外,超宽带技术的应用范围和可靠性还需要进一步完善。
综上所述,超宽带无线通信技术已经成为当前无线通信领域的热门技术之一。
尽管它还存在一些挑战和问题,但它有着广阔的应用前景和市场前景。
随着科技的不断提升和完善,相信超宽带无线通信技术将在未来得到更广泛的应用和推广。
浅谈超宽带无线通信技术的发展
浅谈超宽带无线通信技术的发展超宽带无线通信技术是一种近年来快速发展的通信技术。
它利用较大的带宽传输数据,可以实现较高的数据传输速率和较低的干扰、噪声抑制,广泛应用于军事、医疗、民用等领域。
随着技术的不断发展,超宽带无线通信技术也得到了快速的发展。
从最初的简单研究到今天的成熟应用,超宽带无线通信技术的发展历程可以分为三个阶段。
第一个阶段是在20世纪90年代初期,由美国军方开始开发。
其重点在于利用超宽带信号实现弱信噪比下的传输,并且在基带中采取分步传输技术,提高传输速率和可靠性。
第二个阶段是在21世纪初期,由学术界开始研究。
此时超宽带技术的全球标准化工作逐渐建立,主要标准为IEEE802.15.3a。
随着技术的不断提高,超宽带无线通信技术开始逐渐应用于民用领域。
第三个阶段是现代阶段,随着物联网的兴起,超宽带无线通信技术得到了越来越广泛的应用。
目前除了在民用领域得到了广泛应用外,还广泛用于医疗器械、汽车等领域,成为未来通信技术发展的一大趋势。
总的来说,超宽带无线通信技术的发展历程是一个不断探索、不断完善的过程。
虽然技术上还存在一些问题,但随着技术的不断提高,我们相信这种技术将会在未来实现更广泛的应用。
SWOT分析法是一种经典的市场营销分析工具,它可以帮助分析企业的内部优势、挑战、外部机会和威胁。
以下是SWOT分析法的分析内容和案例。
内部优势:公司有市场知名度、客户群体忠诚度高、高效的生产制造能力等。
比如,一家家具公司拥有自己的设计团队和品牌,能够生产高品质的家具,并且在当地市场一直处于领先地位。
挑战:公司面临的内部问题如组织结构不合理,管理者缺乏经验等。
比如,企业家在创办公司之初没有做好完备的管理规划,导致企业生产、运营方面的不顺畅。
外部机会:公司在市场发展、政策环境等方面面临的机会,如技术进步、市场竞争情况等。
比如,一家新兴的电动汽车制造商可以利用政府对新能源汽车支持政策和公众对环保的关注来扩大市场份额。
新版超宽带(UWB)无线通信技术课件.ppt
参考文献
[1] J.D. Taylor. Introduction to Ultra Wideband Radar Systems[M]. Boca Raton: CRC, 1995. [2] FCC. FCC Notice of Proposed Rule Making, Revision of Part 15 of the Commission’s Rules
多径衰落的统计特性
图4 UWB信号的信道冲激响应曲线
精品课件
UWB无线室内信道特性
路径损失和阴影衰落特性
路径损失表示为:
PL(d )(dB)
C0
10 nΒιβλιοθήκη log10(4d
)
X
C0是参考距离的路径损失, 是信号中心频率对应的波
长,d是收发天线间的距离,X表示阴影衰落。
图3 一种频谱利用率高的UWB窄脉冲的时域波形和频域波形
精品课件
UWB通信的信号形式
调制载波形式
调制载波形式通过调制载波, 将UWB信号搬移到合 适的频段进行传输, 从而可更加灵活、有效地利用 频谱源。
调制载波系统的信号处理方法与一般通信系统采用 的方法类似, 技术成熟度高, 在目前的工艺条件下, 比基带窄脉冲形式更容易实现高速系统。
述了每簇中电波(rays)的到达。
簇到达的时间分布:
p(Tl | Tl1) exp[(Tl Tl1)], l 0
簇中路径到达的时间分布:
p( k,l | (k1),l ) exp[( k,l (k1),l )], k 0
信道冲激响应模型:
/papers/MultiBand_OFDM_Physical_Layer_Proposal_for_IEEE_80 2.15.3a_Sept_04.pdf[DB/OL]. 2004-9-14. [5] R.Roberts. XtremeSpectrum CFP document. /groups/802/15/pub/2003/ Mar03/03154r0P802-15_TG3aXtremeSpectrum-CFP-Document.pdf[DB/OL]. 2003-3. [6] J.R.Foerster, A.Molisch. A Channel Model for Ultrawideband Indoor Communication[DB/OL]. /reports/docs/TR2003-73.pdf[DB/OL]. 2004-7-2 [7] J.Kunisch, J.Pamp. Measurement Results and Modeling Aspects for the UWB Radio Channel[A]. UWBST(C). Baltimore:IEEE, 2002. 19–24. [8] R.J.M.Cramer, R.A.Scholtz, M.Z.Win. Evaluation of an Ultrawide-band Propagation Channel[J]. IEEE Trans on Antennas Propagation, 2002, 50(5):561-570. [9] D.Cassioli, M.Z.Win, A.R.Molisch. A Statistical Model for the UWB Indoor Channel[A]. Vehicular Technology Conference[C]. Israel:IEEE, 2001. 1159–1163. [10] L.Rusch, C.Prettie, D.Cheung, Q.Li, M.Ho. Characterization of UWB Propagation from 2 to 8 GHz in a Residential Environment[DB/OL]. /technology/ultrawideband/pres_tech.htm. 2004-2-20. [11] Sumit Roy, Jeff R.Foerster, V.Srinivasa Somayazulu, Dave G.Leeper. Ultrawideband Radio Desigan:the Promise of High-speed, Short-range Wireless Connectivity[J]. Proceedings of the IEEE, 2004,92(2),:295-311.
超宽带(UWB)无线通信技术详解
超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。
许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。
为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。
1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。
1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。
此后,超宽带这个术语才被沿用下来。
其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。
图1给出了带宽计算示意图。
可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。
为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。
美国NTIA等通信团体对此大约提交了800多份意见书。
2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。
根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。
根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。
为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。
超宽带(UWB)无线通信技术介绍
从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。
3.1 UWB与IEEE802.11a
IEEE802.11a是IEEE最初制定的一个无线局域网标准之一,它主要用来解决办公室局域网和校园网中用户与用户终端的无线接入,工作在5GHzU-NII频带,物理层速率54Mbps,传输层速率25Mbps。采用正交频分复用(OFDM)扩频技术;可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,以及TDD/TDMA的空中接口,支持语音、数据、图像业务。IEEE802.11a用作无线局域网时的通信距离可以达到100m,而UWB只能在10m以内的范围通信。根据英特尔照FCC的规定而进行的演示结果显示,对于10m以内的距离,UWB可以发挥出高达数百Mbps的传输性能,但是在20m处反倒是IEEE802.11a/b的无线局域网网设备更好一些。因此在目前UWB发射功率受限的情况下,UWB只能用于10m以内的高速数据通信,而10m到100m的无线局域网通信,还需要由802.11来完成,当然与UWB相比,802.11的功耗大,传输速率低。
3.2 UWB与Bluetooth
自从2002年2月14日,FCC批准UWB用于民用无线通信以来,就不断有人将UWB评论为蓝牙(Bluetooth)的杀手,因为从性能价格比上看,Bluetooth是现有无线通信方式中最接近UWB的,但是从目前的情况看UWB不会取代Bluetooth。首先从应用领域来看,Bluetooth工作在无须申请的2.4GHz ISM频段上,主要用来连接打印机、笔记本电脑等办公设备。它的通信速率通常在1Mbps以下,通信距离可以达到10m以上。而UWB的通信速率在几百Mbps,通信距离仅有几米,因此二者的应用领域不尽相同。其次,从技术上看,经过多年的发展,Bluetooth已经具有较完善的通信协议。Bluetooth的核心协议包括物理层协议和链路接入协议,链路管理协议及服务发展协议等等,而UWB的工业实用协议还在制定中。还有,Bluetooth是一种短距离无线连接技术标准的代称,蓝牙的实质内容就是要建立通用的无线电空中接口及其控制软件的公开标准,从这方面讲,UWB可以看作是采用一种特殊无线电波来高速传送数据的通信方式,严格地讲,它不能构成一个完整的通信协议或标准。考虑到UWB高速、低功耗的特点,也许在下一代Bluetooth标准中,UWB可能被用做物理层的通信方式。最后,从市场角度分析,蓝牙产品已经成熟并得到推广和使用,而UWB的研究还处在起步阶段。基于以上原因,在未来的几年内,UWB和Bluetooth更有可能既是竞争对手,又是合作朋友。
uwb原理
uwb原理
uwb原理是指超宽带技术(uwb),它是一种新型无线通信技术,
它可以提供极高的传输速率,超过100M bps。
不同于传统的无线通信
技术,它使用比传统技术更长的脉冲,从而可以传输更多的信息,而
且可以利用纳秒级的时间精度来传输信息,从而实现精确定位。
UWB的基本原理是利用超宽带脉冲的短暂存在,其时域技术可以实
现精确定位。
它可以使用很小的功率传播非常宽的信号波形,从而可
以精确测量发射和接收之间的距离,即时延迟(toa)。
由于它使用短
时间脉冲,所以可以有更高的频谱效率,即可以在非常窄的带宽内传
输大量的信息,而且对信号干扰非常稳健。
UWB的另一个优势是它的无线定位特性,可以准确的测量多个无线
节点之间的相对距离,从而实现精确的位置定位。
它还可以通过基于
多普勒散射技术(mimo)测量发射端和接收端之间的多普勒散射。
UWB还可以用于安全保障,因为它可以检测到信号的慢速衰减功率,这意味着可以确定接收到信号的距离,而且UWB还可以反向识别信号,从而实现信息的安全传输。
总之,UWB技术具有极高的传输速率,可以准确无误的定位,且具
有良好的安全性,是一种先进的无线通信技术,在我们日常生活中有
着广泛的应用。
超宽带(UWB)技术
微波通信
输出信号s(t)可表示为:
s(t )
j
d
j
p(t jTs )
若使用PPM调制器代替PAM调制器,得到的信号可表示为:
d j 1 s(t ) p(t jTs ) 2 j
UWB 技术采用脉冲位置调制(PPM )单周期脉冲来携带信息和 信道编码,一般工作脉宽为0. 1~1.5 ns,重复周期为25~1 000 ns 。
微波通信
批准将UWB 用于民用产品以来, UWB的民用主要包括以下3 个 方面:地质勘探及可穿透障碍物的传感器(imaging system) ;汽车 防冲撞传感器等(vehicle radar system) ;家电设备及便携设备之间 的无线数据通信( communication and measurements system) 。 1、UWB 技术一个介于雷达和通信之间的重要应用是精确地理定 位,例如使用UWB 技术的能够提供三维地理定位信息的设备。 UWB 地理定位系统最初的开发和应用是在军事领域,其目的是战 士在城市环境条件下能够以0. 3 m的分辨率来测定自身所在的位 置。目前其主要商业用途之一为路旁信息服务系统.它能够提供突 发且高达100Mbps 的信息服务,其信息内容包括路况信息、建筑物 信息、天气预报和行驶建议,还可以用作紧急援助事件的通信。
微波通信
典型高斯单调周期脉冲的时域和频域如下图所示。
实际通信中使用一长串的脉冲,周期性重复的单脉冲时域和频域 特性如下图所示。
微波通信
频谱中出现了强烈的能量尖峰,这是由于时域中信号重复的周期 性造成了频谱的离散化。这些尖峰将会对传统无线电设备和信号 构成干扰,而且这种十分规则的脉冲序列也没有携带有用信息。改 变时域的周期性可以减低这种尖峰,即采用脉冲位置调制(PPM ) 。
超宽带基础知识分解课件
超宽带信号也可以采用扩频调制方式,通过将信号扩展到更 宽的频带范围内来提高信号的抗干扰能力和保密性。
超宽带无线通信系统
03
超宽带无线通信系统的组成
01
信号发射器
用于产生超宽带信号,并将其发送到空中。
02
信号接收器
用于接收超宽带信号,并将其转换为可处理的信息。
03
天线
用于传输和接收超宽带信号,实现信号的定向传播和接 收。
05 超宽带技术的应用实例
智能交通系统中的超宽带技术应用
总结词
智能交通系统中的超宽带技术应用主要表现在车辆定位、车速检测和交通信号控 制等方面,提高了交通效率和安全性。
详细描述
超宽带技术利用其高精度测距和低功耗的特性,在智能交通系统中实现车辆的精 确定位和车速检测,为交通信号控制提供了实时、准确的数据支持。这有助于减 少交通拥堵,提高道路使用效率,并增强行车安全性。
D
超宽带技术的挑战
频谱限制
超宽带技术使用的频谱受到严格限制,需要 获得相关部门的许可才能使用。
与其他无线通信技术的竞争
超宽带技术在市场上面临来自WiFi、蓝牙等 其他无线通信技术的竞争。
穿透能力和覆盖范围有限
超宽带信号容易受到障碍物的阻挡,穿透能 力和覆盖范围有限。
设备成本
超宽带技术的设备成本相对较高,可能会影 响其普及和应用。
02 超宽带信号的产生与传播
超宽带信号的产生方式
脉冲产生
超宽带信号通常由短的脉冲信号 组成,这些脉冲信号可以通过不 同的方式产生,如高斯脉冲、洛 伦兹脉冲等。
合成方法
超宽带信号可以通过多种合成方 法产生,如脉冲合成、频率合成 等,这些方法能够生成具有特定 频谱特性的信号。
UWB——超宽带无线通信技术
智能互联的黑马:UWB超宽带无线通信技术一、UWB技术是什么?UWB技术是一种使用1GHz以上频率带宽的无线载波通信技术。
它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很大,尽管使用无线通信,但其数据传输速率可以达到几百兆比特每秒以上。
使用UWB技术可在非常宽的带宽上传输信号,美国联邦通信委员会(FCC)对UWB技术的规定为:在3.1~10.6GHz频段中占用500MHz 以上的带宽。
二、UWB相比传统通信技术有什么优势?传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。
现在的无线广播、4G通信、Wi-Fi等都是采用该方式进行无线通信。
下图是一个使用调幅方式传递语音信号的连续波信号产生示意图。
而IR-UWB信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。
需要传送信息可以通过改变脉冲的幅度、时间、相位进行加载,进而实现信息传输。
下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。
而现在更为大家熟知的蓝牙、WiFi通信技术与UWB技术相较而言,也存在一定的劣势。
通过这张图大家可以更直观地了解到UWB技术与Wi-Fi、蓝牙技术的不同点。
简言之,UWB 技术的优势在于:1、定位精度高:带宽很宽,多径分辨能力强,抗干扰,对于距离的分辨能力高于Wi-Fi和蓝牙。
2、实时定位速度快:UWB的超宽带脉冲信号的带宽在纳秒级,可以实现实时的室内定位,延迟低,可以即刻感知追踪物体的运动状况。
3、高可靠性和安全性:UWB的发射功率低、信号带宽宽,能够很好地隐蔽在其它类型信号和环境噪声之中,传统的接收机无法识别和接收,必须采用与发射端一致的扩频码脉冲序列才能进行解调。
当然,UWB、Wi-Fi和蓝牙这三项技术并不是孤立存在的,完全可以同时使用,优势互补,能够给智能手机这样的终端产品带来多种需求的定位和数据传输服务,对于相关的天线和射频设计有较高要求。
(完整版)超宽带(UWB)技术
微波通信
到5 dB。 6、定位精确
超宽带无线电具有极强的穿透能力,可在室内和地下进行精确 定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之 内; 与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相 对位置, 其定位精度可达厘米级。 7、抗干扰性能强(电磁兼容性),误码率低
获的可能性低、系统复杂度低、厘米级的定位精度等优点。 1、简单系统结构
UWB发射器直接用脉冲小型微带天线。由于UWB 不需要对载 波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器 及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。 2、高速数据传输
理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想够窄的
微波通信
围内变化,从而利用载波的状态变化来传输信息。相反的,超宽 带以基带传输。 UWB通信系统模型见下图。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽 频率为UWB 所使用的频率范围。
微波通信
二、UWB的技术特点 UWB具有对信道衰落不敏感、发射信号功率谱密度低、被截
由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发 射连续载波时的大量能耗。这一特色还使UWB 可通过缩小脉冲 宽度,在提高带宽的同时而不增加功耗,这打破了过去传输技术中功 耗和带宽成正比的定律。民用的UWB 设备功率一般是传统移动 电话所需功率的1/ 100 左右,是蓝牙设备所需功率的1/ 20 左右。 军用的UWB 电台耗电也很低。因此,UWB 设备在电池寿命和电
超宽带UWB无线通信中的调制技术
超宽带UWB无线通信中的调制技术超宽带(UWB,Ultra Wide Band)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。
目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。
因此,有多种方式产生超宽带信号。
其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现。
1 UWB基本原理FCC(美国通信委员会)对超宽带系统的最新定义是:相对带宽(在-10dB点处)(fH-fL)/fc>20%(fH,fL,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW>500MHz。
它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs)、更强的抗干扰能力(处理增益50dB以上),同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内)。
发射超宽带(UWB)信号最常用和最传统的方法是发射一种时域上很短(占空比低达0.5%)的冲激脉冲。
这种传输技术称为“冲击无线电(IR)”。
UWB-IR又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的;由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。
因此冲击脉冲和调制技术就是超宽带的两大关键所在。
2 UWB的调制技术超宽带系统中信息数据对脉冲的调制方法可以有多种。
脉冲位置调制(PPM) 和脉冲幅度调制(PAM)是UWB 最常用的两种调制方式。
通常UWB信号模型为:(1)其中,w (t) 表示发送的单周期脉冲,dj,tj分别表示单脉冲的幅度和时延。
PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。
在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。
(完整版)UWB—超宽带无线通讯技术及应用
1 UWB技术背景和概述
➢1.3 UWB 技术背景
为了避免对现有的通信系统带来干扰,必需将超宽带系统的 发射功率限定在一定范围内,即在超宽带通信频率范围内的 每个频率上都规定一个最大的允许功率,这个功率值一般通 过辐射掩蔽(emission mask)来决定.
(1)
(2)
探地雷达 穿墙成像
墙内成像 监视系统
1 UWB技术背景和概述
➢1.3 UWB 技术背景
Emitted Signal Power
GPS PCS
WIFI, Bluetooth 802.11b
WIFI 802.11a
-41 dBm/MHz
UWB Spectrum
1.6 1.9 2.4
3.1
5
10.6
Frequency (GHz)
1 UWB技术背景和概述
➢ 2.1 UWB 使用基带窄脉冲波形
脉冲无线电(Impulse Radio)是早期超宽带系 统的代名词,专指采用冲激脉冲(超短脉冲) 作为信息载体的非正弦载波无线电技术。
该技术有别于传统使用正弦载波的窄带无线系 统,属于基带、无载波通信的范畴。
2.UWB无线通信技术原理
➢ 2.1 UWB 使用基带窄脉冲波形
医疗成像
室内UWB设备辐射掩蔽
室外手持设备
1 UWB技术背景和概述
➢1.3 UWB 技术背景
FCC(美国联邦通信局):
对UWB系统所使用的频谱范围规定
带宽规定: 绝对带宽 (Absolute Bandwidth) 相对带宽 (Fractional Bandwidth)
绝对带宽大于500MHz 相对带宽大于25%
基带窄脉冲形式是UWB通信最早采用的信号形 式,一般来说它的工作脉宽是纳秒级的
超宽带通信技术的原理与应用
超宽带通信技术的原理与应用随着社会的发展,人们对于通信技术的需求越来越高,而超宽带通信技术正是满足人们这种需求的重要手段之一。
本文将从技术原理、应用场景以及未来发展等方面,对超宽带通信技术进行分析和探讨。
一、技术原理
超宽带通信是指一种利用大带宽、短脉冲的无线传播技术。
其工作原理是将信息信号通过调制后转换成短时域脉冲信号,再使用非连续频率的电磁波进行传播,最后通过接收端对信号进行解调还原。
这种通信方式有很强的穿透力和传播能力,能够穿过建筑物和地球等障碍物,即使在恶劣环境下也具有优良的可靠性。
二、应用场景
超宽带通信技术广泛应用于医疗、安防、交通、电源、电信等行业。
其中,医疗领域是应用最为广泛的一个行业。
医疗设备传输的重要数据,如心电图、血氧等数据需要高速和安全的传输。
采用超宽带技术可跨越医院的多个房间,突破WiFi的距离限制和
干扰问题,保证数据实时稳定地传输。
此外,超宽带技术还广泛应用于车联网、无人机、智能家居、安防监控、智慧城市、电力监测等领域。
三、未来发展
随着移动互联网、云计算、大数据、人工智能等新一代信息技术的发展,超宽带通信技术的应用前景仍十分广阔。
未来,超宽带技术将进一步拓展应用场景,如智能交通、智慧农业、智能电网等。
同时,为了满足大带宽、长距离、大数据传输的需求,超宽带技术也将不断加强技术研究,实现高速稳定的数据传输。
总之,超宽带通信技术是一种重要的通信方式,其应用范围也正在不断扩大。
在新一代信息技术的推动下,我们有理由相信,它的未来发展将是光明的,为人类社会的发展和进步做出更加重要的贡献。
uwb超宽带无线通信技术(高精度定位)
uwb超宽带⽆线通信技术(⾼精度定位)UWB(定位技术)超宽带⽆线通信技术⼀、UWB调制技术超宽带⽆线通信技术(UWB)是⼀种⽆载波通信技术,UWB不使⽤载波,⽽是使⽤短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到⼀个频率范围内。
它源于20世纪60年代兴起的脉冲通信技术。
传统通信⽅式使⽤的是连续波信号,即本地振荡器产⽣连续的⾼频载波,需要传送信息通过例如调幅,调频等⽅式加载于载波之上,通过天线进⾏发送。
现在的⽆线⼴播,4G通信,WIFI等都是采⽤该⽅式进⾏⽆线通信。
下图是⼀个使⽤调幅⽅式传递语⾳信号的的连续波信号产⽣⽰意图。
图1 连续波调幅信号⽽脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产⽣连续的⾼频载波,仅仅需要产⽣⼀个时间短⾄nS级以下的脉冲,便可通过天线进⾏发送。
需要传送信息可以通过改变脉冲的幅度,时间,相位进⾏加载,进⽽实现信息传输。
下图是使⽤相位调制⽅式传输⼆进制归零码的IR-UWB信号产⽣⽰意图。
图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于⼀个窄频率内,⽽UWB信号带宽很⼤,同时在每个频点上功率很低,如图3所⽰。
图3 IR-UWB信号频谱在⽆线定位中,使⽤IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分⽴⽆线传输中的⾸达信号和多径反射信号,⽽窄带信号不具备该能⼒。
主要有三种应⽤:成像、通信与测量和车载雷达系统,再宏观⼀点,可以分为定位、通信和成像三种场景。
·通信:因为⼤带宽,所以UWB⼀度被认为是USB数据传输的⽆线替代⽅案,蓝⽛的问题是传输速度太慢。
UWB还常⽤于军⽤保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它⽆线电系统监听到。
UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s⾄2Gbit/s 的数据传输速率。
⽽且具有穿透⼒强、功耗低、抗⼲扰效果好、安全性⾼、空间容量⼤、能精确定位等诸多优点,可以说是个超级“潜⼒股”,很有可能在将来成为家庭主⽤的⽆线传输技术。
uwb物理层参数
uwb物理层参数
UWB(Ultra Wideband)是一种超宽带无线通信技术,其定义来自美国联邦通信委员会和DARPA。
它的工作频带为3.1~10.6GHz,系统带宽与系统中心频率之比大于20%或系统带宽至少为500MHz。
这种技术的主要特点包括超宽的频带,其频率覆盖从3G~5G,6G~10G共7G的频段,单信道带宽超过500MHz;功率低,按FCC等法规,其输出功率被限制在-41dBm/MHz,按单个信道500MHz计算,其信道功率为-14.3dBm;以及使用超短脉冲,维持时间为零点几纳秒。
UWB物理层规范由IEEE 802.15.4z标准定义,包括了LRP (Low Rate Pulse) 和HRP (High Rate Pulse) 两种类型。
在处理数据帧方面,UWB PHY层的数据帧主要包括三个部分:同步头、物理层头以及PDU数据段。
此外,UWB还具有丰富的处理流程和相关参数,例如SHR preamble,用于AGC设置、天线分集选择、定时采集、粗频偏和细频偏恢复、分组和帧同步、信道估计以及测距前沿信号跟踪等等。
总的来说,UWB物理层参数涵盖了频带宽度、输出功率、脉冲宽度等多个方面,与其独特的工作原理和丰富的技术规格密切相关。
超宽带无线通信技术介绍ppt(48张)
超宽带的特点
5、定位精度高
➢ 由于脉冲超宽带具有较强的穿透能力,因此可以用于各种环境 下的测距和定位。系统的定位精度与信号的频谱宽度直接相关, 频谱越宽,时间分辨率越高。脉冲超宽带发射极短的基带窄脉 冲信号具有很高的定位精度,其带宽通常在数GHz,所以理论 上其定位精度可达厘米量级。研究表明,与GPS全球定位系统 相比,超宽带技术具有更高的定位精度。
➢ 可以应用在:穿墙雷达、安全监视、透地探测 雷达、工业机器人控制、监视和入侵检测、道 路及建筑检测、贮藏罐内容探测等。
(1)
(2)
探地雷达 穿墙成像
墙内成像 监视系统
医疗成像
室内UWB设备辐射掩蔽能好
➢ 超宽带技术可以与现有的其他通信系统共享频谱。超宽带通信 使用的频谱范围从3.1GHz到10.6GHz,频谱宽度高达 7.5GHz,通过发射功率的限制,避免了对其他通信系统的干 扰。从上图 中可以看到,超宽带信号的最高辐射功率为41.3dBm,这仅仅相当于一台个人计算机的辐射。这样在很 低的功率谱密度下共享频谱的方式,在频谱资源非常紧张的今 天具有极其重要的意义,这也是超宽带兴起和发展的主要原因 之一.
技术
GPS
Bluetooth IEEE802.11
UWB
定位精度 5-20m
3m
3m
15cm
超宽带的特点
6、保密和安全性能好
➢ 超宽带信号的功率谱密度非常小,淹没在环境 噪声和其他信号中,同时又具有极宽的带宽, 很难被基于频谱搜索的侦测设备检测到。
➢ 同时超宽带系统可以采用多种扩频多址方式, 包括:跳时扩频、跳频扩频、直接序列扩频等, 在接收端必须采用与发射端一致的扩频码才能 正确的解调数据,这使得使非合法用户很难获 取合法用户的传输信息,系统的安全性和保密 性非常高。
超宽带技术要求和测试方法
超宽带技术要求和测试方法超宽带技术(Ultra-Wideband,UWB)是一种短距离、高速率的无线通信技术,具有大带宽、低功耗和高抗干扰能力等特点。
它在无线通信领域有着广泛的应用,如无线传感器网络、高清视频传输、室内定位等。
为了确保超宽带技术的性能和可靠性,需要进行相应的技术要求和测试方法的研究和制定。
一、超宽带技术的要求1. 频率范围:超宽带技术的频率范围应在3.1GHz到10.6GHz之间,以满足不同应用场景的需求。
2. 带宽要求:超宽带技术应具备大带宽特性,传输速率应达到100Mbps以上,以满足高速数据传输的需求。
3. 功耗要求:超宽带技术在实际应用中应具备低功耗的特点,以延长设备的续航时间。
4. 抗干扰能力要求:超宽带技术应具备较强的抗干扰能力,以保证在复杂的无线信道环境中能够稳定地传输数据。
5. 安全性要求:超宽带技术应具备一定的安全性能,以防止数据被非法获取或篡改。
二、超宽带技术的测试方法1. 频谱测试:通过频谱分析仪对超宽带技术的频谱进行测试,检测其频率范围是否满足要求。
2. 带宽测试:利用测试设备对超宽带技术的传输速率进行测试,检测其是否达到100Mbps以上。
3. 功耗测试:通过电流表或功率计等测试设备对超宽带技术的功耗进行测试,检测其是否符合低功耗要求。
4. 抗干扰测试:通过在复杂的无线信道环境下进行实验,测试超宽带技术在不同干扰条件下的性能表现,评估其抗干扰能力。
5. 安全性测试:通过搭建安全性测试平台,对超宽带技术进行安全性测试,检测其是否存在安全漏洞。
6. 传输距离测试:通过在不同距离下进行数据传输实验,测试超宽带技术的传输距离限制。
7. 灵敏度测试:通过在不同信噪比下进行实验,测试超宽带技术的灵敏度,评估其在弱信号环境下的表现。
8. 时延测试:通过对超宽带技术的数据传输时延进行测试,评估其实时性能。
9. 兼容性测试:通过与其他无线通信技术进行兼容性测试,确保超宽带技术能够与其他技术共存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TOA (Time of Arrival)
位置坐标
(x, y, z)
位置相关 参数估计 接收 信号
定位 算法
演示系统
位置相关 参数估计
测距模块 利用测距 算法估计 参考节点 和目标节 点间距离
…
定位模块 利用多个 节点的测 距结果估 计目标节 点的位置
超宽带信号模型
根据传输技术不同分为两类: 脉冲超宽带
功率谱密度
功率谱密度
f c Ri f c
f c Ri
f
f c Ri
fc
f c Ri
f
(a)信息调制时输出信号功率谱
(b)发送的扩频信号功率谱
功率谱密度 噪声
干扰信号 发送信号
fc
功率谱密度
有用信号
干扰信号
噪声
f f
fc
(c)接收信号功率谱
(d )解扩后的信号功率谱
功率谱密度
有用信号
干扰信号 噪声
超宽带的特点
2、信道容量大,传输速率高
香农信道容量公式 C W log 2 (1 ) (b / s) N 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹 (GHz)带宽,理论上可以提供极高的信道容量,பைடு நூலகம்达到Gbps以上的传输速率,或者在很低的信噪比下, 以一定的传输速率实现可靠传输。假定一个超宽带 信号使用7GHz带宽,当信噪比S/N低至-10dB时, 超宽带可以提供的信道容量为C=7G×log2 (1+0.1)≈ 0.963Gbps,接近1Gbps。 数据表明,超宽带的空间通信容量是现有的通信系 统(如:无线局域网、蓝牙等)的10-1000倍以上。
超宽带的应用
超宽带的应用
雷达、探测
超宽带依赖于极微弱的、与雷达中所使用的相 近的基带窄脉冲,具有很强的穿透能力,能穿 透树叶、墙壁、地表、云层等障碍,辨别出障 碍物后隐藏的物体或运动着的物体,测距精度 的误差只有一两厘米。 可以应用在:穿墙雷达、安全监视、透地探测 雷达、工业机器人控制、监视和入侵检测、道 路及建筑检测、贮藏罐内容探测等。
超宽带的特点
4、信号衰减小,穿透能力强
正弦载波在自由空间的衰减与距离平方成反比, 在密集多径情况下,信号的功率衰减更是与距 离的3-4次方成反比。脉冲超宽带信号为定向窄 脉冲,不需要载波,具有较强的方向性,在相 同的功率下,比正弦电磁波的衰减更小。 同时基带窄脉冲信号包含的低频部分的长波具 有较强的穿透能力,能够穿透多种材料,使其 可以应用于成像、检测、监视和测量等领域。
跳时扩频调制超宽带
TH-SS PPM UWB s (t ) E p
Ts
1 2 3 4 5 6 ……
N f 1
n 0 j 0
p(t nT
s
jT f (ct ) j Tc d n )
Tf
1 2 3
TS=NfTf
4 5 6 …… Nf
Tc
Tf=NcTc
发射信号
-8
PAM-TH-UWB 发射信号
时间 [s]
直接序列扩频
直接序列扩频就是在发射端 信源 直接利用高码片速率的扩频 码序列扩展发送信号的频谱。 然后在接收端,用相同的扩 频码序列相乘解扩,恢复出 原始的发送信息。 在发射端,欲传输的基带信 号与一个码片速率很高的伪 随机码进行时域相乘,其输 d (t ) 出为一个频谱带宽被扩展的 扩频码流,然后将此扩频码 c( 流变换为射频信号发射出去。t) 在接收端,射频信号经过变 频后输出中频信号,它与本 d (t )* c(t ) 地的伪随机码进行时域相乘, 得到解扩信号,经信息解调 c(t ) 器恢复成原始数字信号。 只有当 c(t) c(t) 时,才能进行 r (t ) 正确的解扩和解码。
……
TH-SS PAM UWB
s (t ) E p d n p (t nTs jT f (ct ) j Tc )
n 0 j 0
N f 1
x 10 14 12 10 8
-3
幅度[V]
6 4 2 0 -2 -4 -6 0 0.5 1 1.5 2 2.5 x 10 3
超宽带无线通信技术
目录
1 2 3 4 5 超宽带的定义
超宽带的特点和应用
超宽带的传输方式 超宽带的信道模型 超宽带的关键技术
超宽带的定义
Ultra-Wideband (UWB) Wireless Communication
美国联邦通信委员会(FCC:Federal Communications Commission)
与其它短距离无线技术的比较
UWB 蓝牙 802.11a HomeRF
速率(bps)
最高达1G
<1M
54M
1~2M
距离(米) 功率
<10 1毫瓦以下
10 1~100毫瓦
10~100 1瓦以上
50 1瓦以上
超宽带的应用
通信
UWB系统带宽极大,可支持大的信道容量,同时系统功率受限,只能 传播较短距离,因此UWB技术特别适合于短距离高速无线通信。 例如基于UWB技术的无线USB 2.0,可取代有线USB,实现PC之间及 消费类电子设备(电视、数码相机、DVD播放器、MP3等)之间的无 线数据互连与通信。 无线个域网(WPAN) 、高速智能无线局域网、智能交通系统,公路信 息服务系统,汽车检测系统,舰船、飞机内部通信系统,楼内通信系 统、室内宽带蜂窝电话,战术组网电台,非视距超宽带电台,战术/战 略通信电台,保密无线宽带因特网接入等等
超宽带的应用
测距,定位
超宽带信号在户内和户外都可以提供精确地定 位信息,在军事和民用上都有广泛的应用。 例如在敌方领土上营救人员,儿童搜寻,寻找 丢失的宠物和行李,跟踪、搜索和解救人员, 定位贵重的物品的位置等等
危险环境 人员和物资的追踪管理 - 安全位置的紧急搜索 - 定位人员 - 安全有效
技术 GPS Bluetooth IEEE802.11 UWB
定位精度
5-20m
3m
3m
15cm
超宽带的特点
6、保密和安全性能好
超宽带信号的功率谱密度非常小,淹没在环境 噪声和其他信号中,同时又具有极宽的带宽, 很难被基于频谱搜索的侦测设备检测到。 同时超宽带系统可以采用多种扩频多址方式, 包括:跳时扩频、跳频扩频、直接序列扩频等, 在接收端必须采用与发射端一致的扩频码才能 正确的解调数据,这使得使非合法用户很难获 取合法用户的传输信息,系统的安全性和保密 性非常高。
优点
1. 系统简单、成本低、功 耗小 2. 多径分辨能力强 3. 信号随距离衰减小,穿 透能力强
多频带超宽带
优点
1. 易实现高信息传输速率 2. 频谱利用率可以较高 3. 频谱使用灵活
缺点
1. 2. 3. 4. 系统复杂 成本高 功耗高 高频段时信号穿透力弱
缺点
1. 信息传输速率不高 2. 频谱利用率不高 3. 频谱使用不灵活
(1) (2) 探地雷达 穿墙成像 墙内成像 监视系统 医疗成像
室内UWB设备辐射掩蔽 室外手持设备
超宽带的特点
1、共存性能好
超宽带技术可以与现有的其他通信系统共享频谱。超宽带通信 使用的频谱范围从3.1GHz到10.6GHz,频谱宽度高达 7.5GHz,通过发射功率的限制,避免了对其他通信系统的干 扰。从上图 中可以看到,超宽带信号的最高辐射功率为41.3dBm,这仅仅相当于一台个人计算机的辐射。这样在很 低的功率谱密度下共享频谱的方式,在频谱资源非常紧张的今 天具有极其重要的意义,这也是超宽带兴起和发展的主要原因 之一.
f L 1.2 GHz
f H 2.8 GHz
窄带 宽带 超宽带
相对带宽<1% 1%<相对带宽<20% 相对带宽>20%
fH fL 2.8 1.2 相对带宽 100% 80% ( f H f L ) 2 (2.8 1.2) 2
超宽带信号的辐射掩蔽
为了避免对现有的通信系统带来干扰,必需将超宽带系统的发射功率限定 在一定范围内,即在超宽带通信频率范围内的每个频率上都规定一个最大 的允许功率,这个功率值一般通过辐射掩蔽(emission mask)来决定.
2 t 2
2
e
2
4 t 2 1 2
高斯脉冲各阶导数
阶数越高,高斯导数波形的过零点次数就越多,相应的信号带宽就越宽。
扩频技术
扩频通信是将待传送的信息数据用扩频序列调制,实现频谱扩展后再传输;接收端则 采用相同的扩频序列进行解调及相关处理,恢复原始信息数据。
多址接入 隐蔽性和保密性好 抗干扰性强,误码率低
脉冲波形
高斯脉冲微分,升余弦、Herimite(厄密特)脉冲等。
高斯函数脉冲
高斯脉冲宽度 和频域带宽取 决于参数α , α 的值越大, 高斯脉冲越宽, 相应的频域带 宽就越小
p(t )
1 2 2
t2 2 2
e
2
2 t 2
e
2
高斯脉冲二阶导
w2 (t )
4
S
超宽带的特点
3、低成本,低功耗
脉冲超宽带是最早采用的一种传输方式,它不 需要载波,而是利用极短的脉冲传输信息,因 此,在发射端脉冲超宽带不需要功放和混频器, 接收端也不需要中频处理,大大降低了收发机 的硬件实现复杂性和成本。同时,为了避免对 现有通信系统的干扰,超宽带信号发射功率很 低,简单的收发设备以及低功率,使得脉冲超 宽带系统的功耗非常低,可以使用电池长时间 供电。
超宽带脉冲波形设计
脉冲波形设计原则
1. 符合UWB 信号定义,-10dB 绝对带宽大于500MHz 或 相对带宽大于20%。 2. 波形波动小,即不能有太多的峰值数。否则,当相关检 测时,微小的延时会造成匹配不上,不利于检测接收。 3. 功率谱密度在频域上满足FCC 辐射掩模的规定。 4. 脉冲的直流分量为零或者低频分量上的能量尽可能地小。